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1. Introduction

Iwasawa theory was introduced around 1960 in the context of class groups of cyclotomic and
other Zp-extensions of number fields. The Main Conjecture of Iwasawa theory proposed a re-
markable connection between the p-adic L-functions of Kubota and Leopoldt and these class
groups [19, §1], [12, §5], including among its consequences certain refined class number formulas
for values of Dirichlet L-functions. This Main Conjecture was proved by Mazur and Wiles [47]
in the early 1980’s.

Beginning with work of Mazur and Swinnerton-Dyer [45] in the 1970’s and especially in sub-
sequent papers of Greenberg [20] [21] [22], the ideas of Iwasawa theory were extended to elliptic
curves and – having been suitably recast in the language of Selmer groups – other p-adic Galois
representations. Each instance has its own Main Conjecture (at least conjecturally!) relating cer-
tain Galois cohomology groups (the algebraic side) with p-adic L-functions (the analytic side).
And like the original Main Conjecture of Iwasawa, these Main Conjectures have consequences for
the (expected) related special value formulas. In the case of an elliptic curve E this can include
the p-part of the Birch–Swinnerton-Dyer formula when the analytic rank is at most one.

The aim of these lectures is to describe the Iwasawa theory of elliptic curves, stating the
associated Main Conjectures and reporting on some of the progress that has been made toward
proving these conjectures and especially some of the arithmetic consequences.

Prerequisites. These notes are prepared with the expectation that the reader will have a solid
background in algebraic number theory and be comfortable with Galois cohomology and Tate’s
duality theorems ([49, I] is a good reference for the latter). These notes focus on the case of
elliptic curves, but this course was chosen with the expectation that the reader will be more
comfortable with this case than with that of a general eigenform and because this is probably the
case of most interest (and it also simplifies some notation). While very little specific to elliptic
curves is used, it could also be helpful to have a familiarity with their basic arithmetic ([61] would
be more than sufficient).

Additional readings for details. Those seeking more details should be able to easily find
some in the literature. In particular, in addition to the earlier cited papers of Greenberg, [23],
[24], and [25] contain a wealth of foundational material (and many examples). Kato’s paper [33]
is an introduction to the circle of ideas carried out in [34] for elliptic curves and modular forms,
while [59], [60], and [14] help illuminate aspects of [34]. However, for details of the proofs of
many of the more recent results (such as [64]) the best current resources may be the original
papers themselves.
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Some notational preliminaries. We let Q be a fixed separable algebraic closure of Q. Given
a subfield F ⊂ Q we let GF = Gal(Q/F ). For a set Σ of places of F , we write GF,Σ for the Galois

group Gal(FΣ/F ) of the maximal extension FΣ ⊂ Q of F that is unramified outside Σ. If F = Q
then we may drop the subscript ‘Q’ from our notation (writing GΣ for GQ,Σ). For a place v of F

we let F v be a separable algebraic closure of the completion Fv and let GFv = Gal(F v/Fv). We
let Iv ⊂ GFv be the inertia subgroup and, when the residue field of Fv is finite, Frobv ∈ GFv/Iv an
arithmetic Frobenius. Generally, we will assume that we have chosen an F -embedding Q ↪→ F v,
which identifies GFv as a subgroup of GF .

We fix conventions for the reciprocity laws of class field theory as follows: For a number field
F and a place v of F we let recFv : F×v → GabFv be the reciprocity map of local class field
theory, normalized so that uniformizers map to lifts of the arithmetic Frobenius. Similarly, we
let recF : F×\A×F → GabF be the reciprocity map of global class field theory, normalized so that
recF |F×v = recFv .

Throughout, p is a prime number (usually assumed > 2). We let ε : GQ → Z×p be the p-adic
cyclotomic character.

At times it will be useful to view elements of Q as both complex numbers and p-adic numbers.
To this end we fix embeddings Q ↪→ C and Q ↪→ Qp which will be tacitly in use in all that
follows.

Finally, one last bit of general notation about modules: Suppose M is a module for a ring R. If
φ : M →M is an R-linear endomorphism of M , then we write M [φ] to mean the kernel of φ. A
commonly used variation of this will be to write M [r] for M [φ] when φ is just the multiplication
by r map.

Acknowledgments. It is a pleasure to thank all those who provided feedback and corrections to
these notes, particulary Francesc Castella – who carefully read earlier drafts – as well as Kim
Tuan Do. The author’s work has been supported by grants from the National Science Foundation
and a Simons Investigator grant.

2. Selmer groups

We begin by recalling the usual Selmer groups of an elliptic curve as well as some generalizations.

2.1. Selmer groups of elliptic curves. Let E be an elliptic curve over a number field F .

2.1.1. The Weak Mordell–Weil Theorem. One of the fundamental results about the arithmetic
of E is the celebrated theorem of Mordell and Weil:

E(F ) is a finitely-generated abelian group.

An important step in the proof of this theorem is the Weak Mordell–Weil Theorem: for any
positive integer m ≥ 2, E(F )/mE(F ) is a finite group. This yields the Mordell–Weil Theorem
when combined with the theory of heights on elliptic curves, especially Tate’s canonical height.

The Weak Mordell–Weil Theorem is generally proved by realizing E(F )/mE(F ) as a subgroup
of another group that is more readily recognized as having finite order. This makes use of the
Kummer map for elliptic curves. Let P ∈ E(F ) be a point and let Q ∈ E(F ) be a point such
that mQ = P . The map φQ : GF → E[m], σ 7→ σ(Q) − Q, is a 1-cocycle. Let cP = [φQ] be
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the class of φQ in the Galois cohomology group H1(F,E[m]). If Q′ is another point such that
mQ′ = P , then the difference φQ − φQ′ is a coboundary, so cP depends only on P . The map
E(F )→ H1(F,E[m]), P 7→ cP , is clearly a homomorphism. A point P ∈ E(F ) is in the kernel of
this homomorphism if and only if cP is a coboundary, that is, if and only if there exists R ∈ E[m]
such that σ(Q)−Q = σ(R)−R for all σ ∈ GF . But this is so if and only if σ(Q−R) = Q−R
for all σ ∈ GF , and so if and only if Q − R ∈ E(F ). But then P = m(Q − R) ∈ mE(F ). This
shows that there is in fact an injection

E(F )/mE(F )
κ
↪→ H1(F,E[m]), κ(P ) = cP .

The map κ is the Kummer map for the multiplication by m endomorphism of E. It is just the
boundary map in the long exact Galois cohomology sequence associated with the short exact

sequence 0 → E[m] → E
m→ E → 0. However, we have not yet achieved what we wanted: the

group H1(F,E[m]) is infinite. We seem to have gone in the wrong direction! To finish the proof
of the Weak Mordell–Weil Theorem one makes a closer analysis of the image of κ.

Let v be a finite place of F not dividing m and such that E has good reduction at v. This only
excludes a finite subset Σ of all the places of F . Let kv be the residue field of v and let ` be the
characteristic of kv. Let E be the reduction of E modulo v; this is an elliptic curve over kv. As
` - m, the reduction map is an isomorphism on m-torsion: E[m]

∼→ E[m]. Let σ ∈ Iv. Then σ
acts trivially on E and so σ(Q) and Q have the same image in E. In particular, σ(Q)−Q reduces
to the origin in E. But σ(Q)−Q ∈ E[m] and so it follows from the injectivity of the reduction
map on E[m] that σ(Q)−Q = 0. In particular, the restriction of cQ to the inertia group Iv is a
coboundary. This means that the image of κ is contained in

ker

H1(F,E[m])
res→
∏
v 6∈Σ

H1(Iv, E[m])

 ,

the kernel of the product of the restriction maps to the inertia subgroups of all the places v not
in the finite set Σ. Another way of writing this kernel is H1(GF,Σ, E[m]). So we have

E(F )/mE(F )
κ
↪→ H1(GF,Σ, E[m]), κ(P ) = cP .

This is better: the group H1(GF,Σ, E[m]) is finite (and hence E(F )/mE(F ) is also finite). The
finiteness of H1(GF,Σ, E[m]) can be seen as follows. Let L = F (E[m]) ⊂ FΣ be the finite Galois
extension of F obtained by adjoining the coordinates of points in E[m]. The inflation restriction
sequence gives a left-exact sequence

0→ H1(Gal(L/F ), E[m]GL)→ H1(GF,Σ, E[m])
res→ H1(Gal(FΣ/L), E[m]).

The group H1(Gal(L/F ), E[m]GL) is clearly finite (as both Gal(L/F ) and E[m] are finite groups).
Since Gal(FΣ/L) acts trivially on E[m], H1(Gal(FΣ/L), E[m]) = Hom(Gal(FΣ/L), E[m]). Any
element of Hom(Gal(FΣ/L), E[m]) factors through the Galois group over L of the maximal
abelian extension of L of exponent m that is unramified outside the finitely many places of L
dividing a place in Σ. This extension is finite, and hence so is Hom(Gal(FΣ/L), E[m]). We have
sandwiched H1(GF,Σ, E[m]) between two finite groups.

By realizing E(F )/mE(F ) as a subgroup of H1(GF,Σ, E[m]) we reduced its finiteness to the os-
tensibly easier problem of the finiteness of certain extensions of number fields. This demonstrates
one utility of cohomology groups.
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2.1.2. The Selmer group for multiplication by m. The Selmer group for the multiplication by m
map on E refines the inclusion E(F )/mE(F ) ↪→ H1(GF,Σ, E[m]). It is essentially the smallest
subgroup of H1(F,E[m]) containing the image of E(F )/mE(F ) that can be defined by more-or-
less obvious local constraints (‘local conditions’) on the cohomology classes.

The Kummer map P
κ7→ cP that we recalled earlier makes sense for E over any field and in

particular over the completion Fv of F at a place of F .

For each place v of F the inclusion of F in the completion Fv induces a commutative diagram

E(F )/mE(F )
κ−−−−→ H1(F,E[m])y yres

E(Fv)/mE(Fv)
κv−−−−→ H1(Fv, E[m]),

where κv is just the Kummer map for E over Fv. The Selmer group Selm(E/F ) for the multi-
plication by m on E is

Selm(E/F ) =
{
c ∈ H1(F,E[m]) : resv(c) ∈ im(κv) ∀v

}
.

This clearly contains the image of κ. Furthermore, by the argument explained above, if v does

not divide m and E has good reduction at v then im(κv) ⊂ ker
{
H1(Fv, E[m])

res→ H1(Iv, E[m])
}

.

In particular, Selm(E/F ) ⊆ H1(GF,Σ, E[m]).

The maps κ and κv are part of short exact sequences

0→ E(F )/mE(F )
κ→ H1(F,E[m])→ H1(F,E)[m]→ 0

and

0→ E(Fv)/mE(Fv)
κv→ H1(Fv, E[m])→ H1(Fv, E)[m]→ 0

that come from the long exact Galois cohomology sequences associated with the short exact

sequence 0→ E[m]→ E
m→ E → 0. In particular, we can rewrite the definition of Selm(E/F ) as

Selm(E/F ) = ker

{
H1(F,E[m])

res→
∏
v

H1(Fv, E)

}
.

And we see that the image of κ is just ker
{

Selm(E/F )→ H1(F,E)
}

. In particular, there is a
fundamental exact sequence

0→ E(F )/mE(F )
κ→ Selm(E/F )→X(E/F )[m]→ 0,

where

X(E/F ) = ker

{
H1(F,E)

res→
∏
v

H1(Fv, E)

}
is the Tate-Shafarevich group of E over F .

If m | m′ then the inclusion E[m] ⊂ E[m′] induces a surjection H1(F,E[m]) � H1(F,E[m′])[m]

and so a surjection Selm(E/F ) → Selm′(E/F )[m]. The kernel is just E[m
′

m ](F )/mE[m′](F ). If

F ′/F is a finite extension, then the restriction map H1(F,E[m]) → H1(F ′, E[m]) induces a
homomorphism Selm(E/F ) → Selm(E/F ′). Furthermore, if F ′/F is a Galois extension, then
the action of Gal(F ′/F ) on H1(F ′, E[m]) defines an action on Selm(E/F ′), and the maximal
Gal(F ′/F )-fixed subgroup contains the image of Selm(E/F ).
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Remark 2.1.2.a. Suppose that m = p. It is expected that X(E/F )[p∞] is finite, in which case
it is known that X(E/F )[p] has even dimension as a vector space over Fp. It then follows from
the fundamental exact sequence that

dimFp Selp(E/F ) ≡ dimFp E(F )/pE(F ) mod 2.

In particular, if dimFp Selp(E/F ) = 1, then is expected that dimFp E(F )/pE(F ) = 1. If
dimFp E(F )/pE(F ) = 1 but E[p](F ) = 0, then rankZE(F ) = 1. This suggests

(dimFp Selp(E/F ) = 1 and E[p](F ) = 0)
?

=⇒ rankZE(F ) = 1.

2.1.3. Vista: Selmer groups of Abelian varieties and their isogenies. The group Selm(E/F ) is a
special case of a definition that can be made for any non-zero isogeny

A
φ→ B

of abelian varieties over F . The natural generalization of the Kummer map yields an injection
A(F )/φ(B(F )) ↪→ H1(F,A[φ]), which leads to the definition of a Selmer group Selφ(A/F ) ⊂
H1(GF,Σ, A[φ]) (for Σ containing all places that divide #A[φ] and at which A – and so also B
– has bad reduction). These Selmer groups play an equally important role in our understanding
of the arithmetic of the abelian varieties A and B.

Elliptic curves can have isogenies that are not just multiplication by an integer m. For example,
if E has an F -rational point P ∈ E[m], then the quotient map E → E′ = E/〈P 〉 is an isogeny.
And if E is an elliptic curve with complex multiplication by an order in an imaginary quadratic
field K contained in F , then E will have many F -rational endomorphisms that are not just mul-
tiplication by an integer. The Selmer groups for these endomorphisms have featured prominently
in most efforts to understand the arithmetic of elliptic curves with complex multiplication, such
as the Coates–Wiles theorem [13] or Rubin’s proof of the first known cases of elliptic curves with
a finite Tate-Shafarevich group [57].

2.1.4. The p∞-Selmer group. The p∞-Selmer group of E is obtained by taking the direct limits
over n of the p-power Selmer groups Selpn(E/F ):

Selp∞(E/F ) = lim−→
n

Selpn(E/F ).

Since lim−→n
H1(F,E[pn]) = H1(F,E[p∞]) the p∞-Selmer group can also be directly defined as

Selp∞(E/F ) = ker

{
H1(F,E[p∞])

res→
∏
v

H1(Fv, E)

}
.

The natural surjection H1(F,E[pn]) � H1(F,E[p∞])[pn] induces a surjection Selpn(E/F ) �
Selp∞(E/F )[pn] with kernel E[p∞](F )/pnE[p∞](F ).

Taking the direct limit over the fundamental exact sequences for the multiplication by pn maps
yields the fundamental exact sequence for the p∞-Selmer groups:

0→ E(F )⊗Qp/Zp → Selp∞(E/F )→X(E/F )[p∞]→ 0.

Remark 2.1.4.b. The group X(E/F )[p∞] is expected to be finite, in which case it follows from
the fundamental exact sequence for Selp∞(E/F ) that

rankZE(F )
?
= corankZp Selp∞(E/F ),

the Zp-corank of a discrete module S being the Zp-rank of its Pontryagin dual Homcts(S,Qp/Zp).
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2.1.5. The p∞-Selmer group in terms of E[p∞] only. The p∞-Selmer group of E can be de-
fined solely in terms of the p-divisible group E[p∞]. We start by noting that if v - p, then
lim−→n

E(Fv)/p
nE(Fv) = E(Fv) ⊗ Qp/Zp = 0. The key point here is that E(Fv)/p

nE(Fv) has

order either 1 or 2 if v | ∞ and if v - ∞ then E(Fv) contains a pro-`-subgroup of finite in-
dex, where ` is the residue characteristic of v. It follows that the local condition at v defining
a class in Selp∞(E/F ) is just that its restriction to H1(Fv, E[p∞]) is 0. If in addition v is a
prime of good reduction, then the kernel of the restriction map H1(Fv, E[p∞])→ H1(Iv, E[p∞])
is H1(GFv/Iv, E[p∞]) ∼= E[p∞]/(Frobv −1)E[p∞] = 0 (since E[p∞] is divisible and 1 is not an
eigenvalue for the action of Frobv on the p-adic Tate module of the elliptic curve E/kv). So for
such v, vanishing in H1(Fv, E[p∞]) is equivalent to vanishing in H1(Iv, E[p∞]), that is, the local
condition at v defining a class in Selp∞(E/F ) can also be expressed as the class being unramified
at v. Already, this means

Selp∞(E/F ) = ker

H1(F,E[p∞])
res→
∏
v-p

H1(Fv, E[p∞])×
∏
v|p

H1(Fv, E)


= ker

H1(GF,Σ, E[p∞])
res→

∏
v∈Σ,v-p

H1(Fv, E[p∞])×
∏
v|p

H1(Fv, E[p∞])/im(κv)

 .

The situation for v | p is more complicated. We want to express im(κv) in terms of E[p∞] only
(without reference to the full curve E). Let T = TpE = lim←−nE[pn] be the p-adic Tate-module

of E (really just of the p-divisible group E[p∞]). Note that there is a canonical isomorphism

TpE ⊗Z Qp/Zp
∼→ E[p∞] (given by (Pn)⊗ 1

pm 7→ Pm).

Suppose first that E has good ordinary or multiplicative reduction at v. Then T has a GFv -
filtration 0 ⊂ T+

v ⊂ T with T+
v a rank-one Zp-summand such that T/T+

v is unramified with
Frobv acting as multiplication by the unit root αp of x2 − av(E)x + p (if E has good reduction
at v) or by av(E) (if E has multiplicative reduction at v). Then

im(κv) = im
{
H1(Fv, T

+
v ⊗Qp/Zp)→ H1(Fv, E[p∞])

}
div

= ker
{
H1(Fv, E[p∞])→ H1(Fv, T/T

+
v ⊗Zp Qp/Zp)

}
div

,

where the subscript ‘div’ denotes the maximal divisible subgroup. In the case of good reduction,
the divisible subgroup is the whole group unless av(E) ≡ 1 mod p (the index of the divisible
subgroup is #Zp/(αp − 1)Zp). In the case of split multiplicative reduction, the divisible sub-
group is everything. In the case of non-split multiplicative reduction, the divisible subgroup is
everything if p > 2, and if p = 2 then the index of the divisible subgroup is either 1 or 2 (and
equals the 2-part of the Tamagawa factor for E/Fv). All this follows from analyzing E[p∞] and
its cohomology using the formal group when E has good reduction at v and using the Tate
parameterization in the cases of multiplicative reduction.

More generally, Bloch and Kato [5, Ex. 3.11] described the image of κv, v | p, in a manner
that also covers the cases of supersingular and additive reduction. Let V = T ⊗ Qp. This is a

two-dimensional Qp-representation of GF . Note that V/T = T ⊗Zp Qp/Zp
∼→ E[p∞]. Letting

H1
f (Fv, V ) = ker

{
H1(Fv, V )→ H1(Fv, V ⊗Qp Bcris)

}
,

they show that

im(κv) = im
{
H1
f (Fv, V )→ H1(Fv, E[p∞])

}
.
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It is a good exercise of one’s understanding of basic p-adic Hodge theory to deduce the description
of im(κv) given above in the cases of ordinary and multiplicative reduction from that of Bloch
and Kato.

Remark 2.1.5.c. The question of whether the Selmer group Selpn(E/F ) is determined by the

Galois module E[pn] has been studied by Česnavičius [11]; a positive answer is given in terms of
flat cohomology under mild conditions on p.

2.1.6. Selmer groups and The Birch–Swinnerton-Dyer Conjecture. As already noted, the Selmer
groups Selm(E/F ) and Selp∞(E/F ) encapsulate information about the Mordell–Weil group E(F )
and the Tate–Shafarevich group X(E/F ). Information about both these groups should also be
encoded in the L-function L(E/F, s) of E, as explained in the Birch–Swinnerton-Dyer Conjecture.
Combining this we can extract some expected connections between L(E/F, s) and Selmer groups
of E.

The Birch and Swinnerton-Dyer Conjecture, as stated by Tate [68]:

Conjecture 1 (Birch and Swinnerton-Dyer Conjecture). Let F be a number field and let E/F
be an elliptic curve.

(a) The Hasse–Weil L-function L(E/F, s) has analytic continuation to the entire complex
plane and

(BSD) ords=1L(E/F, s) = rkZE(F ).

(b) The Tate–Shafarevich group X(E/F ) has finite order, and

(BSD-f)
L(r)(E/F, 1)

r! · ΩE/F · Reg(E/F ) · |∆F |−1/2
=

#X(E/F ) ·
∏
v-∞ cv(E/F )

(#E(F )tors)2
,

where r = ords=1L(E/F, s), cv(E/F ) = [E(Fv) : E0(Fv)] is the Tamagawa number at v
for a finite place v of F , Reg(E/F ) is the regulator of the Néron-Tate height pairing on
E(F ), ∆F is the discriminant of F , and ΩE/F ∈ C× is the period defined by

(Ω) ΩE/F = NF/Q(aω) ·
∏
v|∞
v-real

∫
E(Fv)

|ω| ·
∏
v|∞

v-complex

(
2 ·
∫
E(Fv)

ω ∧ ω

)
.

Here ω ∈ Ω1(Ẽ/OF ) is any non-zero differential on the Néron model Ẽ of E over OF ,

and aω ⊂ F is the fractional ideal such that aω · ω = Ω1(Ẽ/OF ). Also, for a finite place
v, E0(Fv) ⊂ E(Fv) denotes the subgroup of local points that specialize to the identity
component of the Néron model of E at the place v.

When F = Q we will write ΩE for ΩE/Q.

As already noted, the finiteness of X(E/F ) (or even of just the p-primary part X(E/F )[p∞])
implies that the Zp-corank of Selp∞(E/F ) equals the rank of E(F ). So one expects

(BSD-crk) ords=1L(E/F, s)
?
= corankZp Selp∞(E/F ).

This suggests that one might first ask:

(Sel-van) L(E/F, 1) = 0
?⇐⇒ #Selp∞(E/F ) =∞.
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It also suggests the question:

(Sel-par) ords=1L(E/F, s) ≡ 1− w(E/F )

2

?≡ corankZp Selp∞(E/F ) mod 2.

Here w(E/F ) ∈ {±1} is the root number of E/F (the sign of the expected functional equation of
L(E/F )). If Lalg(E/F, 1) = L(E/F, 1)/ΩE/F |∆F |−1/2 is a rational number, then a refined form
of (Sel-van), incorporating the BSD formula (BSD-f) when r = 0, is

(BSDp-0)
∣∣Lalg(E/F, 1)

∣∣
p

?
=

∣∣∣∣∣#Selp∞(E/F ) ·
∏
v-∞ cv(E/F )

(#E(F )tors)2

∣∣∣∣∣
p

.

Here we understand the right-hand side to equal 0 if #Selp∞(E/F ) = ∞. As explained below,
some progress has been made on all these problems (and a few others) for an elliptic curve E/Q.

2.2. Bloch–Kato Selmer groups. Bloch and Kato [5] actually defined Selmer groups in a very
general setting, starting with a p-adic Galois representation of GF .

In keeping with our arithmetic conventions for class field theory, we also adopt arithmetic
conventions for p-adic Hodge–Tate weights. In particular, the p-adic cyclotomic character has
Hodge–Tate weight 1.

2.2.1. The definition. Let L be a finite extension of Qp with ring of integers O. Let V be a finite-
dimensional L-space equipped with a continuous L-linear action of GF . We assume that V is a
geometric representation of GF . This means that the action of GF on V is unramified away from
a finite set of places and that for each place v | p the representation of GFv on V is potentially
semistable (equivalently, de Rham). Let T ⊂ V be a GF -stable O-lattice (so in particular,
V = T ⊗O L). Such a lattice always exists by a simple compactness argument. Let W = V/T .
Bloch and Kato defined subgroups (Selmer groups) H1

f (F, V ) ⊂ H1(F, V ), H1
f (F, T ) ⊂ H1(F, T ),

and H1
f (F,W ) ⊂ H1(F,W ) as follows.

First they defined local subgroups for a place v of F :

H1
f (Fv, V ) =

{
H1(Gal(F ur

v /Fv), V
Iv ) = ker

{
H1(Fv, V )→ H1(Iv, V )

}
v - p

ker
{
H1(Fv, V )→ H1(Fv, V ⊗Qp Bcris)

}
v | p.

The exact sequence 0→ T → V →W → 0 yields an exact sequence

H1(Fv, T )
i→ H1(Fv, V )

j→ H1(Fv,W ),

and H1
f (Fv, T ) and H1

f (Fv,W ) are defined to be

H1
f (Fv, T ) = i−1(H1

f (Fv, V )) and H1
f (Fv,W ) = j(H1

f (Fv, V )).

Note that H1
f (Fv,W ) is L-divisible, being the image of the L-space H1

f (Fv, V ).

The Bloch–Kato Selmer groups are then defined by

H1
f (F, ?) = ker

{
H1(F, ?)

res→
∏
v

H1(Fv, ?)/H1
f (Fv, ?)

}
, ? = T, V, or W.

The Bloch–Kato analog of the Tate–Shafarevich group is

Xf (W/F ) = H1
f (F,W )/H1

f (F,W )div,

the quotient of H1
f (F,W ) by its maximal divisible subgroup.
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2.2.2. Examples. We describe some examples, a few of which figure in subsequent results:

Example 2.2.2.a (Elliptic curves: V = VpE). Then T = TpE is a GF -stable Zp-lattice and W ∼=
E[p∞]. If v - p then it is relatively easy to see that H1

f (Fv, V ) = 0. Then H1
f (Fv,W ) = 0, which

agrees with im(κv). As already noted above, Bloch and Kato proved that H1(Fv,W ) = im(κv)
even when v | p. It follows that H1

f (F,W ) = Selp∞(E/F ). The group Xf (E[p∞]/F ) is then the

quotient of the p-primary part X(E/F )[p∞] of the usual Tate–Shafarevich group by its maximal
divisible subgroup. In particular, Xf (E[p∞]/F ) equals X(E/F )[p∞] if and only if the latter is
finite.

Example 2.2.2.b (Algebraic Hecke characters). Let ψ : F×\A×F → C× be an algebraic Hecke

character. This means that there exists an algebraic character ρ : F× → Q× such that the
restriction of ψ to the identity component (F ⊗ R)×1 ⊂ (F ⊗ R)× is given by ρ. Concretely, this
is so if and only if there exist [F : Q] integers (nτ )τ , indexed by the embeddings τ : F ↪→ C,
such that for α =

∑
i xi ⊗ ri ∈ (F ⊗ R)×1 , ψ(α) =

∏
τ (
∑
i τ(xi)ri)

nτ . The character A×F → C×,

α 7→ ρ(α∞)−1ψ(α) takes values in Q× (and even in a finite extension of Q). The p-adic Galois
character associated with ψ is just

ρψ : GF → Q×p , ρψ(σ) = ρ(xp)ρ(x∞)−1ψ(x) for σ = recF (x).

Note that if ψ = |NF/Q(·)|−1
Q , then σψ = ε, the p-adic cyclotomic character.

Serre proved that ψ 7→ σψ is a bijection between algebraic Hecke characters of F and p-adic

characters χ : GF → Q×p that are unramified outside a finite set of places and Hodge–Tate at
each v | p.

The Hodge–Tate weights of ρψ can be read off from the algebraic representation ρ. The simplest
case is when p splits completely in F . Then the places of v are indexed by the embeddings τ . In

particular, if v is the place determined by the embedding F
τ
↪→ Q ↪→ Qp, then the Hodge–Tate

weight of σψ|GFv is −nτ . Let nv = nτ . Let L ⊂ Q be a finite extension of Qp containing the
values of ρψ. It follows that in this case

H1
f (Fv, L(ρψ)) =

{
H1(Fv, L(ρψ)) nv < −1

0 nv > 0.

In particular, for W = L/O(ρψ) with each nv either > 0 or < −1,

H1
f (F,W ) = ker

H1(F,W )
res→
∏
v-p

H1(Fv,W )

H1
f (Fv,W )

∏
v|p,nv>0

H1(Fv,W )×
∏

v|p,nv<−1

H1(Fv,W )

H1(Fv,W )div

 .

Example 2.2.2.c (Twists of VpE by characters). Suppose χ : GF → Q×p is a continuous character
that is unramified away from finitely many places and Hodge–Tate at all places v | p. Let
L = Qp[χ] be the finite extension of Qp obtained by adjoining the values of χ. Then χ takes
values in O×. Let V = VpE ⊗Qp L(χ) and T = TpE ⊗Zp O(χ) (so if ρ denotes the action of GF
on TpE, then GF acts on T as ρ⊗ χ). We then let

Sel(E/F, χ) = H1
f (F,W ).

It will be useful to have a description of H1(Fv, V ), v | p, in some cases. Suppose first that
all the Hodge-Tate weights of χ|GFv are zero (equivalently, the restriction χ|Iv has finite order).
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Suppose also that E has good ordinary or multiplicative reduction at v. Then

H1
f (Fv, V ) = ker

{
H1(Fv, V )→ H1(Iv, V/V

+
v )
}
,

where V +
v is (VpE)+

v ⊗Qp L(χ). It follows that H1
f (Fv,W ) is just the maximal divisible subgroup

of ker
{
H1(Fv,W )→ H1(Iv,W/W

+
v )
}

, where W+
v = T+

v ⊗Qp/Zp.

If all the Hodge–Tate weights of χ|GFv are > 1, then all the Hodge–Tate weights of V at v are

> 1 and so H1
f (Fv, V ) = H1(Fv, V ). But if all the Hodge–Tate weights of χ|GFv are < −1, then

all the Hodge–Tate weights of V at v are < 0 and so H1
f (Fv, V ) = 0. Suppose then that for each

v | p the Hodge–Tate weights of χ|GFv are either all > 1 or all < −1, and let S±p denote the set
of v | p such that the Hodge–Tate weight of χ at v has sign ±. Then

H1
f (F,W ) = ker

H1(F,W )
res→
∏
v-p

H1(Fv,W )

H1
f (Fv,W )

×
∏
v∈S−p

H1(Fv,W )×
∏
v∈S+

p

H1(Fv,W )

H1(Fv,W )div

 .

In particular, the reduction type of E at v does not really intervene in the description of the
Bloch–Kato Selmer groups in this case.

Example 2.2.2.d (Eigenforms). Let f ∈ Sk(N,χ) be a newform of weight k, level N , and character
χ. Let f =

∑∞
n=0 anq

n be the q-expansion of f at the cusp at infinity. The coefficients an
(equivalently, the eigenvalues of the action of the usual Hecke operators on f) are algebraic
integers and generate a (possibly non-maximal) order in the ring of integers of the finite extension
Q(f) ⊂ C obtained by adjoining the an’s. Let L ⊂ Qp be a finite extension of Qp containing the
image of Q(f). Let O ⊂ L be the ring of integers of L.

Associated with f and L (and the embedding Q(f) ↪→ L) is a two-dimensional L-space Vf
and an absolutely irreducible continuous GQ-representation ρf : GQ → AutL(Vf ) such that ρf is
unramified at all primes ` - Np and det(1 −X · ρf (frob`)) = 1 − a`X + χ(`)`k−1X2 for such `.
In particular, trace ρf (frob`) = a`(f) if ` - pN , and det ρf = χεk−1.

Suppose k ≥ 2 and ap ∈ O×. Let αp ∈ Q× be the unit root of x2 − apx + χ(p)pk−1 if p - N
and otherwise let αp = ap. Then V has a GQp -filtration V + ⊂ V , with dimL V

+ = 1 and GQp
acting on V via the character εk−1α−1, where α : GQp → O× is unramified and α(frobp) = αp.
Let V − = V/V +. In this case

H1
f (Qp, V ) = ker

{
H1(Qp, V )→ H1(Qp, V −)

}
.

Letting T ⊂ V be any GQ-stable O-lattice and W = V/T , we let T+ = T ∩ V +, T− = T/T+,
W+ = T ⊗Zp Qp/Zp and W− = W/W+. Then

H1
f (Qp,W ) = ker

{
H1(Qp,W )→ H1(Qp,W−)

}
div

= im
{
H1(Qp,W+)→ H1(Qp,W )

}
div

.

Example 2.2.2.e (Twists of Eigenforms). Let V be the Galois representation associated to some
newform of weight k, and let χ : GF → L× be a character as in Example 2.2.2.c. Everything in
that example carries over to the GF -representations V (χ) with the only change being that we
now require the Hodge–Tate weights to be either > 1 or < 1− k in the latter part.

2.2.3. Vista: The Bloch–Kato conjectures for L-functions and Selmer groups. In addition to
defining Selmer groups very generally, Bloch and Kato [5] also formulated conjectures generalizing
(BSD-crk) and (BSDp-0) (see also [18]).
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2.3. Selmer structures. Mazur and Rubin [48, Ch. 2] introduced a general setup for Selmer
groups.

2.3.1. The structures. Let O be the ring of integers of a finite extension L/Qp. Let M be
a topological O-module equipped with a continuous O-linear action of GF that is unramified
outside a finite set of places.

A Selmer structure for M is a collection of O-submodules

L = (Lv)v, Lv ⊂ H1(Fv,M),

indexed by the places v of M . To be a Selmer structure this collection must satisfy

Lv = H1
ur(Fv,M) = ker

{
H1(Fv,M)→ H1(Iv,M)

}
for almost all v.

The asssociated Selmer group is then defined to be

H1
L(F,M) =

{
c ∈ H1(F,M) : resv(c) ∈ Lv ∀v

}
.

If Σ is any finite set of places containing all those at which M is ramified or for which Lv 6=
H1

ur(Fv,M), then

H1
L(F,M) = ker

{
H1(GF,Σ,M)

res→
∏
v∈Σ

H1(Fv,M)/Lv

}
.

Let M∗ = Homcts(M,Qp/Zp(1)) = Homcts(M,µp∞) be the arithmetic dual of M , equipped
with the natural O-module structure (so (a · f)(m) = f(am) for a ∈ O, f ∈ M∨, and m ∈ M).
Suppose M is either a direct or projective limit of finite-order GF -stable O-modules. The same
is then true of M∗ (the dual of a direct limit is an inverse limit, etc.). In this case, local Tate
duality provides us with a perfect pairing

(·, ·)v : Hi(Fv,M)×H2−i(Fv,M
∗)→ Qp/Zp, i = 0, 1, 2.

This is just the cup-product combined with the canonical pairing M ⊗ M∗ → µp∞ and the
identification H2(Fv, µp∞) = Qp/Zp. Furthermore, if v - p∞, then H1

ur(Fv,M) and H1
ur(Fv,M

∗)
are mutual annihilators under (·, ·)v. It follows that if L = (Lv) is a Selmer structure for M ,
then

L∗ = (L∗v), L∗v the annihilator of Lv under (·, ·)v,
is a Selmer structure for M∗.

2.3.2. Examples. The Selmer groups we have considered so far are all defined by Selmer struc-
tures.

Example 2.3.2.a (Selpn(E/F )). Take O = Zp, M = E[pn], and

Lv = im(E(Fv)/p
nE(Fv)

κv→ H1(Fv, E[pn]).

As noted before, if v - p is a prime of good reduction, then im(κv) = H1
ur(Fv, E[pn]), so (Lv)v is

a Selmer structure for E[pn].

The Weil pairing (·, ·)Weil : E[pn] × E[pn] → µpn identifies M∗ with E[pn]. Furthermore, for
each place v, im(κv) is its own annihilator under (·, ·)v, and so L∗ = L.
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Example 2.3.2.b (H1
f (F, T ) and H1

f (F,W )). The Bloch–Kato Selmer groups H1
f (F, ?), ? = T,W ,

are just the Selmer groups for the Selmer structures

Lf = (H1
f (Fv, ?)).

To see that Lf is a Selmer structure, it suffices to note that if V is unramified at some v - p, then

H1
f (Fv, ?) = H1

ur(Fv, ?). For ? = T this is so since H1(Fv, T )tor is the image of WGFv = WGFv/Iv

and so belongs to H1
ur(Fv, T ). And for ? = W , H1

ur(Fv,W ) = H1(GFv/Iv,W ) is the image of

H1
ur(Fv, V ) = H1(GFv/Iv, V ) as H2(GFv/Iv, T ) = 0, the pro-cyclic group GFv/Iv

∼= Ẑ having
cohomological dimension 1.

2.3.3. An important exact sequence. We impose a partial ordering on the Selmer structures on
M , writing L1 ≤ L2 if L1,v ⊆ L2,v for all v. In this case H1

L1
(F,M) ⊆ H1

L2
(F,M). Note that we

also have L∗2 ≤ L∗1.

Let L1 ≤ L2 be Selmer structures for M and let S be the finite set of places where L1,v 6= L2,v.
Then global duality implies that there is an exact sequence [48, Thm. 2.3.4]:

(SES) 0→ H1
L1

(F,M)→ H1
L2

(F,M)
res→
∏
v∈S

L2,v

L1,v

res∨→ H1
L∗1 (F,M∗)∨ → H1

L2
(F,M∗)∨ → 0.

The map res∨ is the dual of

H1
L∗(F,M

∗)
res→
∏
v∈S
L∗v =

∏
v∈S

(
H1(Fv,M)

Lv

)∨
,

where the final identification comes via Tate local duality.

2.3.4. An important formula. Suppose that M has finite order. Let L be a Selmer structure
for M . Then by combining the exact sequence (SES) with global duality and the global Euler
characteristic yields (cf. [15, Thm. 2.19] and [48, Prop. 2.3.5]):

(SF)
#H1

L(F,M)

#H1
L∗(F,M

∗)
=

#H0(F,M)

#H0(F,M∗)

∏
v

#Lv
#H1(Fv,M)

.

3. Iwasawa modules for elliptic curves

For simplicity we assume from hereon that

(odd) p > 2.

Among other things this ensures the triviality of all theH1-cohomology groups for all archimedean
local fields that appear herein.

3.1. The extension F∞/F . Let F∞/F be a Zdp-extension of F , d ≥ 1. This is an (infinite)

pro-finite abelian extension of F such that Γ = Gal(F∞/F ) (which is a Ẑ-module) is isomorphic
to Zdp. Let

Λ = Zp[[Γ]],

be the completed group ring of Γ over Zp. If γ1, ..., γd ∈ Γ are topological generators, then the

map Λ
∼→ Zp[[T1, ..., Td]], γ1 7→ 1 + Ti, identifies Λ with the power series ring in d variables over

Zp. In particular, Λ is a d+ 1-dimensional regular complete local ring. The maximal ideal of Λ
is m = (p, γ1 − 1, ..., γd − 1). If d = 1, then we will just write γ for a topological generator of Γ.
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The examples of most interest to us will be:

3.1.1. F = Q. In this case there is exactly one possibility for F∞, namely the cyclotomic Zp-
extension, which we will denote by Q∞. This is defined as follows.

For each n ≥ 1 let ζpn be a primitive pnth root of unity. The field Q(ζpn+1) is a Galois
extension of Q with Galois group Gn = Gal(Q(ζpn+1)/Q) canonically isomorphic to (Z/pn+1Z)×,
the isomorphism being σ 7→ a mod pn+1 for σ(ζpn+1) = ζapn+1 . The groups Gn decompose

compatibly as Gn = ∆×Γn with ∆ cyclic of order p−1 and Γn cyclic of order pn. The subgroup
∆ projects isomorphically onto Gal(Q(ζp)/Q)

∼→ (Z/pZ)×. Put Q(ζp∞) = ∪∞n=0Q(ζpn+1). Then
there is a canonical isomorphism of profinite groups:

G = Gal(Q(ζp∞)/Q) = lim←−
n

Gn
∼→ lim←−

n

(Z/pn+1Z)× = Z×p .

The Galois group G then decomposes as G = ∆ × Γ with Γ = lim←−n Γn. The group Γ is a

cyclic pro-p-group and identified with 1 + pZp ⊂ Z×p while ∆ is just the subgroup µp−1 ⊂ Z×p .

The cyclotomic Zp-extension is just Q∞ = Q(µp∞)∆. The group Γ projects isomorphically
onto ΓQ = Gal(Q∞/Q), which indentifies these two groups. Note that a convenient topological
generator of Γ (and hence of ΓQ) is the element γ identified with 1 + p ∈ 1 + pZp (since p > 2,
1 + pZp = (1 + p)Zp).

3.1.2. F = K, an imaginary quadratic extension of Q. In this case there are three extensions of
interest to us. The first of these is the unique Z2

p-extension K∞/K; this is maximal among the

Zdp-extensions of K (for all d). The other two are the cyclotomic Zp-extension Kcyc
∞ /K and the

anticyclotomic Zp-extension Kac
∞.

The Galois group Gal(K/Q) acts on ΓK = Gal(K∞/K) by conjugation. In particular, ΓK
decomposes under the action of the non-trivial automorphism c ∈ Gal(K/Q) as ΓK = Γ+

K × Γ−K

with c acting on Γ±K as c−1gc = g±1. Then Kcyc
∞ = K

Γ−K∞ and Kac
∞ = K

Γ+
K∞ . In particular, the

canonical projections Gal(K∞/K) � Gal(K?
∞/K) induce isomporphisms

Γ+
K
∼→ Γcyc

K = Gal(Kcyc
∞ /K) and Γ−K

∼→ Γac
K = Gal(Kac

∞/K).

Of course, the cyclotomic Zp-extension is just Kcyc
∞ = K · Q∞, and the canonical projection

Γcyc
K = Gal(Kcyc

∞ /K)
∼→ ΓQ = Gal(Q∞/Q) is an isomorphism.

3.1.3. Back to the general case. In general, the extension F∞/F is unramified at each place v - p
of F , and the finiteness of the class group of F implies that it must be ramified at at least one
place v | p. For simplicity we will assume that

(p-ram) F∞ is ramified at each place v | p.
This is true of each of our examples of interest. However, there are many Zp-extensions of
arithmetic interest for which this hypothesis does not hold. Another nice property that an
extension F∞/F can have is

(fs) there are only finitely many places of F∞ over each finite place of F .

This can only hold for Zp-extensions (that is, for d = 1), and even then it does not always hold.
Property (fs) holds for the cyclotomic Zp-extensions Q∞ and Kcyc

∞ . It does not hold for the
anticyclotomic extension Kac

∞: while each prime that splits in K has only finitely many places
over it in Kac

∞, every prime that is inert in K splits completely in Kac
∞.
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3.2. Selmer groups over F∞. Perhaps the most natural way to define a Selmer group over F∞
is

S(E/F∞) = lim−→
F⊆F ′⊂F∞

Selp∞(E/F ′),

where F ′ runs over the finite extensions of F in F∞. This realizes S(E/F∞) as a subgroup of
H1(F∞, E[p∞]). However, for our purposes it is convenient to take a slightly different point of
view. Following Greenberg, instead of varying the fields F ′, we enlarge the Galois module E[p∞].

As before let T = TpE = lim←−nE[pn] be the p-adic Tate-module of E. Then T is a free Zp-
module of rank two with a continuous Zp-linear action of GF . We denote this action by ρ. Let
Λ∨ = Homcts(Λ,Qp/Zp) be the Pontryagin dual of Λ with the Λ-action given by (x · f)(y) =
f(xy) = f(yx). Let

Ψ : GF � Gal(F∞/F ) = Γ ⊂ Λ×

be the canonical projection. Put

M = T ⊗ Λ∨

and let GF act via ρ⊗Ψ−1. Note that the canonical isomorphism T ⊗ZpQp/Zp
∼→ E[p∞] induces

an isomorphism M
∼→ Homcts(Λ, E[p∞]), and this is a GF -equivariant isomorphism if we let GF

act on Λ via Ψ. The module M can be viewed as built out of the W arising from twist of TpE as
in Example 2.2.2.c. If χ : GQ � Γ → O× is a character, O-being the ring of integers of a finite
extension L of Qp, then

(M ⊗Zp O)[γ − χ(γ)] = TpE ⊗Zp (Λ∨ ⊗Zp O)[γ − χ(γ)] = Tp ⊗Zp L/O(χ−1).

3.2.1. S(E/F∞). Let Σ be a finite set of places of F containing all those divide p or at which E
has bad reduction. We will define S(E/F∞) as a subgroup of H1(GF,Σ,M). To do this we make
the following additional simplifying hypothesis:

(sst) E has either good ordinary, multiplicative, or supersingular reduction at each v | p

(that is, E has semistable reduction at each v | p). Let Sord
p be the set of v | p at which E has

good ordinary or multiplicative reduction. Then assuming (p-ram) and (sst) we have

S(E/F∞) = ker

H1(GF,Σ,M)
res→

∏
v∈Σ,v-p

H1(Fv,M)×
∏

v∈Sord
p

H1(Iv, T/T
+
v ⊗Zp Λ∨)

 .

Note that no condition is imposed at places v | p at which E has supersingular reduction. If (fs)
also holds, then we can replace the product

∏
v∈Σ,v-pH

1(Fv,M) with
∏
v∈Σ,v-pH

1(Iv,M). It can

be shown that this definition of S(E/F∞) is identified with the natural definition proposed above
via the map H1(F,M)→ H1(F∞, E[p∞]) given by restriction to GF∞ followed by evaluation at
1 ∈ Γ.

Along the way toward the Main Conjectures and their applications we will need some variations
on S(E/F∞).

3.2.2. SGr(E/K∞). Let K ⊂ Q be an imaginary quadratic field. We assume that

(split) p splits in K: p = vv̄,

where v corresponds to the valuation determined by K ⊂ Q ↪→ Qp.
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Letting F∞ = K∞, we write M for the GK-module M defined above. Let Σ be a finite set of
places of K containing all those that dividing p or at which E has bad reduction. We put

SGr(E/K∞) = ker

H1(GK,Σ,M)
res→

∏
w∈Σ,w-p

H1(Iw,M)×H1(Kv̄,M)

 .

This Selmer group is supposed to capture the Selmer groups of the twists of TpE by characters
whose Hodge–Tate weight at v is > 1 and at v̄ is < −1.

3.2.3. SBDP(E/Kac
∞). This is essentially a variation on SGr(E/K∞). Taking F∞ = Kac

∞, the
anticyclomtomic Zp-extension of K, we let Mac be the corresponding GK-module M . We put

SBDP(E/Kac
∞) = ker

H1(GK,Σ,Mac)
res→

∏
w∈Σ,w-p

H1(Kw,Mac)×H1(Kv̄,Mac)

 .

Note that for an inert prime q ∈ Σ, since (fs) does not hold, we cannot always replaceH1(Kq,Mac)
with H1(Iq,Mac).

3.2.4. S±(E/Q∞). Suppose E/Q has supersingular reduction at p. Then the definition of S(E/Q∞)
has no restriction on the classes at p. This results in a Λ-module that is too big to be useful. If
ap(E) = 0 (which will always be the case if p ≥ 5), then Kobayashi [38] defined two subgroups
S±(E/Q∞) ⊂ S(E/Q∞) which, building on work of Kato [34], can be shown to be co-torsion in
the sense described in §3.3 below.

Let Qn ⊂ Q∞ be the finite extension of Q with Γn = Gal(Qn/Q) ∼= Zp/pnZp (the last iso-
morphism depends on the choice of γ; the identification with 1 + pZp/1 + pn+1Zp is canonical).
The extension Qn/Q is totally ramified at p and we denote by Qn,p the completion of Qn at the
unique prime above p. Then Qn,p/Qp has Galois group Γn. Let

E±(Qn,p) =

{
P ∈ E(Qn,p) : TrQn,p/Qm+1,p

P ∈ E(Qm,p)∀0 ≤ m < n,m ≡ 1∓ (−1)

2
mod 2

}
.

Then we let

Sel±p∞(E/Qn) =
{
c ∈ Selp∞(E/Qn) : resp(c) ∈ κp(E±(Qn,p)⊗Qp/Zp)

}
,

where resp denotes restriction at the unique prime above p and κp is the Kummer map at this
prime. The Selmer groups Kobayashi defined are

S±(E/Q∞) = lim−→
n

Sel±p∞(E/Qn).

Shapiro’s lemma gives an identification

H1(Qp,n, E[p∞]) = H1(Qp,HomZp(Zp[Γn], E[p∞])),

where the GQp action on Zp[Γn] is g ·
∑
nγγ =

∑
nγγg

−1. Let

H1
±(Qp,M) = lim−→

n

κp(E
±(Qn,p)⊗Qp/Zp) ⊂ lim−→

n

H1(Qp,HomZp(Zp[Γn], E[p∞])) = H1(Qp,M).

Then H1
±(Qp,M) is a Λ-submodule of H1(Qp,M). We can rewrite the definition of S±(E/Q∞)

as

S±(E/Q∞) =
{
c ∈ S(E/Q∞) : resp(c) ∈ H1

±(Qp,M)
}
.
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3.2.5. Vista: Iwasawa cohomology and Coleman maps. The cohomology group

H1
Iw(T ) = lim←−

n

H1(Qp,n, T ),

where the inverse limit is taken with respect to the corestriction maps, is often called the Iwasawa
cohomology of T . The group H1

Iw(T ) can be identified with H1(Qp, T ⊗Zp Λ), where the GQp -

action on T ⊗ Λ is just ρ ⊗ Ψ. One can define a local subgroup Lp ⊂ H1(Qp,M) – to be part
of a Selmer structure for M , say – by first defining a subgroup Lp ⊂ H1

Iw(T ) and taking Lp
to be the annihilator of Lp under the pairing of local Tate duality. In many cases of interest,
the group Lp is the kernel of a Λ-homomorphism H1

Iw(T ) → Λ (or something similar) which is
often called a Coleman map. This is true, for example, of the local conditions at p defining the
Selmer groups S(E/Q∞), when E has ordinary reduction at p, and S±(E/Q∞), when E has
supersingular reduction at p. For the latter see [38], and for a more general discussion see [40].

3.3. S?(E/F∞) as a Λ-module. The group H = H1(GF,Σ,M) has a natural structure as a
discrete Λ-module. So its Pontryagin dual X = Homcts(H,Qp/Zp) is a compact Λ-module, with
the Λ-action being (λ · f)(x) = f(λx). Similarly, the submodule S(E/Q∞) ⊂ H is a discrete
Λ-module and its Pontryagin dual

X?(E/F∞) = Homcts(S?(E/F∞),Qp/Zp), ? = ∅,Gr,BDP, or ±,

which is a quotient of X, is a compact Λ-module. (Of course, by ? = ∅ we mean no subscript.)

Proposition 2. X is a finitely-generated Λ-module.

Proof. We will prove this by induction on the Zp-rank d of Γ ∼= Zdp.

Suppose first that d = 0. Then H = H1(GF,Σ, E[p∞]) and we want to show that X =
Homcts(H,Qp/Zp) is a finitely-generated Zp-module. By the compactness of X and Nakayama’s
lemma, it suffices to show that X/pX is a finite. And by duality the latter is equivalent to

the finiteness of H[p]. From the short exact sequence 0 → E[p] → E[p∞]
p→ E[p∞] → 0 we

obtain a surjection H1(GF,Σ, E[p]) � H1(GF,Σ, E[p∞])[p] = H[p]. We have already observed
that H1(GF,Σ, E[p]) is finite, hence H[p] is finite.

For the induction step, let γ belong to a topological generating set of Γ. Then Γ′ = Γ/〈γ〉 ∼=
Zd−1
p , and Λ/(γ−1)Λ = Zp[[Γ′]] = Λ′. Note that M [γ−1] = T ⊗Zp Homcts(Λ/(γ−1)Λ,Qp/Zp) =

T ⊗Zp Homcts(Λ
′,Qp/Zp) = M ′. From the short exact sequence 0 → M ′ → M

γ−1→ M → 0 we

obtain a surjection H1(GF,Σ,M
′)→ H1(GF,Σ,M)[γ − 1], and so by duality an injection X/(γ −

1)X ↪→ Homcts(H
1(GF,Σ,M

′),Qp/Zp) = X ′. By the induction hypothesis, X ′ is a finitely-
generated Λ′-module, hence X/(γ−1)X is a finitely-generated Λ′-module (by the Noetherian-ness
of Λ′). That X is a finitely-generated Λ-module follows from Nakayama’s lemma as before. �

Corollary 3. Let S ⊂ H1(GF,Σ,M) be a Λ-submodule. Its Pontryagin dual X = Homcts(S,Qp/Zp)
is a finitely-generated Λ-module. In particular, X?(E/F∞) is a finitely-generated Λ-module.

There is a structure theorem for finitely-generated Λ-modules that is reminiscent of finitely-
generated modules over a PID. Such a Λ-module X admits a Λ-homomorphism

X → Λr ⊕
s∏
i=1

Λ/(fi), fi 6= 0,
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with pseudonull kernel and cokernel. Pseudonull means that the localizations at all height one
primes of Λ are zero; if d = 1, then finitely-generated and pseudonull is equivalent to finite order.
The integer r is uniquely determined and is called the Λ-rank of X; we will denote it by r(X).
The ideal ξ(X) = (f1 · · · fs) ⊂ Λ is also uniquely determined. The characteristic ideal ξ(X) ⊆ Λ
of the Λ-module X is 0 if r > 0 and is the ideal (f1 · · · fs) if r = 0.

One useful result, which points to the utility of this structure theorem is:

Lemma 4. Suppose d = 1 (so Λ ∼= Zp[[T ]]). Let X be a finitely-generated, torsion Λ-module with
no non-zero pseudonull submodule. Let 0 6= λ ∈ Λ. Then

#X/λX = #Λ/(ξ(X), λ).

In particular, if f ∈ ξ(X) is a generator, then

#X/(γ − 1)X = #Zp/f(0).

These equalities should be understood to mean that if one side is infinite then so is the other.

The proof of this lemma essentially amounts to multiplying the exact sequence

0→ X →
s∏
i=1

Λ/(fi)→ coker→ 0

by λ and appealing to the snake lemma and noting that coker has finite order and so #coker[λ] =
#coker/λcoker.

Some natural questions to ask about X = X(E/F∞):

• What is r(X)? Is it ever 0? positive?
• What is ξ(X)?
• Does X have a non-zero pseudonull Λ-submodule?

The Iwasawa theory of elliptic curves is partly focused on answering these questions. The arith-
metic significance of the answers will become more clear as we go on.

3.3.1. Vista: Selmer groups of p-adic deformations. The Iwasawa modules S?(E/F∞) that we
have defined are some of the simplest examples of Selmer groups for p-adic deformations. In this
case the deformation is TpE⊗Zp Λ (with GF acting as ρ⊗Ψ−1), which deforms the twist of TpE
by the trivial character by the universal GF -character that factors through Γ. Other possible
deformations could include deforming TpE. Here we use ‘deformation’ in the sense of Greenberg
[22]; the reader should consult op. cit. for more on Selmer groups in this context.

3.3.2. Horizon: Selmer complexes. Nekovář [51] developed a formalism for Iwasawa theory based
on ‘big Galois representations’ (such as T ⊗ ZpΛ) and their cohomological invariants, working
within the framework of derived categories. This both recovers and extends many of the results
about Selmer groups, leading to generalized Cassels–Tate pairings and generalized p-adic height
pairings, among many others. The epigraph following the introduction: ‘Selmer groups are dead.
Long live Selmer complexes.’
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3.4. Control theorems. It is natural to ask whether the group Selp∞(E/F ) can be recovered
from S(E/F∞). Certainly, there is a canonical map Selp∞(E/F )→ S(E/F∞) with image in the
Γ-invariants S(E/F∞)Γ = S(E/F∞)[γ1− 1, · · · , γd− 1]. How are these two groups related? The
answer to this is a case of what is often called a ‘control theorem.’

Instead of proving the most general theorems, we concentrate on some important cases. To
make our task easier, we will always assume

(irredF ) E[p] is an irreducible GF -representation.

Under this assumption it is not hard to deduce that if x1, ..., xj ∈ Λ, then the natural map

H1(GΣ,M [x1, ..., xj ])
∼→ H1(GΣ,M)[x1, ..., xj ]

is an isomorphism. And using that F∞/F is unramified at each v - p one can also deduce that if
x1, ..., xj is a regular sequence, then

H1(Iv,M [x1, ..., xj ])
∼→ H1(Iv,M)[x1, ..., xj ], v - p.

3.4.1. S(E/Q∞): ordinary case. Suppose that E/Q has good ordinary or multiplicative reduc-
tion at p. Let M− = T/T+ ⊗Zp Λ∨, and let

PΣ =
∏
`∈Σ

P`, P` =

{
H1(I`,M)GQ` ` 6= p

H1(Ip,M
−)GQp ` = p.

Then S(E/Q∞) = ker
{
H1(GΣ,M)

res→ PΣ

}
. Let

PΣ =
∏
`∈Σ

P`, P` =

H
1(Q`, E[p∞]) ` 6= p

H1(Qp,E[p∞])

im{H1(Qp,T+⊗ZpQp/Zp)→H1(Qp,E[p∞])}
div

` = p.

Then there is an exact sequence

0→ Selp∞(E/Q)→ S(E/Q∞)[γ − 1]→ im
{
H1(GΣ, E[p∞])

res→ PΣ

}
∩ ker {PΣ → PΣ[γ − 1]} .

IfX(E/Q∞) is a torsion Λ-module, then using global Tate duality one can show thatH1(GΣ,M)
res→

PΣ is surjective, hence S(E/Q∞)[γ − 1] = ker
{
H1(GΣ, E[p∞])

res→ PΣ[γ − 1]
}

. It follows that

the displayed sequence is exact on the right. And if Selp∞(E/Q) is finite, then one can similarly

show that H1(GΣ, E[p∞])
res→ PΣ is surjective. This yields:

Proposition 5 (Control Theorem for the ordinary case). Suppose E/Q has good ordinary or
multiplicative reduction at p and that (irredQ) holds. Suppose also that X(E/Q∞) is a torsion
Λ-module and that Selp∞(E/Q) is finite. Then there is an exact sequence

0→ Selp∞(E/Q)→ S(E/Q∞)[γ − 1]→ ker {PΣ → PΣ[γ − 1]} → 0.

To be precise, the arguments above actually show that if Selp∞(E/Q) is finite, then X(E/Q∞)
is a torsion Λ-module.

Let K` = ker {P` → P`}. Then as a consequence of Proposition 5:

Corollary 6. Under the assumptions of the preceding proposition,

#S(E/Q∞)[γ − 1] = #Selp∞(E/Q) ·
∏
`∈Σ

#K`.
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The orders of the groups K` are readily computed. Suppose first that ` - p. Then from the

earlier observation that H1(I`, E[p∞])
∼→ H1(I`,M)[γ − 1], it follows that

#K` = #H1(F`, E[p∞]I`) =

{
|c`(E/Q)|−1

p ` | NE , ` 6= p

1 ` - NE ,

where NE is the conductor of E, and c`(E/Q) is the Tamagawa factor at ` for E/Q. Now suppose
that E has good ordinary reduction at p. Then a straightforward but more involved calculation
shows that

#Kp = (#Zp/(1− αp))2,

where again αp is the p-adic unit root of x2−ap(E)x+ p. As Selp∞(E/Q) = X(E/Q)[p∞] when
Selp∞ is finite, we can now restate the preceding corollary as:

Corollary 7. Under the assumptions of the preceding proposition and assuming that E has good
ordinary reduction at p,

#S(E/Q∞)[γ − 1] =

∣∣∣∣∣∣(1− αp)2 ·#X(E/Q)[p∞] ·
∏
`|NE

c`(E/Q)

∣∣∣∣∣∣
−1

p

.

More generally, let ψζ : GQ → Γ
γ 7→ζ→ Q×p be the finite order character sending γ (or any lift

of it) to the pth-power root of unity ζ. One can also compare (S(E/Q∞) ⊗Zp Z[ζ])[γ − ζ] to

Sel(E,ψ−1
ζ ) in a similar way. Doing so yields:

Proposition 8 (Control Theorem for twists in the ordinary case). Suppose E/Q has good ordi-
nary or multiplicative reduction at p and that (irredQ) holds. Let ζ be a pth-power root of unity.
Suppose also that X(E/Q∞) is a torsion Λ-module and that Sel(E,ψ−1

ζ ) is finite. Then there is
an exact sequence

0→ Sel(E,ψ−1
ζ )→ (S(E/Q∞)⊗Zp Z[ζ])[γ − ζ]→ ker

{
PΣ,ζ → (PΣ ⊗Zp Zp[ζ])[γ − ζ]

}
→ 0.

Here PΣ,ζ =
∏
`∈Σ P`,ζ with P`,ζ defined just as P` but with E[p∞] replaced with the group

W = E[p∞]⊗Zp Zp[ζ] with GQ acting as ρ⊗ ψ−1
ζ .

Both of these propositions are particularly useful if X(E/Q∞) has no non-zero pseudonull
submodule. If this is so, then by Lemma 4 the order of S(E/Q∞)[γ − 1], which is the order of
X(E/Q∞)/(γ − 1)X(E/Q∞), equals the order of Zp/(gE(0)) for any generator gE of ξ(E/Q∞).
This highlights the utility of the next proposition.

Proposition 9 (No pseudonull submodule). Suppose E/Q has good ordinary or multiplicative
reduction at p and that (irredQ) holds. Suppose also that X(E/Q∞) is a torsion Λ-module. Then
X(E/Q∞) has no non-zero pseudonull submodules.

Combining these results we conclude:

Proposition 10. Suppose E/Q has good ordinary reduction at p and that (irredQ) holds. Suppose
also that X(E/Q∞) is a torsion Λ-module and that Selp∞(E/Q) is finite. Let gE be a generator
of the characteristic ideal ξ(E/Q∞). Then

|gE(0)|−1
p = #S(E/Q∞)[γ − 1] =

∣∣∣∣∣∣(1− αp)2 ·#X(E/Q)[p∞] ·
∏
`|NE

c`(E/Q)

∣∣∣∣∣∣
−1

p

.
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This result can be extended to cover the case of multiplicative reduction and even to allow
for E[p∞]GQ 6= 0. This as well as many details can be found in the papers of Greenberg (see
especially [23, Thm. 4.1] and also [63, § 3.2]).

3.4.2. SGr(E/K∞). Let γ± ∈ Γ±K ⊂ ΓK = Gal(K∞/K) be topological generators such that
γ+ maps to γ in Γ = Gal(Q∞/Q). The next proposition relates SelGr(E/K∞)[γ+ − 1] and
SelBDP(E/Kac

∞). Let ΛK = Zp[[ΓK ]] and Λac = Zp[[Γ−]] = Zp[[Gal(Kac
∞/K)]].

Proposition 11. Suppose E has either good or multiplicative reduction at p and that (irredK)
holds. Suppose that (split) holds. Suppose also that XBDP(E/Kac

∞) is a torsion Λac-module. Let
Σ− be the set of primes at which E has bad reduction and which are inert in K. Then there is
an exact sequence

0→ SelBDP(E/Kac
∞)→ SGr(E/K∞)[γ+ − 1]→

∏
`∈Σ−

H1
ur(K`,Mac)×Hv̄ → 0,

where

Hv̄ = ker
{
H1(Kv̄,Mac)→ H1(Kv̄,M)[γ+ − 1]

} ∼= MGv̄ .

Note that Hv̄ has finite order and is even trivial if E has supersingular reduction at p. On the
other hand, for ` ∈ Σ−, H1

ur(K`,M
ac) ∼= Homcts(Λac, E[p∞]I`). The characteristic ideal of the

dual of this last group is (c`(E/K)) ⊂ Λac, the ideal generated by the Tamagawa number of E/K
at the prime `.

The proof of Proposition 11 proceeds along the lines of the proof of Proposition 5.

3.4.3. SBDP(E/Kac
∞). We assume that (split) holds. The Selmer group SBDP(E/Kac

∞) was defined
so as to closely interpolate the Selmer groups for twists of VpE by anticyclotomic characters
χ : GK � Γac

K → O× with Hodge–Tate weight > 1 at v (and so < −1 at v̄). So it would be
natural to formulate a control theorem relating such a Selmer group to SBDP(E/Kac

∞)[γ−−χ(γ)].
We leave it to the interested reader to do so. Instead we consider the Selmer group SelBDP(E/K)
defined to be the group

ker

H1(GK,Σ, E[p∞])
res→

∏
w∈Σ,w-p

H1(Kw, E[p∞])× H1(Kv, E[p∞])

H1(Kv, E[p∞])div
×H1(Kv̄, E[p∞])

 .

Note that SelBDP(E/K) is not a Bloch–Kato Selmer group: the local condition at the places
w | p is not that imposed by the Bloch–Kato subgroup H1

f (Kw, E[p∞]). However, SelBDP(E/K)
is defined by a Selmer structure.

The control theorem of interest to us is:

Proposition 12. Suppose E has good reduction at p and that (irredK) holds. Suppose that
(split) holds. Suppose also that SelBDP(E/K) has finite order. Let Σ+ be the set of places of K
of residue degree 1 at which E has bad reduction. Then there is an exact sequence

0→ SelBDP(E/K)→ SBDP(E/Kac
∞)[γ− − 1]→

∏
w∈Σ+

H1
ur(Iw, E[p∞])×Kv ×Kv̄ → 0,

where

Hv = H1(Kv, E[p∞])/H1(Kv, E[p∞])div
∼= H1(Kv, TpE)∨tors

∼= H0(Kv, E[p∞])∨,
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and
Hv̄ = ker

{
H1(Kv̄, E[∞])→ H1(Kv̄,Mac)[γ− − 1]

} ∼= M
GKv̄
ac /(γ− − 1)M

GKv̄
ac .

Note that #Hv̄ = #H0(Kv̄, E[p∞]). In particular, both Hv and Hv̄ are trivial if E has super-
singular reduction at p and otherwise both have order equal to #Zp/(1− ap(E) + p).

Write NE = N+N− with N+ divisible by primes split or ramified in K and N− divisible by
primes inert in K.

Corollary 13. Under the hypotheses of the preceding proposition,

|#SBDP(E/Kac
∞)[γ− − 1]|−1

p =

∣∣∣∣∣∣#SelBDP(E/K) ·
∏
`|N+

c`(E/Q)2 · δp(E)2

∣∣∣∣∣∣
−1

p

,

where δp(E) = 1 if E has supersingular reduction at p, and δp(E) = 1− ap(E) + p if E has good
ordinary reduction at p.

3.4.4. S±(E/Q∞). Kobayashi established a control theorem for the ±-Selmer groups S±(E/Q∞)
which is the obvious analog of Proposition 5.

Proposition 14 (Control Theorem for the supersingular case). Suppose E/Q has good super-
singular reduction at p with ap(E) = 0 and that (irredQ) holds. Suppose also that X±(E/Q∞) is
a torsion Λ-module and that Selp∞(E/Q) is finite. Then there is an exact sequence

0→ Selp∞(E/Q)→ S±(E/Q∞)[γ − 1]→
∏

`∈Σ, 6̀=p

ker {P` → P`[γ − 1]} → 0.

Under the hypothesis that X±(E/Q∞) is a torsion Λ-module, B.D. Kim [35] has shown that
X±(E/Q∞) has no non-zero pseudonull submodule. As a consequence, just as in the ordinary
case, we have

Proposition 15. Suppose E/Q has good ordinary reduction at p and that (irredQ) holds. Suppose
also that X±(E/Q∞) is a torsion Λ-module and that Selp∞(E/Q) is finite. Let gE,± be a generator
of the characteristic ideal ξ±(E/Q∞) = ξ(X±(E/Q∞)). Then

|gE,±(0)|−1
p = #S±(E/Q∞)[γ − 1] =

∣∣∣∣∣∣#X(E/Q)[p∞] ·
∏
`|NE

c`

∣∣∣∣∣∣
−1

p

.

4. Main Conjectures

The Main Conjectures for elliptic curves generally have two ingredients: the characteristic ideal
of the dual of the Selmer group and a related p-adic L-function, ideally both in some Λ. Then the
conjecture generally has two parts: the torsion-ness over Λ of the dual of the Selmer group (and
hence the non-vanishing of the characteristic ideal) and the assertion that the p-adic L-function
generates the characteristic ideal. In some cases it is also possible to formulate a Main Conjecture
‘without L-functions.’ This generally means that the p-adic L-function has been replaced with
some appropriate element in an Iwasawa cohomology group (a universal norm). These elements
often come from an Euler system. The Main Conjectures without L-functions have proven useful
in relating different Main Conjectures.
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Let E be an elliptic curve over Q. In the preceding section we defined Selmer groups for E and
certain Zdp-extensions F∞/F . In the following we recall the Main Conjectures for these groups.
In order to do so it is helpful to recall some facts about E and its L-series.

Recall that E is modular. This means there is a weight 2 newform fE ∈ S2(Γ0(NE)), where
NE is the conductor of E, such that the Fourier expansion fE =

∑∞
n=1 anq

n has coefficients in
Z and L(E, s) = L(fE , s) =

∑∞
n=1 ann

−s. It also means that there exists a surjective morphism
φE : X0(NE) → E over Q under which the ∞ cusp is mapped to the identity element (that
is, the point at infinity) of E. The pullback under φE of a Néron differential ωE of E satisfies
φ∗EωE = c2πifE(τ)dτ = cωfE , for some non-zero constant c.

4.1. p-adic L-functions. We first recall the p-adic L-functions that appear in the statements
of the Main Conjectures.

4.1.1. L(E/Q∞) and L(E/K∞). We begin with the cyclotomic Zp-extension of Q. We assume
that E has good ordinary or multiplicative reduction at p.

Given a primitive ptth-power root of unity ζ, recall that ψζ is the finite order character of
GQ obtained by projecting to ΓQ and composing with the character of ΓQ that sends γ to ζ.

Similarly, φζ : Λ→ Zp[ζ] ⊂ Qp is the homomorphism sending γ ∈ Γ to ζ (so the homomorphism

of ΛQ = Zp[[T ]] sending T to ζ − 1). We also denote by ψζ the Dirichlet character of (Z/pt+1Z)×

such that image of γ ∈ 1+pZp is sent to ζ (unless t = 0, in which case ψ1 is the trivial character).

There exists an element L(E/Q∞) ∈ ΛQ = Zp[[ΓQ]] such that for any primitive ptth root of
unity ζ,

φζ(L(E/Q∞)) = ep(ζ)
L(fE , ψ

−1
ζ , 1)

ΩfE
,

where ΩfE is a certain (essentially canonical) period of fE and

ep(ζ) =

α
−(t+1)
p

pt+1

G(ψ−1
ζ )

ζ 6= 1

α−1
p

(
1− 1

αp

)mp
ζ = 1.

Here L(fE , ψ
−1
ζ , s) is the twist of the L-function of fE by the Dirichlet character ψ−1

ζ . Also, αp
is the p-adic unit root of x2−ap(E)X+p if E has good ordinary reduction at p and α = ap(E) ∈
{±1} if E has multiplicative reduction at p, G(ψ−1

ζ ) is the Gauss sum, and mp = 2 if E has good
reduction at p and mp = 1 if E has multiplicative reduction. This is the p-adic L-function of fE
first constructed by Amice-Vélu and Vishik (see also [46]).

Let K be an imaginary quadratic field and suppose that (split) holds (for simplicity). There
exists an element L(E/K∞) ∈ ΛK defined by an interpolation property for finite characters of
ΓK that is analogous to that of L(E/Q∞). A construction of this p-adic L-function can be made
through p-adic interpolation of Rankin–Selberg integrals, as done by Perrin-Riou [54] (see also
[64]), or via modular symbols along the lines of the construction of L(E/Q∞) by Amice-Vélu
and Vishik (cf. [43]). The p-adic L-functions L(E/Q∞) and L(E/K∞) are related by

(L-fact) L(E/Q∞)L(EK/Q∞) = L(E/K∞) mod (γ− − 1).

Here EK is the K-twist of E (so L(EK , s) = L(E,χK , s), where χK is the quadratic Dirichlet
character associated with K/Q).
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4.1.2. LGr(E/K∞). We assume that (split) holds. For simplicity we will assume that the con-
ductor NE of E and the discriminant −DK of K are relatively prime and neither is divisible by
p (this just simplifies some formulas).

Let ΞGr ⊂ Homcts(ΓK ,Q
×
p ) be the subset of characters such that the composition GK � ΓK

χ→
Qp is crystalline at both v and v̄ and such that the Hodge–Tate weight at v is < −1 and at v̄
is > 1. These are the Galois characters associated with unramified algebraic Hecke characters ψ
of K such that the restriction of ψ to (K ⊗ R)× = C× is just znz̄−m for integers n,m > 1 and
such that n,m ≡ 0 mod p− 1. Given χ ∈ ΞGr we will write χalg for the corresponding algebraic
Hecke character (so σχalg

= χ).

Let Λur
K = ΛK⊗̂ZpZur

p , where Zur
p is the p-adic completion of the ring of integers of the maximal

unramified extension of Qp. Let χ : ΓK → Q×p be a continuous character. Then χ determines

a Zur
p -homomorphism φχ : Λur

K = Zur
p [[ΓK ]] → Q̂p by linear extension (it is the unique Zur

p -

homomorphism such that φχ(γ) = χ(γ) for all γ ∈ ΓK ⊂ Λ×K).

There exists an element LGr(E/K∞) ∈ Λur
K such that for any χ ∈ ΞGr,

φχ(LGr(E/K∞)) = c(χ) · E(f, χ) · π2n−1

(
ΩK,p
ΩK,∞

)2(n+m)

L(fE , χ
−1
alg, 1),

where

E(f, χ) = (1− ap(E)χalg($v)
−1p−1 + χalg($v)

−2p−1)(1− ap(E)χalg($v̄)p
−1 + χalg($v̄)

2p−1),

with $v and $v̄ respective uniformizers at v and v̄, c(χ) is a product of powers of 2, i, N , and DK

that depend on on n and m but do not matter for our applications (as these factors are all prime
to p), and ΩK,∞ and ΩK,p are, respectively, archimedean and p-adic CM periods associated to
K. While the latter depend on choices, these choices only change the factors by a multiple of
(Zur
p )×.

As in the case of the p-adic L-function L(E/Q∞), there exists an interpolation formula for

characters χ : ΓK → Q×p that are ramified at v or v̄ but the same restrictions on Hodge–Tate
weights. However, we will not go into this here.

There are essentially two constructions of LGr(E/K∞) (and the two are closely related). The
first realizes LGr(E/K∞) as a special case of Hida’s construction of p-adic Rankin–Selberg L-
functions [29] involving a Hida family of CM eigenforms. The other realizes LGr(E/K∞) as a
p-adic L-function for a cuspform on a definite unitary group U(2), constructed via the doubling
method (see [70] and [16]).

Remark 4.1.2.a. It is possible to define a slight modification of LGr(E/K∞) that is actually an
element of ΛK and not just Λur

K . This requires normalizing the L-values by a ‘congruence period’
for the anticyclotomic character χcalg/χalg, but the result is less canonical.

Remark 4.1.2.b. It is also possible to construct LGr(E/K∞) when p | NE or when (NE , DK) 6= 1,
but the result is more cumbersome to write down.

4.1.3. LBDP(E/Kac
∞). We again assume that (split) holds and that the conductor NE of E and

the discriminant −DK of K are relatively prime, and neither is divisible by p. We also assume
that (irred)Q holds (as with the other hypotheses, this is mostly to simplify formulas). We make
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the additional assumption that

• NE = N+N− with N+ divisible only by primes that split in K and

N− divisible only by primes that are inert in E;

• N− is the squarefree product of an even number of distinct primes.

(Heeg)

This is essentially the Heegner hypothesis. It ensures that the root number w(E/K) equals −1,
among other things. It also ensures that the sign of the functional equation of L(fE , χ

−1
alg, s) is

+1 for any (anticyclotomic) character χ ∈ ΞGr that factors through Γac
K .

Let ΞBDP ⊂ Homcts(Γ
ac
K ,Q

×
p ) be the subset of characters such that the composition GK �

Γac
K

χ→ Qp is crystalline at both v and v̄ and such that the Hodge–Tate weight at v is < −1
and at v̄ is > 1. These are the Galois characters associated with unramified algebraic Hecke
characters ψ of K such that the restriction of ψ to (K ⊗R)× = C× is just (z/z̄)n for and integer
n > 1 and such that n ≡ 0 mod p − 1. Note that these are also just the χ ∈ ΞGr that factor
through the projection ΓK � Γac

K .

Let Λur
ac = Λac⊗̂ZpZur

p . There exists an element LBDP(E/Kac
∞) ∈ Λur

ac such that for any χ ∈
ΞBDP,

φχ(LBDP(E/Kac
∞)) = c(χ) · E(f, χ) · π2n−1

(
ΩK,p
ΩK,∞

)4n

L(fE , χ
−1
alg, 1)

∏
`|N−

c`(E/K)−1,

where E(f, χ) and c(χ) are is in the interpolation formula for LGr(E/K∞), and c`(E/K) is the
Tamagawa number for E/K at the prime ` of K.

This p-adic L-function was essentially constructed in [4] and [6] as the square of another p-
adic funtion. This second p-adic L-function interpolates weighted sums of the values on CM
points on a Shimura curve of powers of the Maass–Shimura operator applied to the modular
form fE (or of a Jacquet–Langlands transfer of fE to the Shimura curve); the weights and the
power of the operator vary with χ. This is just a p-adic interpolation of integral formulas of
Waldspurger and Gross. The p-adic L-function resulting from the constructions in op. cit. may
differ from the LBDP(E/K∞) as we have described by multiplication by a unit in Λur,×

ac . The
factor

∏
`|N− c`(E/K)−1 arises from the normalization of the Jacquet–Langlands transfer of fE

to the Shimura curve – it is at this point that we use the hypothesis that (irredQ) holds.

Comparing interpolation formulas it is clear that:

Lemma 16. Suppose (split) holds and that NE is coprime to DK and both are prime to p.
Suppose also that (Heeg) and (irredQ) hold. Then

LBDP(E/Kac
∞) ·

∏
`|N−

c`(E/K) = LGr(E/K∞) mod (γ+ − 1).

We record two other important facts about LBDP(E/Kac
∞). The first fact is of an Iwasawa-

theoretic nature:

Theorem 17 (µ = 0). Suppose all the hypotheses of Lemma 16 hold. Suppose also that N
is squarefree. Then the µ-invariant of LBDP(E/Kac

∞) is 0, that is, LBDP(E/Kac
∞) is non-zero

modulo p.
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This theorem was proved by Burungale [7, Thm. B]. Note that this includes the assertion that
LBDP(E/Kac

∞) 6= 0, which is far from obvious!

The second fact is of clear arithmetic import:

Theorem 18 (The BDP formula). Suppose all the hypotheses of Lemma 16 hold. Suppose also
that N is squarefree if N− 6= 1. Then

φ1(LBDP) = u

(
1− ap(E) + p

p
· logE(Kv) yK

)2

for some u ∈ (Zur
p )×.

Here yK ∈ E(K) is a Heegner point associated with K and the parametrization of E by the
Shimura curve (the same curve that occurs in the construction of LBDP(E/Kac

∞)), and logE(Kv)

is the log map on the p-adic Lie group E(Kv) defined by the formal group logarithm. Note that
the trivial character 1 of Γac

K does not belong to ΞBDP. Theorem 18 follows from the main results
of [4] and [6].

4.1.4. L±(E/Q∞). This begins with a closer look at the constructions of Amice-Vélu and Vishik.
Let E be an elliptic curve with good reduction at p. Let αp and βp be the roots of x2−ap(E)x+p.
Then Amice-Vélu and Vishik constructed two power series (this construction is also explained in
[46])

L(E, •;T ) ∈ H1,Qp =

{ ∞∑
n=0

anT
n ∈ Qp[[T ]] : lim

n→∞

|an|p
n

= 0

}
, • ∈ {αp, βp} ,

with the property that for a primitive ptth root of unity ζ,

L(E, •; ζ − 1) = ep(ζ, •)
L(fE , ψ

−1
ζ , 1)

ΩfE
,

where

ep(ζ, •) =

(•)−(t+1) pt+1

G(ψ−1
ζ )

ζ 6= 1(
1− 1

•
)2

ζ = 1.

However, the L(E, •;T ) do not belong to ΛQ = Zp[[T ]] unless • is a p-adic unit (which is the case
when E has ordinary reduction and • = αp is the unit root).

Now suppose that ap(E) = 0, so βp = −αp. Let

log+
p (1 + T ) =

1

p

∞∏
n=1

Φp2n(1 + T )

p
and log−p (1 + T ) =

1

p

∞∏
n=1

Φp2n−1(1 + T )

p
,

where Φpm(X) is the pmth cyclotomic polynomial. Pollack [52] has shown that there exist
L±(E/Q∞) ∈ ΛQ such that

L(E,±αp;T ) = log+
p (1 + T ) · L−(E/Q∞)± αp log−p (1 + T ) · L+(E/Q∞).

The functions L±(E/Q∞) have the following interpolation property. Suppose ζ is a primitive
ptth root of unity. If t > 0 is even, then

φζ(L+(E/Q∞)) = (−1)
t+2
2

pt+1

G(ψ−1
ζ )

(
t−1∏

odd m=1

Φpm(ζ)−1

)
L(fE , ψ

−1
ζ , 1)

ΩfE
.
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If t > 0 is odd, then

φζ(L−(E/Q∞)) = (−1)
t+1
2

pt+1

G(ψ−1
ζ )

(
t−1∏

even m=2

Φpm(ζ)−1

)
L(fE , ψ

−1
ζ , 1)

ΩfE
.

Also,

φ1(L+(E/Q∞)) = 2
L(fE , 1)

ΩfE
and φ1(L−(E/Q∞)) = (p− 1)

L(fE , 1)

ΩfE
.

Remark 4.1.4.c. Sprung [66] has extended Pollack’s construction to cover the remaining super-
singular cases, where ap(E) 6= 0. It is also possible to extend the construction of L±(E/Q∞)
to two-variable L-functions in ΛK , at least when (split) holds. This yields ‘doubly-signed’ p-adic
L-functions as it involves the choice of a root of x2 − ap(E)x+ p for each of the primes above p.
Such a construction can be found in [43] (see also [44]).

4.2. The Main Conjectures. We are now in a position to state the Main Conjectures we are
interested in.

4.2.1. S(E/Q∞) and S(E/K∞). Let E be an elliptic curve over Q. The Main Conjecture for
S(E/Q∞) is just:

Conjecture 19 (The cyclotomic Iwasawa–Greenberg Main Conjecture for E). Suppose E has
good ordinary or multiplicative reduction at p. The Pontryagin dual X(E/Q∞) of S(E/Q∞)
is a torsion ΛQ-module and its characteristic ideal ξ(E/Q∞) = ξ(X(E/Q∞)) is generated by
L(E/Q∞) in ΛQ ⊗Zp Qp and even in ΛQ if (irredQ) holds.

This conjecture can be partially motivated by the combination of control theorems such as
Propositions 5 and 8 and the Bloch–Kato conjectures on special values. The latter predicts
that #(S(E/Q∞)⊗Zp Zp[ζ])[γ− ζ] should equal #Zp[ζ]/φζ(L(E/Q∞)) – upon using the control
theorem to relate the first group order with the size of a Bloch-Kato Selmer group and using
the interpolation properties of the p-adic L-function to relate the second group order to a special
value of an L-function. And since the first group order should be (upon assuming torsion-ness
and no non-zero pseudonull submodule) #Zp[ζ]/φζ(gE), for gE ∈ ξ(E/Q∞) a generator, the most
optimistic (and reasonable) conjecture to make is that gE can be taken to be L(E/Q∞).

The main conjecture for S(E/K∞) is:

Conjecture 20 (The 2-variable Iwasawa–Greenberg Main Conjecture for E/K). Suppose E has
good ordinary or multiplicative reduction at p. The Pontryagin dual X(E/K∞) of S(E/K∞)
is a torsion ΛK-module and its characteristic ideal ξ(E/K∞) = ξ(X(E/K∞)) is generated by
L(E/K∞) in ΛK ⊗Zp Qp and even in ΛK if (irredK) holds.

4.2.2. SGr(E/K∞). At this point it should be easy to guess what the main conjecture for
SGr(E/K∞) is:

Conjecture 21 (The two-variable Iwasawa–Greenberg Main Conjecture for SGr(E/K∞)). Sup-
pose E has good reduction at p. Let K be an imaginary quadratic field such that (split) holds.
The Pontryagin dual XGr(E/K∞) of SGr(E/K∞) is a torsion ΛK-module and its characteristic
ideal ξGr(E/K∞) = ξ(XGr(E/K∞)) is generated by LGr(E/K∞) in Λur

K ⊗Zp Qp and even in Λur
K

if (irredK) holds.

Note that unlike Conjecture 19, this conjecture allows E to have supersingular reduction at p.
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4.2.3. SBDP(E/Kac
∞). An obvious variant on Conjecture 21 is:

Conjecture 22 (The anticyclotomic Main Conjecture for SBDP(E/Kac
∞)). Suppose E has good or

multiplicative reduction at p. Let K be an imaginary quadratic field such that (split) holds. The
Pontryagin dual XBDP(E/Kac

∞) of SBDP(E/Kac
∞) is a torsion Λac-module and its characteristic

ideal ξBDP(E/Kac
∞) = ξ(XBDP(E/Kac

∞)) is generated by LBDP(E/Kac
∞) in Λac ⊗Zp Qp and even

in Λac if (irredK) holds.

Remark 4.2.3.a. Proposition 11 and Lemma 16 show that Conjectures 21 and 22 are closely
connected. In particular, under the hypotheses of Lemma 16, it follows that Conjecture 21
implies Conjecture 22.

4.2.4. S±(E/Q∞). Finally, we state the Main Conjecture for the ±-Selmer groups:

Conjecture 23 (The cyclotomic ±-Iwasawa Main Conjecture for E). Suppose E has supersin-
gular reduction at p and ap(E) = 0. The Pontryagin dual X±(E/Q∞) of S±(E/Q∞) is a torsion
ΛQ-module and its characteristic ideal ξ±(E/Q∞) = ξ(X±(E/Q∞)) is generated by L±(E/Q∞)
in ΛQ ⊗Zp Qp and even in ΛQ if (irredQ) holds.

4.3. Main Conjectures without L-functions. The classical Main Conjecture of Iwasawa the-
ory has an equivalent formulation that does not involve p-adic L-functions. Following especially
[34, §12 ], analogous formulations exist for the Main Conjectures of elliptic curves. In the rest of
this section we give a rough description of this in some of the cases already considered in these
lectures.

Let E/Q be an elliptic curve. We will assume that E has good ordinary reduction at p.

4.3.1. The cyclotomic Main Conjecture. For simplicity, we also assume (irredQ) holds. Let

H1(Z[
1

p
], T ⊗Zp ΛQ) = ker

H1(GΣ, T ⊗Zp ΛQ)
res→

∏
`∈Σ, 6̀=p

H1(I`, T ⊗ ΛQ)

 .

Here we let GQ act on T ⊗ ΛQ via ρ⊗Ψ. Let

Sstr(E/Q∞) = ker
{
S(E/Q∞)→ H1(Qp,M)

}
and Xstr(E/Q∞) = Sstr(E/Q∞)∨.

Kato has constructed, more-or-less naturally, a free ΛQ-module ZKato ⊂ H1(Z[ 1
p ], T⊗ZpΛQ). The

Main Conjecture without L-function in this case asserts that H1(Z[ 1
p ], T ⊗Zp ΛQ) is a torsion-free

rank one ΛQ-module, that ZKato 6= 0, and that

(IMC-noL) ξ(H1(Z[
1

p
], T ⊗Zp ΛQ)/ZKato)

?
= ξ(Xstr(E/Q∞)).

The connection with Main Conjecture with L-function comes about as follows. Let

H1
/f (Qp, T ⊗Zp ΛQ) =

H1(Qp, T ⊗Zp ΛQ)

im(H1(Qp, T+ ⊗Zp ΛQ))
=
(
im(H1(Qp,M+))

)∨
,

where the second = is the identification coming from local duality. Then there is a Coleman
isomorphism

Col : H1
/f (Qp, T ⊗Zp ΛQ)

∼→ ΛQ

of ΛQ-modules, which essentially interpolates the dual Bloch–Kato exponential maps for all the
specializations T (ψζ) of T ⊗Zp ΛQ.
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It is a consequence of global duality that there is an exact sequence

0→
H1(Z[ 1

p ], T ⊗Zp ΛQ)

ZKato

resp→
H1
/f (Qp, T ⊗Zp ΛQ)

resp(ZKato)

res∨p→ X(E/Q∞)→ Xstr(E/Q∞)→ 0.

Aside from the exactness on the left, this is just a special case of (SES). The left-exactness holds
since H1(Z[ 1

p ], T ⊗Zp ΛQ) is assumed to be a torsion-free ΛQ-module of rank one (part of the

Main Conjecture without L-function) and since Col(resp(ZKato)) = (L(E/Q∞)), which has been
proved by Kato, and since L(E/Q∞) 6= 0 by a result of Rohrlich [56]. Admitting the equality
in the Main Conjecture without L-function and appealing to the previously mentioned results of
Kato and Rohrlich, H1(Z[ 1

p ], T ⊗Zp ΛQ)/ZKato, H1
/f (Qp, T ⊗ΛQ)/resp(ZKato), and Xstr(E/Q∞)

are all torsion ΛQ-modules, hence so too is X(E/Q∞). Moreover, since characteristic ideals
behave well in exact sequences, we also have

ξ(E/Q∞) = ξ(H1
/f (Qp, T ⊗Zp ΛQ)/ZKato) = ξ(ΛQ/Col(ZKato)) = (L(E/Q∞),

so the Main Conjecture with L-function follows.

Remark 4.3.1.a. The formulation of the cyclotomic Main Conjecture without L-function in
(IMC-noL) makes sense even in the case of supersingular reduction at p. It is only in the
connection to the Main Conjecture with L-function (Conjecture 19) that made use of ordinary
reduction.

4.3.2. The two-variable Main Conjectures for E/K∞. Let K be an imaginary quadratic field such
that (split) holds. Let H1(OK [ 1

p ], T ⊗Zp ΛK) be defined in analogy with H1(Z[ 1
p ], T ⊗Zp ΛQ). Let

H1
ord,rel(K,T ⊗Zp ΛK) = ker

{
H1(OK [

1

p
], T ⊗Zp ΛK)

res→
H1(Kv, T ⊗Zp ΛK)

im(H1(Kv, T+ ⊗Zp ΛK)

}
,

and let Sord,str(E/K∞) ⊂ S(E/K∞) be the subgroup of classes whose restriction at the place v̄
is trivial.

Lei, Loeffler, and Zerbes [42] have constructed a free ΛK-submodule ZLLZ ⊂ H1
ord,rel(K,T ⊗Zp

ΛK) (essentially norm-compatible systems of their Beilinson–Flach elements – this also requires
varying them in Hida families (cf. [37])). The Main Conjecture without L-function in this case
is that H1

ord,rel(K,T ⊗Zp ΛK) is a torsion-free ΛK-module of rank one, that ZLLZ 6= 0, and

ξ(H1
ord,rel(K,T ⊗Zp ΛK)/ZLLZ)

?
= ξ(Xord,str(E/K∞)), Xord,str(E/K∞) = Sord,str(E/K∞)∨.

One of the remarkable features of this Main Conjecture without L-function is that it is also
related to the Main Conjecture with L-function for both SGr(E/K∞) and S(E/K∞). It implies
two distinct Main Conjectures!

The connection with the two-variable Main Conjecture for SGr(E/K∞) comes via the exact
sequence:

0→
H1

ord,rel(K,T ⊗Zp ΛK)

ZLLZ

resv→
im(H1(Kv, T

+ ⊗Zp ΛK)

resv(ZLLZ)

res∨v→ XGr(E/K∞)→ Xord,str(E/K∞)→ 0.

Other than the exactness on the left, this sequence is just a special case of (SES). The exactness
on the left follows from the assumption that H1

ord,rel(K,T ⊗Zp ΛK) is a torsion-free ΛK-module

of rank one together with resv(ZLLZ) being non-torsion. The latter follows from a suitably

normalized version of Perrin-Riou’s ‘big logarithm’ map Logv : im(H1(Kv, T
+⊗ZpΛK)⊗ΛKΛur

K
∼→

Λur
K and the expectation (essentially proved by Lei, Loeffler, and Zerbes) that Logv(ZLLZ) =
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(LGr(E/K∞) together with the non-vanishing of LGr(E/K∞) (which is easier to prove than for
L(E/Q∞)). The argument concluding the Main Conjecture with L-functions now proceeds as
before.

The connection with the two-variable Main Conjecture for S(E/K∞) comes about via a second
exact sequence:

0→
H1

ord,rel(K,T ⊗Zp ΛK)

ZLLZ

resv̄→
H1
/f (Kv̄, T ⊗Zp ΛK)

resv̄(ZLLZ))

res∨v̄→ X(E/K∞)→ Xord,str(E/K∞)→ 0,

where as before H1
/f (Kw, T ⊗Zp ΛK) = H1(Kw, T ⊗Zp ΛK)/im(H1(Kw, T

+ ⊗Zp ΛK). The key

to this second sequence is the Coleman isomorphism Colv̄ : H1
/f (Kv̄, T ⊗Zp ΛK)

∼→ ΛK and the

expectation that Colv̄(ZLLZ) = (L(E/K∞)) (essentially proved by Kings, Loeffler, and Zerbes)
and the non-vanishing of L(E/K∞) (which follows from (L-fact) and the aforementioned result
of Rohrlich). The argument again proceeds as before.

4.3.3. The Heegner point Main Conjecture. Before the work of Kato and Lei–Loeffler–Zerbes,
Perrin-Riou [53] formulated an anticyclotomic Main Conjecture for S(E/Kac

∞) in cases where the
Heegner hypotheses (such as (Heeg)) hold. Let

H1
ord(K,T ⊗Zp Λac) = ker

H1(OK [
1

p
], T ⊗Zp Λac)

res→
∏
w|p

H1(Kw, T ⊗Zp Λac)

im(H1(Kw, T+ ⊗Zp Λac)

 .

The Heegner points over the ring class fields of K[pn] form norm-compatible sequences in
H1

ord(K,T ⊗Zp Λac) that generate a free Λac-submodule ZHeeg ⊂ H1
ord(K,T ⊗Zp Λac). In this

case Perrin-Riou’s anticyclotomic Main Conjecture is that X(E/Kac
∞) ∼ Λac ⊕ N ⊕ N for N a

torsion Λac-module and that

ξ(N)
?
= c−1

E ξ(H1
ord(K,T ⊗Zp Λac)/ZHeeg),

where cE is the Manin constant for the modular parameterization of E (by the Shimura curve
dictated by the hypothesis (Heeg)). This conjecture is closely connected with the Main Conjecture
for SBDP(E/Kac

∞).

5. Theorems and ideas of their proofs

We recall a few of the results, some recent, towards proofs of the Main Conjectures stated
earlier. We also try to give some idea of their proofs.

5.1. Cyclotomic Main Conjectures: the ordinary case. We begin, as always, with the case
of the cyclotomic Zp-extension of Q. One result that encompasses many instances of the Main
Conjecture for this case is:

Theorem 24. Let E/Q be an elliptic curve of conductor NE. Let p ≥ 3 be a prime at which
E has good ordinary or multiplicative reduction. Suppose that (irredQ) holds. Suppose also that
there exists a prime ` || NE, ` 6= p, such that E[p] is ramified at `. Then the Iwasawa–Greenberg
Main Conjecture for S(E/Q∞) is true. In particular, X(E/Q∞) is a torsion ΛQ-module and

ξ(E/Q∞) = (L(E/Q∞)) ⊆ ΛQ.

The proof of this theorem is contained in [34] [64] [63].
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5.1.1. Remarks on related results. Of course, there are many other interesting results toward this
case of the Main Conjectures for elliptic curves. We comment on a few:

• The Main Conjecture for a CM elliptic curve with ordinary reduction at p (which is
excluded by this theorem because of the hypothesis on some ` || NE) was proved much
earlier by Rubin [58].

• Kato’s divisibility ((Div-1) below) also holds, at least in ΛQ⊗ZpQp, when (irredQ) fails to.
Greenberg and Vatsal [26] exploited this and the classical Main Conjecture for Dirichlet
characters to deduce the cyclotomic Main Conjecture for some elliptic curves E for which
E[p] is a reducible GQ-representation. In the same paper Greenberg and Vatsal pioneered
a method of showing that when the analytic and algebraic Iwasawa µ-invariants vanish,
the Main Conjecture for one elliptic curve E (or eigenform f) implies the Main Conjecture
for any congruent elliptic curve (or eigenform). These ideas were then further developed
by Emerton, Pollack, and Weston [17].

• Results of Grigorov [27] and more recently of Kim, Kim, and Sun [36] make it possible to
‘numerically verify’ instances of the cyclotomic Main Conjecture (showing that is implied
by some value being prime-to-p). This yields examples of the cyclotomic Main Conjecture
for elliptic curves with, say, squarefull conductors.

5.1.2. Idea of the proof of Theorem 24. Theorem 24 was proved in two big steps and one smaller
one.

In the first step, Kato proved that X(E/Q∞) is a torsion ΛQ-module and that

(Div-1) (L(E/Q∞)) ⊆ ξ(E/Q∞) if E has good ordinary reduction at p.

This was done by an Euler system argument. To be precise, the argument requires that E have
good reduction at p as well as the existence of an element σ ∈ GQ that fixes Q∞ and is such that
T/(σ − 1)T is a free Zp-module of rank 1. The hypothesis that E[p] is ramified at some ` || NE ,
` 6= p, ensures the existence of such an element σ.

In the second step, Urban and the lecturer showed that if K is an imaginary quadratic field of
discriminant −DK such that (a) (DK , 4Np) = 1, (b) p splits in K, and (c) NE = N−N+ with
N− (resp. N+) divisible only by primes that are inert in K (resp. split in K) and N− is the
square-free product of an odd number of primes ` such that E[p] is ramified at `, then

(Div-2) ξ(E/Q∞)ξ(EK/Q∞) ⊆ (L(E/Q∞)L(EK/Q∞)) ⊆ ΛQ.

Here EK is the K-twist of E.

Suppose now that E is as in the statement of the theorem. It is easy to see that it is always
possible to choose K so that all the hypotheses required for (Div-2) are satisfied. If in addition
E has good ordinary reduction, then combining (Div-1) (for both the curve E and its K-twist
EK , which will also have good ordinary reduction at p) with (Div-2) yields the Main Conjecture
for E.

The final step is to extend this result to include those E with multiplicative reduction. This
was done in [63]. The argument there uses the fact that the results in [34] and [64] actually prove
the Main Conjecture for p-ordinary newforms f ∈ Sk(Γ0(N)), p - N , with k ≡ 2 mod p − 1. A
simple congruence argument then shows that the Main Conjecture for an E with multiplicative
reduction at p can be deduced from the Main Conjectures for such f . The key point is that fE ,
the newform associated with E, is a p-adic limit of such newforms f .
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As noted, Kato’s proof of (Div-1) goes via Euler systems. In particular, it involves progress
toward the Main Conjecture without L-function for E as in Section 4.3. More precisely, Kato
constructs an Euler system for T . The base of this Euler system, when it is non-zero, is a rank
one ΛQ-module ZKato ⊂ H1(Z[ 1

p ], T ⊗Zp ΛQ). The machinery of Euler systems then proves that

in this case H1(Z[ 1
p ], T ⊗Zp ΛQ) is a free ΛQ-module of rank one and that

ξ(H1(Z[
1

p
], T ⊗Zp ΛQ)/ZKato) ⊆ ξ(Xstr(E/Q∞)).

Furthermore, via a deep ‘explicit reciprocity law’ Kato also shows that Col(ZKato) = (L(E/Q∞)).
Then arguing much as in Section 4.3.1 yields both that X(E/Q∞) is torsion and (Div-1).

To try to say much about the proof of (Div-2) would take us far afield of the focus of these
lectures. So suffice it to say that the proof is an extensive generalization of the Eisenstein
congruence arguments used in Wiles’s proof [73] of the Iwasawa Main Conjecture for totally real
fields. Moreover, (Div-2) is actually just a consequence of the main theorem in [64], which is
in fact an inclusion towards a three-variable Main Conjecture: the extra variables come from
including fE , the newform associated with E, in a Hida family and working with the extension
K∞/K. The very rough idea is to first construct a three-variable p-adic family of Eisenstein series
on GU(2, 2) whose constant term is divisible by this three-variable L-function. Then to show
that this Eisenstein family is coprime to the p-adic L-function by showing that for any height
one prime divisor of the p-adic L-function there is some Fourier coefficient that is not divisible by
this height one prime. Finally, use the Galois representations associated to cuspidal families on
GU(2, 2) that are congruent to this Eisenstein family (by the preceding steps, these congruences
are ‘measured’ by the p-adic L-function) to construct classes in the appropriate Selmer group.

5.2. The Main Conjectures for SGr(E/K∞) and SBDP(E/Kac
∞). Recently, progress has been

made towards the Main Conjectures for SGr(E/K
ac
∞) and SBDP(E/Kac

∞). One result that encom-
passes some of this progress is:

Theorem 25. Let E be either a semistable elliptic curve or a quadratic twist of such a curve.
Suppose E has good reduction at p and that (irredQ) holds. Suppose also that there exists a prime
` || NE, ` 6= p, such that E[p] is ramified at `. Let K be an imaginary quadratic field with
discriminant −DK . Suppose (split) holds, (DK , NE) = 1, and ` is inert in K. Suppose also that
(Heeg) holds.

(i) XGr(E/K∞) is a torsion Λur
K -module and XBDP(E/Kac

∞) is a torsion Λur
ac-module.

(ii) There exists an element 0 6= a ∈ Λur
cyc = Zur

p [[Γcyc
K ]] such that a · ξGr(E/K∞)ur ⊆

(LGr(E/K∞)) ⊂ Λur
K .

(iii) ξBDP(E/Kac
∞)ur ⊆ (LBDP(E/Kac

∞)) ⊂ Λur
ac.

(iv) If p - c`(E/K) for all ` | N−, then (i) holds with a = 1.

Here we have written ξ?(·)ur to mean ξ?(·)Λur
??. Part (ii) of this theorem is essentially the main

results of [70] and [71]. The element a in (i) can be taken to be divisible only by height one
primes of LGr(E/K∞) that are of the form PΛur

K for some height one prime P ⊂ Λur
cyc.

Combining Theorem 25 with results toward the cyclotomic Main Conjecture, via arguments like
those in Section 4.3.2, yields case of the Main Conjectures for SGr(E/K∞) and SBDP(E/Kac

∞).
For example:
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Theorem 26. Let E be either a semistable elliptic curve or a quadratic twist of such a curve.
Suppose E has good ordinary reduction at p and that (irredQ) holds. Suppose also that there exists
a prime ` || NE, ` 6= p, such that E[p] is ramified at `. Let K be an imaginary quadratic field with
discriminant −DK . Suppose (split) holds, (DK , NE) = 1, and ` is inert in K. Suppose also that
(Heeg) holds and that p - c`(E/K) for all ` | N−. Then XGr(E/K∞) is a torsion Λur

K -module
and XBDP(E/Kac

∞) is a torsion Λur
ac-module, and

ξGr(E/K∞)ur = (LGr(E/K∞)) ⊂ Λur
K and ξBDP(E/Kac

∞)ur = (LBDP(E/Kac
∞)) ⊂ Λur

ac.

That is, the Main Conjectures for SGr(E/K∞) and SBDP(E/Kac
∞) hold.

5.2.1. Idea of the proofs of Theorems 25 and 26. Part (i) of Theorem 25 is a relatively easy
consequence of work of Cornut and Vatsal [10] together with the theorems of Gross–Zagier and
Kolyvagin (as extended by others to Heegner points coming from Shimura curve parameteriza-
tions). In particular, by [10, Thm. 1.5] there is some finite order character χ of Γac

K such that

L′(fE , χ
−1
alg, 1) 6= 0. Let O be the ring of integers of the finite extension L of Qp containing the val-

ues of χ. Let W = E[p∞]⊗ZpO(χ−1). It then follows from the Gross–Zagier theorem and Kolyva-

gin’s Euler system argument that H1
f (K,W ) has O-corank 1, with the O-divisible part generated

by the image of Heegner points. A simple Galois cohomology argument, such as appears in Sec-
tion 6.2 below, then shows that H1

BDP(K,W ) is finite, where by H1
BDP(K,W ) we mean the group

of classes that are trivial at all places except v. A control theorem argument like that of Proposi-
tion 12 shows that the dual H1

BDP(K,W )∨ is a quotient of XBDP(E/Kac
∞)⊗ZpO mod (γ−−χ(γ−))

with a finite order kernel. It follows that XBDP(E/Kac
∞) is a torsion Λac-module. It then follows

similarly from Proposition 11 that XGr(E/K∞) is a torsion ΛK-module.

Part (ii) is a consequence of the main results in [70] and [71], in much the same way that
(Div-2) is a consequence of the main result in [64]. These main results are also inclusions toward
three-variable main conjectures, the additional variable arising from including fE in a Hida or
Coleman family. Again, the very rough idea is to first construct a three-variable p-adic family of
Eisenstein series, in this case on GU(3, 1), whose constant term is divisible by the three-variable
L-function. Then to show that this Eisenstein family is coprime to the p-adic L-function. This
step is complicated by the fact that forms on GU(3, 1) do not have Fourier expansions, only
Fourier–Jacobi expansions. And then, once this is done, use the Galois representations associated
to cuspidal families on GU(3, 1) that are congruent to this Eisenstein family (by the preceding
steps, these congruences are ‘measured’ by the p-adic L-function) to construct classes in the
appropriate Selmer group.

The passage from (ii) to (iii) follows from combining Proposition 11, Lemma 16, and Theorem
17. To make this work one must also note that Lemma 16 together with LBDP(E/Kac

∞) 6= 0 (see
Theorem 17) imply that LGr(E/K∞) (and hence a) is not divisible by γ+ − 1.

The stronger conclusion of (iv) follows since if LGr(E/K∞) had a divisor of the form PΛK
for some height one prime P ⊂ Λur

cyc, then LGr(E/K∞) mod (γ+ − 1) would be divisible by
P mod (γ+ − 1), which is a power of p (we already observed that P mod (γ+ − 1) is non-zero
when passing from (ii) to (iii)). But this would contradict Theorem 17.

To deduce Theorem 26 from Theorem 25, one can argue much as in Section 4.3.2. AsXGr(E/K∞)
is a torsion ΛK-module by part (i) of Theorem 25, so too is its quotient Xord,str(E/K∞). The
latter being torsion implies that H1

ord,rel(K,T ⊗Zp ΛK) = 0 (here we use (irredK)). This in turn
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implies that there is an exact sequence

0→
H1

ord,rel(K,T ⊗Zp ΛK)

ZLLZ

resv→
im(H1(Kv, T

+ ⊗Zp ΛK)

resv(ZLLZ)

res∨v→ XGr(E/K∞)→ Xord,str(E/K∞)→ 0.

Part (iv) of Theorem 25 implies that

ξ(XGr(E/K∞)) ⊆ ξ(
im(H1(Kv, T

+ ⊗Zp ΛK)

resv(ZLLZ)
),

hence

ξ(Xord,str(E/K∞)) ⊆ ξ(
H1

ord,rel(K,T ⊗Zp ΛK)

ZLLZ
).

Furthermore, each of these inclusions is an equality if the other is. We will explain that the
second inclusion is an equality, hence so is the first.

By noting that S(E/K∞)[γ− − 1] ∼= S(E/Q∞)⊕ S(EK/Q∞), one readily sees that X(E/K∞)
is a torsion ΛK-module (since X(E/Q∞) and X(EK/Q∞) are both torsion ΛQ-modules). It
follows that H1

ord(K,T ⊗Zp ΛK) = 0 (here we again use that (HeegK) holds. It then follows that
there is an exact sequence

0→
H1

ord,rel(K,T ⊗Zp ΛK)

ZLLZ

resv̄→
H1
/f (Kv̄, T ⊗Zp ΛK)

resv̄(ZLLZ))

res∨v̄→ X(E/K∞)→ Xord,str(E/K∞)→ 0,

As ξ(Xord,str(E/K∞)) ⊆ ξ(H1
ord,rel(K,T ⊗Zp ΛK)/ZLLZ, it follows that

ξ(X(E/K∞)) ⊆ ξ(
H1
/f (Kv̄, T ⊗Zp ΛK)

resv̄(ZLLZ))
) = (L(E/K∞)).

And again, each inclusion is an equality if the other is. But by reducing the last equation
modulo (γ− − 1) and appealing to the cyclotomic Main Conjecture for both E and EK (or even
just Kato’s divisibilities Div-1), we conclude that this last inclusion is an equality. Hence so
are the others. This proves the Main Conjecture for SGr(E/K∞). The Main Conjecture for
SBDP(E/Kac

∞) essentially follows by reducing modulo (γ+ − 1).

5.2.2. Remarks on related results.

• Wan’s results actually allow DK and N to have prime factors in common. This is
important for some applications.

• Wan also proved a version of Theorem 25(ii) when (Heeg) is replaced by a condition
that allows the root number w(E/K) to equal +1. In this case LBDP(E/Kac

∞) = 0 and
XBDP(E/K∞) is not torsion.

• A careful read of the deduction of Theorem 26 from Theorem 25 shows that it actually
gives a second proof of the cyclotomic Main Conjecture for E and EK ! (This is so, as
one can get away with appealing to Kato’s divisibility at the crucial step.)

• Wan has a modification of these results that allows many of the arguments to be applied
to E with supersingular reduction at p [71]. A summary of some of this is in [9].

5.3. Cyclotomic Main Conjectures: the supersingular case. The work of Wan, in com-
bination with the Beilinson–Flach elements of Lei–Loeffler–Zerbes, has provided a means to
approach the cyclotomic Main Conjectures for S±(E/Q∞) when E has supersingular reduction
at p and ap(E) = 0.
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Theorem 27. Let E/Q be an elliptic curve of conductor NE. Suppose that E is either a
semistable curve or a quadratic twist of such. Let p ≥ 3 be a prime at which E has super-
singular reduction and ap(E) = 0. Suppose that (irredQ) holds. Suppose also that there exists a
prime ` || NE, ` 6= p, such that E[p] is ramified at `. Then the Main Conjecture for S±(E/Q∞)
is true. In particular, X±(E/Q∞) is a torsion ΛQ-module and

ξ±(E/Q∞) = (L±(E/Q∞)) ⊆ ΛQ.

The proof of this theorem combines work of Kobayashi [38] and Wan [71]. The argument
essentially follows as indicated in the third remark of Section 5.2.2, only everything is decorated
with a subscript ± and Kato’s divisibility is replaced with Kobayashi’s.

5.3.1. Remarks on related results.

• The Main Conjecture for a CM elliptic curve with supersingular reduction at p was
proved earlier by Pollack and Rubin [55].

• The Main Conjecture for S±(E/Q∞) is equivalent to the Kato’s Main Conjecture without
L-functions for E; the equivalence runs along the same lines as described for the ordinary
case in Section 4.3.1.

• Sprung [66] [67] has extended Theorem 27 to include those E with supersingular reduction
at p but with ap(E) 6= 0.

5.4. Perrin-Riou’s Heegner point Main Conjecture. The proofs of the Main Conjectures
with L-functions described so far have both invoked progress toward Main Conjectures without
L-functions and resulted in the proof of such in many cases. This is one more.

Theorem 28. Let E be an elliptic curve over Q with conductor NE and good ordinary reduction
at p. Suppose that N is either a semistable curve or a quadratic twist of a semistable curve.
Suppose (irredQ) holds. Let K be an imaginary quadratic field of discriminant −DK such that
(split) holds. Suppose that NE and DK are relatively prime and that (Heeg) holds. Suppose
further that N− 6= 1 and p - c`(E/K) for all ` | N−. Then Perrin-Riou’s Heegner point Main
Conjecture is true. That is,

(a) X(E/Kac
∞) ∼ Λac ⊕N ⊕N with N a torsion Λac-module, and

(b) ξ(N) = ξ(H1
ord(K,T ⊗Zp Λac)/ZHeeg).

Here, the ∼ in (a) means that there is a Λac homomorphism with pseudonull kernel and cokernel
(this is reflexive). See Section 4.3.3 for definition of the terms in the statement of (b).

Part (a) of this theorem was known from earlier work of Bertolini, Cornut, and Nekovář, while
Howard [30] [31] proved the inclusion ⊇ in (b). Wan [72] showed that equality could be deduced
from Howard’s inclusion in combination with his work on the Main Conjecture for SGr(E/K∞).

Remark 5.4.0.a. Castella and Wan [9] have formulated and proved a version of the Heegner point
Main Conjecture when E has supersingular reduction at p and ap(E) = 0.
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6. Arithmetic consequences

By this point the reader will have recognized that many of the theorems towards the Main
Conjectures for elliptic curves have interesting consequences, especially for the (conjectured)
Birch–Swinnerton-Dyer formula. We explain a few in the following.

6.1. Results when L(E, 1) 6= 0. As an almost immediate consequence of Theorem 24 and the
control theorems and especially Proposition 10, we have:

Theorem 29. Let E/Q be an elliptic curve of conductor NE. Let p ≥ 3 be a prime at which
E has good ordinary or multiplicative reduction. Suppose that (irredQ) holds. Suppose also that
there exists a prime ` || NE, ` 6= p, such that E[p] is ramified at `. If L(E, 1) 6= 0, then∣∣∣∣L(E, 1)

ΩE

∣∣∣∣−1

p

=

∣∣∣∣∣∣#X(E/Q) ·
∏
`|NE

c`

∣∣∣∣∣∣
−1

p

.

Additional argument is required when E has split multiplicative reduction at p due to the
trivial zero of L(E/Q∞) at T = 0. The details of this case are included in [63]. We have written
#X(E/Q) and not just #X(E/Q)[p∞] as it is known by the work of Kolyvagin that when
L(E, 1) 6= 0 the Tate–Shafaravich group X(E/Q) has finite order.

The corresponding result for the case of supersingular reduction, a consequence of Theorem 27
and Proposition 15 is just:

Theorem 30. Let E/Q be an elliptic curve of conductor NE. Suppose that E is either semistable
or a quadratic twist of a semistable curve. Let p ≥ 3 be a prime at which E has good supersingular
reduction with ap(E) = 0. Suppose that (irredQ) holds. Suppose also that there exists a prime
` || NE, ` 6= p, such that E[p] is ramified at `. If L(E, 1) 6= 0, then∣∣∣∣L(E, 1)

ΩE

∣∣∣∣−1

p

=

∣∣∣∣∣∣#X(E/Q) ·
∏
`|NE

c`

∣∣∣∣∣∣
−1

p

.

6.2. Results when L(E, 1) = 0. The Main Conjecture also has consequences when L(E, 1) = 0.
Again combining Theorem 24 and the control theorems, one can deduce:

Theorem 31. Let E/Q be an elliptic curve of conductor NE. Let p ≥ 3 be a prime at which
E has good ordinary or multiplicative reduction. Suppose that (irredQ) holds. Suppose also
that there exists a prime ` || NE, ` 6= p, such that E[p] is ramified at `. If L(E, 1) = 0,
then #Selp∞(E/Q) = ∞ and so its Zp-corank is at least one. Moreover, if E does not have
split multiplicative reduction at p and ords=1L(E, s) is even and positive, then the Zp-corank of
Selp∞(E/Q) is at least two.

The key point here is that if L(E, 1) = 0 then gE(0) = 0, so by Lemma 4 we have #S(E/Q∞)[γ−
1] =∞. By the arguments used to establish the control theorems we have an exact sequence

0→ Selp∞(E/Q)→ S(E/Q∞)[γ − 1]→
∏
`∈Σ

K`.

As the groups on the right are finite (at least if E does not have split multiplicative reduction),
then Selp∞(E/Q) has infinite order if and only if S(E/Q∞)[γ − 1] does. The modifications of
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this argument needed to handle the case of split multiplicative reduction at p are included in
[63]. The claim about the Zp-corank being at least two follows from combining the result that
the Zp-corank being positive with the proof of the parity conjecture by Nekovář [50].

The analog of this theorem in the supersingular case is:

Theorem 32. Let E/Q be an elliptic curve of conductor NE. Suppose that E is either semistable
or a quadratic twist of a semistable curve. Let p ≥ 3 be a prime at which E has supersingular
reduction and ap(E) = 0. Suppose that (irredQ) holds. Suppose also that there exists a prime
` || NE, ` 6= p, such that E[p] is ramified at `. If L(E, 1) = 0, then #Selp∞(E/Q) = ∞ and so
its Zp-corank is at least one. Moreover, if E does not have split multiplicative reduction at p and
ords=1L(E, s) is even and positive, then the Zp-corank of Selp∞(E/Q) is at least two.

Remark 6.2.0.a. Theorems 31 and 32 provide some evidence toward the Birch–Swinnerton-Dyer
Conjecture. This conjecture asserts that if L(E, 1) = 0 then E(Q) has positive rank, and the
fundamental exact sequence 0→ E(Q)⊗Qp/Zp → Selp∞(E/Q)→X(E/Q)[p∞]→ 0 then shows
that Selp∞(E/Q) must have Zp-corank at least one. Moreover, if the order of vanishing is at
least two, then the rank of E(Q) should be at least two and hence the Zp-corank of Selp∞(E/Q)
should be at least two. So the conclusions of the theorems agree with implications of the Birch–
Swinnerton-Dyer Conjecture. Furthermore, assuming that X(E/Q) is finite, we can conclude
the expected facts about the rank of E(Q)!

6.3. Results when ords=1L(E, s) = 1. Suppose the analytic rank of E is 1, that is, the order of
vanishing at s = 1 of the L-function L(E, s) is 1. Then we know from the work of Gross, Zagier,
and Kolyvagin that rankZE(Q) = 1 and X(E/Q) is finite. It is even known that L′(E, 1)/ΩE ·
R(E/Q) ∈ Q×. What can be said regarding its conjectured value (the Birch–Swinnerton-Dyer
formula (BSD-f))? The following theorem is progress toward this:

Theorem 33. Let E be a semistable elliptic curve and p a prime of good reduction such that
ap(E) = 0 if E has supersingular reduction at p. Suppose (irred)Q holds. If E has analytic rank
one, then ∣∣∣∣ L′(E, 1)

ΩER(E/Q)

∣∣∣∣−1

p

=

∣∣∣∣∣∣#X(E/Q)
∏
`|NE

c`(E/Q)

∣∣∣∣∣∣
−1

p

.

A proof of this theorem is given in [32]. This proof combines the Gross–Zagier theorem [28] [74]
with Kolyvagin’s Euler system argument [41] and with the results toward the Main Conjecture
for SBDP(E/Kac

∞) and Theorems 29 and 30. These arguments have been extended to the case of
multiplicative reduction by Castella [8].

6.3.1. Remarks on related results.

• Cases of Theorem 33 have also been proved by Zhang [75] and by Berti, Bertolini, and
Venerucci [3]. Each of these imposes some restrictions on the primes ` | NE at which p
is allowed to divide c`(E/Q). Furthermore, each also appeals to Theorem 29.

• The supersingular case of Theorem 33 has also been proved by Kobayashi [39] as a
consequence of a remarkable result on the non-vanishing of the p-adic height of the
Heegner point when E has supersingular reduction at p. This proof, too, appeals to the
Theorems 27 and 30.
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6.3.2. Idea of the proof of Theorem 33. We give a quick sketch of the proof of Theorem 33.

One first chooses an auxiliary imaginary quadratic field such that the hypotheses of Theorem 25
hold and L(EK , 1) 6= 0 (so ords=1L(E/K, s) = 1). The theorems of Gross–Zagier and Kolyvagin
then give a non-torsion Heegner point yK ∈ E(K) that generates a subgroup of finite index.
From parts (i) and (iii) of Theorem 25 together with Corollary 13 one deduces that

∣∣∣∣1− ap(E) + p

p
· logE(Kv) yK

∣∣∣∣−2

p

≤

∣∣∣∣∣∣#SelBDP(E/K) ·
∏
`|N+

c`(E/Q)2 · δp(E)2

∣∣∣∣∣∣
−1

p

Using that Selp∞(E/K) � E(Kv)⊗ZpQp/Zp (since the image of yK has infinite order in E(Kv))
together with rankZE(K) = 1, a simple Galois cohomological argument shows that

#SelBDP(E/K) = #X(E/K)[p∞] · [E(Kv)/E(Kv)tors : Zp · yK ]2.

Substituting this into the preceding inequality yields

[E(K)⊗Z Zp : Zp · yK ]2 ≤

∣∣∣∣∣∣#X(E/K)[p∞] ·
∏
`|N+

c`(E/Q)2

∣∣∣∣∣∣
−1

p

.

The Gross–Zagier formula expresses L′(E,1)
ΩE/KR(E/Q) in terms of the square of the index [E(K) : Z·yK ]

and ratio of the degree of the modular parametrization of E and the degree of the Shimura curve
parametrization of E (the latter gives rise to yK). Using a result of Ribet and Takahashi on the
p-part of the latter, we can conclude that

∣∣∣∣ L′(E/K, 1)

ΩE/KR(E/K)

∣∣∣∣−1

p

≤

∣∣∣∣∣∣#X(E/K)[p∞]
∏
`|NE

c`(E/K)

∣∣∣∣∣∣
−1

p

.

Since L(E/K, s) factors as L(E/K, s) = L(E, s)L(EK , s), L′(E/K, 1) = L′(E, 1)L(EK , 1). A
comparison of periods shows that since (irredK) holds, ΩE/K is a p-adic unit multiple of ΩEΩEK .

Furthermore, R(E/Q) is just R(E/K) since EK(Q) is finite. So we have∣∣∣∣ L′(E/K, 1)

ΩE/KR(E/K)

∣∣∣∣−1

p

=

∣∣∣∣ L′(E, 1)

ΩER(E/Q)

∣∣∣∣−1

p

·
∣∣∣∣L(EK , 1)

ΩEK

∣∣∣∣−1

p

.

On the other hand, X(E/K)[p∞] = X(E/Q)[p∞]⊕X(EK/Q)[p∞] and
∏
`|NE c`(E/K) equals∏

`|NE c`(E/Q) ·
∏
`|NEK

c`(E
K/Q) up to a power of 2. It follows that∣∣∣∣∣∣#X(E/K)[p∞]

∏
`|N+

c`(E/K)

∣∣∣∣∣∣
−1

p

=

∣∣∣∣∣∣#X(E/Q)[p∞]
∏
`|NE

c`(E/Q)

∣∣∣∣∣∣
−1

p

×

∣∣∣∣∣∣#X(EK/Q)[p∞]
∏

`|NEK

c`(E
K/Q)

∣∣∣∣∣∣
−1

p

.
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Combining the last three displayed equations with Theorems 29 and 30 for L(EK , 1) we conclude
that ∣∣∣∣ L′(E, 1)

ΩER(E/Q)

∣∣∣∣−1

p

≤

∣∣∣∣∣∣#X(E/Q)[p∞]
∏
`|NE

c`(E/Q)

∣∣∣∣∣∣
−1

p

.

This is the upper bound predicted by the Birch–Swinnerton-Dyer formula.

To achieve the predicted lower bound, we choose a possibly different quadratic field K such
that (split) and (Heeg) hold, L(EK , 1) 6= 0, and p - c`(E/Q) for all ` | N+. Then Kolyvagin’s
Heegner point Euler system argument yields

[E(K)⊗Z Zp : Zp · yK ]2 ≥

∣∣∣∣∣∣#X(E/K)[p∞] ·
∏
`|N+

c`(E/Q)2

∣∣∣∣∣∣
−1

p

.

Arguing as above we now conclude that∣∣∣∣ L′(E, 1)

ΩER(E/Q)

∣∣∣∣−1

p

≥

∣∣∣∣∣∣#X(E/Q)[p∞]
∏
`|NE

c`(E/Q)

∣∣∣∣∣∣
−1

p

.

Equality follows.

Remark 6.3.2.a. For the argument sketched above to always apply, one actually needs to be able
to choose K so that DK and NE are possibly not coprime (see the first remark in Section 5.2.2).
This is primarily to be able to deal with the case where NE is a prime (or E is a quadratic twist
of a such a curve).

6.4. Converses to Gross–Zagier/Kolyvagin. If E has analytic rank one, then the theorems
of Gross, Zagier, and Kolyvagin imply that rankZE(Q) is one and X(E/Q) is finite. In particular,
the corank of Selp∞(E/Q) is one. Conversely, as noted (see (BSD-crk)), admitting the conjectures
of Birch–Swinnerton-Dyer and the finiteness of the Tate-Shafarevich group, if the corank of
Selp∞(E/Q) is one, then E has analytic rank one. Can this converse can be made unconditional?

The following theorem is an example of what one can prove about this:

Theorem 34. Let E be an elliptic curve over Q with conductor NE and good ordinary reduction
at p. Suppose E is semistable. Suppose (irredQ) holds. If Selp∞(E/Q) has corank one, then
ords=1L(E, s) = 1. In particular, E(Q) has rank one and X(E/Q) is finite.

This is essentially in [72]. An analog for the case of supersingular reduction is proved in [9].

The idea of the proof of Theorem 34 is as follows. One begins by choosing an imaginary
quadratic field K so that E and K satisfy the hypotheses of Theorem 28 and L(EK , 1) 6= 0.
It follows from the theorems of Gross, Zagier, and Kolyvagin that Selp∞(E/Q) is finite, so the
corank of Selp∞(E/K) = Selp∞(E/Q)⊕ Selp∞(EK/Q) is also one. A control theorem argument
shows that Selp∞(E/K) ⊂ S(E/K∞)[γ−−1] with finite index, so X(E/Kac

∞)/(γ−−1)X(E/Kac
∞)

has rank one. Then it follows from part (a) of Theorem 28 that N/(γ− − 1)N is finite. It then
follows from part (b) of the same theorem that the image of ZHeeg in

H1
ord(K,T ⊗ ZpΛac)/(γ− − 1)H1

ord(K,T ⊗ ZpΛac) ↪→ H1
ord(K,T ) ∼= Zp.
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has finite index. But this image of ZHeeg is spanned by the Heegner point yK . So yK is non-
torsion. It then follows from the Gross–Zagier theorem that ords=1L(E/K, s) = 1, and this,
together with L(EK , 1) 6= 0, implies that ords=1L(E, s) = 1.

Remark 6.4.0.a. Variants on this theorem have also been proved by the lecturer [62] and Zhang
[75] [65] and Venerucci [69]. Such converses to Gross–Zagier were a key piece of the arguments in
[1] and [2] that show that a positive proportion of elliptic curves have both algebraic and analytic
rank one.
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