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1. Lecture 1: Introduction

1.1 Statement and consequences of the Hodge-Tate decomposition

Fix a prime number p. The goal of this series is to explain the p-adic analog of the following classical result,
which forms the starting point of Hodge theory.

Theorem 1.1.1 (Hodge decomposition). Let X/C be a smooth proper variety. Then there exists a natural
isomorphism

Hn(Xan,C) '
⊕
i+j=n

H i(X,Ωj
X/C).

Theorem 1.1.1 has many immediate consequences. For example, the “naturality” assertion above implies
that the Hodge numbers are topological invariants in the following sense:

Corollary 1.1.2. If f : X → Y is a map of smooth proper varieties that induces an isomorphismHn(Y an,C) '
Hn(Xan,C) for some n ≥ 0, then one also hasH i(Y,Ωj

Y/C) ' H i(X,Ωj
X/C) for each i, j with i+ j = n.

To move towards the p-adic analog, recall that the theory of étale cohomology provides an algebraic sub-
stitute for singular cohomology that works over any field k: the two roughly coincide when k = C, but the
former is constructed directly from algebraic geometry, and thus witnesses the action of algebraic symme-
tries, including those that might not be holomorphic when working over k = C. As a concrete consequence,
we have the following vaguely formulated statement:

Theorem 1.1.3 (Grothendieck, Artin, ....). Let X/C be an algebraic variety that is defined over Q. Then
the absolute Galois GQ of Q acts canonically on H i(Xan,Z/n) for any integer n > 0. Letting n vary
through powers of a prime p, we obtain a continuous GQ-action on the Zp-module H i(Xan,Zp), and thus
on the Qp-vector space H i(Xan,Qp).

Some important examples of this action are:

Example 1.1.4 (Elliptic curves). Let X = E be an elliptic curve over C which is defined over Q. Then

H1(Xan,Z/n) ' H1(X
an,Z/n)∨ ' Hom(π1(E),Z/n) ' E[n]∨

is the Z/n-linear dual of the n-torsion of E. In this case, Theorem 1.1.3 reflects the fact that all n-torsion
points on E are defined over Q ⊂ C, and are permuted by the Galois group GQ as E has Q-coefficients.
Passing to the inverse limit, this endows the p-adic Tate module Tp(E) := limnE[n] and its Zp-linear dual
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H1(Xan,Zp) with canonical GQ-actions. As Tp(E) ' Z2
p as a topological group, this discussion provides

a continuous 2-dimensional representation GQ → GL2(Zp). More generally, the same discussion applies
to any abelian variety of dimension g to yield a continuous representation GQ → GL2g(Zp).

Example 1.1.5 (The torus and Tate twists). Another important example is the case of X = Gm. In this
case, by the same reasoning above, we have H1(Xan,Z/n) ' µ∨n (where µn ⊂ Q

∗ denotes the set of n-th
roots of 1) and H1(Xan,Zp) ' (limn µn)∨ =: Zp(1)∨ =: Zp(−1). It is easy to see that Zp(−1) is a rank 1

free module over Zp, so we can make sense of Zp(j) for any integer j. Moreover, the resulting represenation
GQ → GL1(Zp) is highly non-trivial by class field theory. In general, for a Zp-algebra R, we shall write
R(i) := R⊗Zp Zp(i), and refer to this as the i-th Tate twist of R.

Example 1.1.6 (Projective line and abelian varieties). Standard computations in algebraic topology are
compatible with the Galois action from Theorem 1.1.3. Thus, for example, if A/C is an abelian variety of
dimension g, then we know from topology that H∗(Aan,Zp) is an exterior algebra on H1(A,Zp): we have
A ' (S1)2g as a topological space, so the claim follows by Künneth. It follows that the same description
also applies in the world of GQ-modules. Likewise, via the Mayer-Vietoris sequence, we have a canonical
isomorphism H2(P1,an,Zp) ' H1(Gan

m ,Zp) ' Zp(−1) in the world of GQ-modules. More generally, if
X/C is a smooth (or merely irreducible) projective variety of dimension d defined over Q, then one can
show H2d(Xan,Zp) ' Zp(−d) as a GQ-module.

From here on, we assume that the reader is familiar with the basics of étale cohomology theory1. Via The-
orem 1.1.3 (and variants), this theory provides perhaps the most important examples of GQ-representations
on p-adic vector spaces. To understand these objects, at a first approximation, one must understand the
action of the local Galois groups (or decomposition groups) D` ⊂ GQ for a rational prime `. When ` 6= p,
these actions can be understood2 in terms of algebraic geometry over the finite field F`; in effect, due to the
incompatibility of the `-adic nature of D` with the p-adic topology, these actions are classified by the action
of a single endomorphism (the Frobenius), and one has powerful tools coming from the solution of Weil
conjectures at our disposal to analyze this endomorphism. However, if ` = p, the resulting representations
are much too rich to be understood in terms of a single endomorphism. Instead, these representations are
best viewed as p-adic analogs of Hodge structures, explaining the name “p-adic Hodge theory” given to the
study of these representations. Perhaps the first general result justifying this choice of name is the follow-
ing, which gives the p-adic analog of the Hodge decomposition in Theorem 1.1.1 and forms the focus of this
lecture series:

Theorem 1.1.7 (Hodge-Tate decomposition). LetK/Qp be a finite extension, and let Cp be a completion of
an algebraic closure K of K. Let X/K be a smooth proper variety. Then there exists a Galois equivariant
decomposition

Hn(XK,et,Qp)⊗Qp Cp '
⊕
i+j=n

H i(X,Ωj
X/K)⊗K Cp(−j), (1.1)

1For a scheme X , a prime number p and a coefficient ring Λ ∈ {Z/p,Z/pn,Zp,Qp}, we write H∗(Xet,Λ) for the étale
cohomology X with Λ-coefficients; we indulge here in the standard abuse of notation where, for Λ ∈ {Zp,Qp}, the groups
Hn(Xet,Λ) are not the cohomology groups of a sheaf on the étale site Xet, but rather are defined by an inverse limit procedure.

2We are implicitly assuming in this paragraph that the prime p is a prime of good reduction for the variety under consideration.
If X has bad reduction at p, then the resulting representations of D` are much more subtle: already when ` 6= p, there is an
extremely interesting additional piece of structure, called the monodromy operator, that is still not completely understood.
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where Cp(−j) denotes the (−j)-th Tate twist of Cp. This isomorphism is functorial in X . In particular, it
respects the natural graded algebra structures on either side as n varies.

We take a moment to unravel this statement. The objectHn(XK,et,Qp) is the étale cohomology ofXK :=

X ⊗K K, and hence admits a GK := Gal(K/K)-action by transport of structure. The GK-action on K
is continuous, and hence extends to one on the completion Cp. In particular, GK acts on the left side of
(1.1) via the tensor product action. On the right side, the only nontrivial GK-action exists on Tate twists
Cp(−j) := Cp⊗Zp Zp(1)⊗−j , where it is defined as the tensor product ofGK-actions on the two pieces. In
particular, Cp(−j) is not a linear representation of GK on a Cp-vector space; instead, it is semilinear with
respect to the standard GK-action on Cp.

To extract tangible consequences from Theorem 1.1.7, it is important to know that the Tate twists Cp(j)

are distinct for different values of j. In fact, one has the much stronger statement that these Tate twists do
not talk to each other for different values of j (see [Ta]):

Theorem 1.1.8 (Tate). Fix notation as in Theorem 1.1.7. Then, for i 6= 0, we have

H0(GK ,Cp(i)) = H1(GK ,Cp(i)) = 0.

For i = 0, each of these groups is a copy of K. In particular, we have

HomGK ,Cp(Cp(i),Cp(j)) = 0

for i 6= j.

We now revisit the preceding examples.

Example 1.1.9. Consider X := P1 and n = 2. In this case, we have H2(XK,et,Qp) ' Qp(−1) by
Example 1.1.6 (see also Example 1.1.5). Using Theorem 1.1.8, we see that Theorem 1.1.7 captures the
statement that H0(X,Ω2

X/K) = H2(X,OX) = 0, while H1(X,Ω1
X/K) is 1-dimensional.

Example 1.1.10. Let X = A be an abelian variety over K. By combining Example 1.1.4 and Theo-
rem 1.1.7, we learn that

Tp(A)⊗Zp Cp '
(
H1(A,OA)∨ ⊗K Cp

)
⊕
(
H0(A,Ω1

A/K)∨ ⊗K Cp(1)
)
.

One can identify the right side in more classical terms:

H0(A,Ω1
A/K)∨ ' Lie(A) and H1(A,OA) ' Lie(A∨),

where A∨ is the dual of A. Thus, we can rewrite the above decomposition as

Tp(A)⊗Zp Cp '
(
Lie(A∨)∨ ⊗K Cp

)
⊕
(
Lie(A)⊗K Cp(1)

)
.

As we shall see later, if A is merely defined over Cp instead of over a finite extension K as above, then we
always have a short exact sequence

0→ Lie(A)(1)→ Tp(A)⊗Zp Cp → Lie(A∨)∨ → 0,

but this sequence may not split in a canonical way: there is no Galois action present when A is defined
merely over Cp, so one cannot invoke Theorem 1.1.8 to obtain a (necessarily unique!) splitting of the
previous sequence.
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In number theory, one of the main applications of these ideas is in understanding the Galois representations
of GK arising as Hn(XK,et,Qp). For example, Theorem 1.1.7 implies these representations are Hodge-
Tate, which forms the first in a series of increasingly stronger restrictions placed on the representations
arising in this fashion from algebraic geometry; upgrading this structure, one can even give a completely
“linear algebraic” description of these Galois representations (see Remark 1.2.4), which is very useful for
computations.

Theorem 1.1.7 also has applications to purely geometric statements. For example, applying Theorem 1.1.8
leads to the following concrete consequence concerning the recovery of the algebro-geometric invariants
H i(X,Ωj

X/K) from the topological/arithmetic invariant Hn(XK,et,Qp):

Corollary 1.1.11 (Recovery of Hodge numbers). With notation as in Theorem 1.1.7, we have

H i(X,Ωj
X/K) '

(
H i+j(XK,et,Qp)⊗Qp Cp(j)

)GK

.

Proof. Set n = i+ j. Tensoring both sides of (1.1) (and replacing j with k in that formula)

Hn
et(XK ,Qp)⊗Qp Cp(j) '

⊕
i+k=n

H i(X,Ωk
X/K)⊗K Cp(j − k).

Applying (−)GK then gives the claim as Cp(j − k)GK = 0 when j 6= k by Theorem 1.1.8.

In particular, Corollary 1.1.11 gives an analog of Corollary 1.1.2 in this setting. In fact, Corollary 1.1.11
is one of the key steps in Ito’s alternative proof [It] of the following purely geometric result; the first proof
of the latter gave birth to the theory of motivic integration [Ko, DL], and both proofs rely on Batyrev’s [Ba]
proving the analogous claim for Betti numbers via p-adic integration.

Theorem 1.1.12 (Kontsevich, Denef, Loeser, Ito). Let X and Y be smooth projective varieties over C.
Assume that both X and Y are Calabi-Yau (i.e., KX and KY are trivial), and that X is birational to Y .
Then

dim(H i(X,Ωj
X/C)) = dim(H i(Y,Ωj

Y/C)).

for all i, j.

One may view Theorem 1.1.7 as relating the Galois representation on Hn(XK,et,Qp) to the algebraic
geometry of X . An obvious question that then arises, and one we have essentially skirted in the discussion
so far, is whether one can understand the p-torsion in Hn(XK,et,Zp) in terms of the geometry of X; in
particular, we may ask for a geometric description of Hn(XK,et,Fp). This integral story is much less
understood than the rational theory above. Nevertheless, one has the following recent result [BMS2], giving
partial progress:

Theorem 1.1.13. Fix notation as in Theorem 1.1.7. Assume that X extends to a proper smooth OK-scheme
X. Write Xk for the fiber of X over the residue field k of K. Then we have

dimFp(Hn(XK,et,Fp)) ≤
∑
i+j=n

dimkH
i(Xk,Ω

j
Xk/k

).

Moreover, there exist examples where the inequality is strict.

In other words, the mod-p cohomology of XK is related to the geometry of Xk. We shall sketch a proof of
Theorem 1.1.13 towards the end of the lecture series.
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Outline of proof and lectures

The main goal of this lecture series is to explain a proof of Theorem 1.1.7; towards the end, we shall also
sketch some ideas going into Theorem 1.1.13. Our plan is to prove Theorem 1.1.7 following the perfectoid
approach of Scholze [Sc2], which itself is inspired by the work of Faltings [Fa1, Fa2, Fa3, Fa4]. In broad
strokes, there are two main steps:

1. Local study of Hodge cohomology via perfectoid spaces: Construct a pro-étale cover X∞ → X

which is “infinitely ramified in characteristic p”, and study the cohomology of X∞. In fact, X∞
shall be an example of a perfectoid space [Sc1], so the perfectoid theory gives a lot of control on the
cohomology of X∞. In particular, suitably interpreted, X∞ carries no differential forms, so the full
Hodge cohomology comes from the structure sheaf.

2. Descent: Descend the preceding understanding of the Hodge cohomology of X∞ down to X . In this
step, we shall see that the differential forms on X , which vanished after pullback to X∞, reappear in
the descent procedure.

In fact, to illustrate this process in practice, we work out explicitly the case of abelian varieties with good
reduction in §2. The general case is then treated in §3, while the integral theory is surveyed in §4.

1.2 Complementary remarks

We end this section by some remarks of a historical nature, complementing the theory discussed above.

Remark 1.2.1. Theorem 1.1.7 was conjectured by Tate [Ta]. In the same paper, Tate also settled the case of
abelian varieties (and, more generally, p-divisible groups) with good reduction; the case of general abelian
varieties was then settled by Raynaud using the semistable reduction theory. The abelian variety case was
revisited by Fontaine in [Fo1], who also provided a natural “differential” definition of the Tate twist. The
general statement mentioned above was established by Faltings [Fa1], as a consequence of his machinery of
almost étale extensions.

Remark 1.2.2. (Hodge-Tate decomposition for rigid spaces) In [Ta, §4, Remark], Tate wondered if Theo-
rem 1.1.7 should be valid more generally for any proper smooth rigid-analytic3 space. This question was
answered affirmatively by Scholze [Sc2, Corollary 1.8]. In fact, Scholze proves the following more general
assertion (see [Sc3, Theorem 3.20]):

Theorem 1.2.3 (Hodge-Tate filtration). Let C be a complete and algebraically closed nonarchimedean
extension of Qp. Let X/C be a proper smooth rigid-analytic space. Then there exists an E2-spectral
sequence

Ei,j2 : H i(X,Ωj
X/C)(−j)⇒ H i+j(Xet,Qp)⊗ C.

3At first glance, this is very surprising: in complex geometry, the Hodge decomposition in Theorem 1.1.1 only applies to
compact complex manifolds which are (not far from) Kähler, so one would also expect an analog of the Kähler condition in p-adic
geometry. However, if one accepts that Kähler metrics are somewhat analogous to formal models (for example, the latter provides
a well-behaved metric on the space of analytic functions), then the analogy with complex geometry is restored: as every rigid space
admits a formal model by Raynaud [BL2, Theorem 4.1].
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When X is defined over a discretely valued subfield of C (such as a finite extension of Qp), then this
spectral sequence degenerates canonically due to Theorem 1.1.8 (which holds true for over any such field),
leading to the Hodge-Tate decomposition for proper smooth rigid-analytic spaces, as inquired by Tate. It is
this more general result that is most naturally accessible to perfectoid techniques, and thus forms the focus
of this lecture series.

Remark 1.2.4 (p-adic comparison theorems). The Hodge-Tate decomposition forms the first in a hierarchy
of increasingly stronger statements (conjectured by Fontaine, and proven by various authors) describing
the Galois representations of GK on Hn(XK,et,Qp) in terms of the geometry of X . For example, the p-
adic de Rham comparison isomorphism, which is formulated in terms of a certain filtered GK-equivariant
K-algebra BdR constructed by Fontaine, asserts:

Theorem 1.2.5 (de Rham comparison). There exists a canonical isomorphism

Hn(XK,et,Qp)⊗Qp BdR ' Hn
dR(X/K)⊗K BdR.

This isomorphism respects the Galois action and filtrations.

Theorem 1.2.5, together with some knowledge of BdR, allows one to recover the de Rham cohomology
Hn
dR(X/K) as a filtered vector space from the GK-representation Hn(XK,et,Qp). In fact, passage to the

associated graded in Theorem 1.2.5 recovers Theorem 1.1.7, so one may view the de Rham comparison iso-
morphism as a non-trivial deformation of the Hodge-Tate decomposition. Continuing further, in the setting
of good or semistable reduction, one can endow Hn

dR(X/K) with some extra structure (namely, a Frobe-
nius endomorphism, as well a monodromy endomorphism in the semistable case); the crystalline/semistable
comparison theorems give an analogous comparison relating the GK-representation Hn(XK,et,Qp) with
the de Rham cohomology Hn

dR(X/K) equipped with the aforementioned additional structure. A major
advantage of these latter theorems is that the recovery process works in both directions. In particular, one
can completely describe the GK-representation Hn(XK,et,Qp) in terms of the linear algebra data on the
de Rham side, thus facilitating calculations. We will not be discussing any of these comparison theorems in
this lecture series, and refer the reader to [BMS2, §1.1] for more information.

Remark 1.2.6 (Open and singular varieties). Theorem 1.1.7 has a natural extension to arbitrary varieties
X/K. In this case, the correct statement of the decomposition is:

Hn(XK,et,Qp)⊗Qp Cp '
⊕
i+j=n

grjFH
i+j
dR (X/K)⊗K Cp(−j),

where grjF denotes the j-th graded piece for the Hodge filtration on Hn
dR(X/K) constructed by Deligne’s

theory of mixed Hodge structures [De1, De2]. This result falls most naturally out of the recent approach of
Beilinson [Be] to the p-adic comparison theorems based on vanishing theorems for the h-topology; we shall
not discuss such extensions further in these notes.
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2. Lecture 2: The Hodge-Tate
decomposition for abelian schemes

The main goal for this section is to introduce, in the case of abelian varieties with good reduction, certain
“large” constructions that are generally useful in Hodge-Tate theory. Our hope is that encountering these
“large” objects in a relatively simple setting will help demystify them.

2.1 The statement

Fix a finite extension K/Qp, a completed algebraic closure K ↪→ C, and an abelian scheme A/OK with
generic fiber A. Our goal is to sketch a proof of the following result:

Theorem 2.1.1. There exists a canonical isomorphism

H1(AC , C) := H1(AC,et,Zp)⊗Zp C '
(
H1(A,OA)⊗K C

)
⊕
(
H0(A,Ω1

A/K)⊗K C(−1)
)
.

In fact, we shall not construct the complete decomposition. Instead, we shall construct a map

αA : H1(A,OA)⊗K C → H1(AC , C)

using inspiration from the perfectoid theory (as well as [Be]), and a map

βA : H0(A,Ω1
A/K)⊗K C(−1)→ H1(AC , C)

exploiting the arithmetic of the base field K, following an idea of Fontaine [Fo1]. We can then put these
together to get the map

γA = αA ⊕ βA :
(
H1(A,OA)⊗K C

)
⊕
(
H0(A,Ω1

A/K)⊗K C(−1)
)
→ H1(AC , C),

that induces the Hodge-Tate decomposition.

Remark 2.1.2 (Reminders on abelian varieties). The following facts about the cohomology of abelian vari-
eties will be used below.

1. Write Tp(A) := limA[pn](C) for the p-adic Tate module of A. Then there is a natural identification
of H∗(A,C) ' H∗(Tp(A), C), where H∗(Tp(A), C) denotes the continuous group cohomology of
the profinite group Tp(A) with coefficients in the topological ring C; this essentially comes down to
the assertion that an abelian variety of dimension g over C is homeomorphic to (S1)2g. In particular,
since Tp(A) ∼= Z2g

p , one calculates thatH∗(A,C) is an exterior algebra onH1(A,C) ' Tp(A)∨⊗C.
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2. The OK-moduleH1(A,OA) is free of rank g = dim(A). In fact, this module is canonically identified
with the Lie algebra of the dual abelian scheme A∨. Moreover, the cohomology ring H∗(A,OA) is
an exterior algebra on H1(A,OA) via cup products. In particular, all cohomology groups of OA are
torsionfree.

2.2 The perfectoid construction of the map αA

The discussion in this section is geometric, so we work with the abelian OC-scheme AOC
directly. Write

An = AOC
for each n ≥ 0, and consider the tower

...→ An+1
[p]−→ An

[p]−→ ...
[p]−→ A0 := AOC

of multiplication by p maps on the abelian scheme AOC
. Write A∞ := limAn for the inverse limit of

this tower, and π : A∞ → A0 for the resulting map to the bottom of the tower; this inverse limit exists
as multiplication by p is a finite map on AOC

(see [SP, Tag 01YX]), and its cohomology with reasonable
coefficients (such as the structure sheaf) can be calculated as the direct limit of the cohomologies of the
An’s.

Now obseve that translating by pn-torsion points gives an action of A[pn](OC) ' A[pn](C) on the map
An → A0; here we use the valuative criterion of properness for the identification A[pn](OC) ' A[pn](C).
Taking inverse limits in n, we obtain an action of Tp(A) on the map π. Taking pullbacks, we obtain a map

H∗(A,OA)→ H∗(A∞,OA∞).

Due to the presence of the group action, the image of this map is contained in the Tp(A)-invariants of the
target. Thus, we can view preceding map as a map

H∗(A,OA)→ H0(Tp(A), H∗(A∞,OA∞)),

where we use the notation H0(G,−) for the functor of taking G-invariants for a group G. Deriving this
story, we obtain a map

Ψ : RΓ(A,OA)→ RΓconts(Tp(A), RΓ(A∞,OA∞)), (2.1)

where RΓ(A,OA) denotes the cohomology of the structure sheaf on A and RΓconts(Tp(A),−) denotes
continuous group cohomology theory for the profinite group Tp(A), both in the sense of derived categories
(see [We, §10] for a quick introduction). To proceed further, we observe the following vanishing theorem:

Proposition 2.2.1. The canonical map OC → RΓ(A∞,OA∞) induces an isomorphism modulo any power
of p, and hence after p-adic completion.

Proof. As A is an abelian scheme, its cohomology ring H∗(A,OA) is an exterior algebra on H1(A,OA).
Moreover, multiplication by an integer N on A induces multiplication by N on H1(A,OA). By combining
these observations with the formula

H i(A∞,OA∞) ' colim
n

H i(An,OAn) ' colim
[p]∗

H i(AOC
,OAOC

),

we learn that H i(A∞,OA∞) is the constants OC if i = 0, and H i(AOC
,OAOC

)[1p ] for i > 0. In particular,
working modulo any power of p, the latter vanishes, so we get the claim.

9



Thus, after p-adic completion, the map Ψ gives a map

Ψ̂ : RΓ(A,OA)→ RΓconts(Tp(A),OC).

On the other hand, as abelian varieties are K(π, 1)’s, we can interpret the preceding map as a map

Ψ̂ : RΓ(A,OA)→ RΓ(AC ,OC).

In particular, applying H1 and inverting p, we get a map

H1(A,OA)→ H1(AC , C),

which then linearizes to the promised map

αA : H1(A,OA)⊗ C → H1(AC , C).

Remark 2.2.2 (Perfectoid abelian varieties). Given any affine open U ⊂ AOC
, write U∞ ⊂ A∞ for its

inverse image. Then the p-adic completion R of O(U∞) is an integral perfectoid OC-algebra, i.e., R is p-
adically complete and p-torsionfree, and the Frobenius induces an isomorphismR/p

1
p ' R/p. In particular,

the generic fiber A∞ of A∞ gives a perfectoid space. In fact, the map A∞ → AC is a pro-étale Tp(A)-
torsor. This construction may be viewed as the analog for abelian varieties of the perfectoid torus from
Example 3.2.4 below.

2.3 Fontaine’s construction of the map βA

For Fontaine’s construction, we need the following fact about the arithmetic of p-adic fields:

Theorem 2.3.1 (Differential forms on OC). Write Ω for the Tate module of Ω1
OC/OK

. This OC-module is
free of rank 1. Moreover, there is a Galois equivariant isomorphism C(1) ' Ω[1p ].

Construction of the map giving the isomorphism. Consider the d log map

µp∞(OC) ⊂ O∗C → Ω1
OC/OK

given by f 7→ df
f . On passage to Tate modules and linearizations, this gives a map

Tp(µp∞(OC))⊗Zp OC = Zp(1)⊗Zp OC = OC(1)→ Ω.

Fontaine proves this map is injective with torsion cokernel, givingC(1) ' Ω[1p ]; see [Fo1, §1] for Fontaine’s
proof, and [Be, §1.3] for a slicker (but terse) argument using the cotangent complex.

Remark 2.3.2 (The cotangent complex of OC). Theorem 2.3.1 also extends to the cotangent complex after
a shift: one has L̂OC/Zp

' Ω[1], where the completion on the left side is the derived p-adic completion.
Although this can be deduced directly from Theorem 2.3.1, we do not explain this here; instead, we refer to
Remark 3.1.12 where a more general statement is proven. This assertion will be useful later in constructing
the Hodge-Tate filtration.
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In particular, this result helps connect the Tate twist C(1) (which lives on the Galois side of the story) to
differential forms (which lie on the de Rham side). Using this, Fontaine’s idea for constructing the map βA
is to pullback differential forms on A to those on OC using points in A(OC). More precisely, this pullback
gives a pairing

H0(A,Ω1
A/OK

)⊗A(OC)→ Ω1
OC/OK

.

Passing to p-adic Tate modules, this gives a pairing

H0(A,Ω1
A/OK

)⊗ Tp(A)→ Ω.

Using the identification Tp(A) ' H1(AC,et,Zp)
∨, this gives a map

H0(A,Ω1
A/OK

)→ H1(AC,et,Zp)⊗ Ω.

Inverting p and using Theorem 2.3.1, we get the map

H0(A,Ω1
A/K)→ H1(AC , C)(1).

Linearizing and twisting gives the desired map

βA : H0(A,Ω1
A/K)⊗ C(−1)→ H1(AC , C).

2.4 Conclusion

Taking direct sums of the previous two constructions gives the map γA = αA ⊕ βA

γA :
(
H1(A,OA)⊗ C

)
⊕
(
H0(A,Ω1

A/K)(−1)⊗ C
)
→ H1(AC , C).

Each of the parenthesized summands on the left has dimension g, while the target has dimension on 2g.
Thus, to show γA is an isomorphism, it is enough to show injectivity. Moreover, by Tate’s calculations
in Theorem 1.1.8, it is enough to show that αA and βA are separately injective: the map γA is Galois
equivariant, and the two summands have different Galois actions, so they cannot talk to each other. For
Fontaine’s map βA, this follows by a formal group argument as it is enough to check the corresponding
assertion for the formal group of A. For the map αA, we are not aware of a direct argument that does not
go through one of the proofs of the p-adic comparison theorems. For lack of space, we do not give either
argument here.
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3. Lecture 3: The Hodge-Tate
decomposition in general

Let C be a complete and algebraically closed extension of Qp. Let X/C be a smooth rigid-analytic space1.
Our goal is to relate the étale cohomology of X to differential forms. More precisely, setting

Hn(X,C) := Hn(Xet,Zp)⊗Zp C,

we want to prove the following result:

Theorem 3.0.1 (Hodge-Tate spectral sequence). Assume X is proper. Then there exists an E2-spectral
sequence

Ei,j2 : H i(X,Ωj
X/C)(−j)⇒ H i+j(X,C).

If X is defined over a discretely valued subfield K of C, then all differentials are canonically 0, and we
obtain Theorem 1.1.7.

The starting point of this relation between étale cohomology and differential forms is the completed struc-
ture sheaf ÔX on the pro-étale site Xproet of X; these objects are defined in §3.2. To a first approximation,
objects of Xproet may be viewed as towers {Ui} of finite étale covers with U0 → X étale, and ÔX is the
sheaf which assigns to such a tower the completion of the direct limit of the rings of analytic functions on
the Ui’s. In particular, this is a sheaf of C-algebras. The following comparison theorem [Sc2, Theorem 5.1]
relates the cohomology of ÔX to more topological invariants:

Theorem 3.0.2 (Primitive comparison theorem). IfX is proper, then the inclusion C ⊂ ÔX of the constants
gives an isomorphism

H∗(X,C) ' H∗(Xproet, ÔX).

Thus, to prove Theorem 3.0.1, it suffices to work with Hn(Xproet, ÔX) instead of Hn(X,C), thus putting
both sides of Theorem 3.0.1 into the realm of coherent cohomology. To proceed further, we recall that there
is a canonical projection map

ν : Xproet → Xet

1All results in this section are due to Scholze unless otherwise specified. WhenX is a smooth proper variety, some of the results
were proven by Faltings [Fa1, Fa4] in a different language. When discussing the étale cohomology of adic spaces, we are implicitly
using Huber’s theory [Hu2]. When X arises as the analytification of an algebraic variety Y , Huber’s étale cohomology groups
agree with those of Y , so we can draw consequences for the algebraic theory as well.
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from the pro-étale site of X to the étale site of X; recall that a morphism of sites goes in the other direction
from the underlying functor of categories, and the latter for ν simply captures the fact that an étale morphism
is pro-étale. Theorem 3.0.1 arises from the Leray spectral sequence for ν using the following:

Theorem 3.0.3 (Hodge-Tate filtration: local version). There is a canonical isomorphism Ω1
X/C(−1) '

R1ν∗ÔX . Taking products, this gives isomorphisms Ωj
X/C(−j) ' Rjν∗ÔX .

In the rest of this lecture, we will sketch a proof of this result. More precisely, §3.2 contains some reminders
on the pro-étale site, especially its locally perfectoid nature. This is then used in §3.4 to construct the map
giving the isomorphism of Theorem 3.0.3; this construction relies on the cotangent complex (whose basic
theory is reviewed in §3.1), and differs from that in [Sc2]. Once the map has been constructed, we check that
it is an isomorphism in §3.5 using the almost acyclicity of the structure sheaf for affinoid perfectoid spaces.

Remark 3.0.4 (Hodge and Hodge-Tate filtrations). The differentials in Theorem 3.0.1 are, in fact, always
0, and thus one always has some Hodge-Tate decomposition as in Theorem 1.1.7. This result is explained
in [BMS2, Theorem 13.12] and relies on the work of Conrad-Gabber [CG] on spreading out rigid-analytic
families to reduce to the corresponding assertion over discretely valued fields. However, these differentials
are not canonically 0. More precisely, the complex Rν∗ÔX is not a direct sum of its cohomology sheaves.
Concretely, when X is an abelian variety, one has a canonical map H1(X,OX)→ H1(X,C) as explained
in §2, giving the Hodge-Tate filtration on H1(X,C); however, one cannot choose a splitting H1(X,C) →
H1(X,OX) in a manner that is compatible in families of abelian varieties. Instead, the variation of the
Hodge-Tate filtration in a family of abelian varieties provides a highly non-trivial and interesting invariant
of the family: the Hodge-Tate period map from [Sc4, §III.3].

The above discussion is analogous to the following (perhaps more familiar and) more classical story over
C (see [Vo, §10]): even though the Hodge-to-de Rham spectral sequence always degenerates for a smooth
projective variety, one cannot choose a Hodge decomposition for smooth projective varieties that varies
holomorphically in a family. Instead, it is the Hodge filtration on de Rham cohomology that varies holo-
morphically. In fact, the variation of this filtration in a family of smooth projective varieties provides an
extremely important invariant of the family: the period map to the classifying space for Hodge structures.

Remark 3.0.5 (The first obstruction to splitting the Hodge-Tate filtration). Consider the complex K :=

τ≤1Rν∗ÔX . This complex has 2 nonzero cohomology sheaves (identified by Theorem 3.0.3), and thus sits
in an exact triangle

OX → K → Ω1
X/C(−1)[−1].

The boundary map for this exact triangle is a map

Ω1
X/C(−1)[−1]→ OX [1],

and thus gives an element of obX ∈ Ext2X(Ω1
X/C ,OX(1)). To understand this element better, recall the

exact sequence

0→ ker(θ)/ ker(θ)2 ' OC(1)→ Ainf(OC)/ ker(θ)2
θ→ Ainf(OC)/ ker(θ) ' OC → 0.

The map θ is a non-trivial Galois equivariant square-zero extension of the commutative ring OC by OC(1),
and the same holds true after inverting p. One can then show (using the method of §3.4) that obX is
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precisely the obstruction to lifting X across the thickening θ[1p ], thus giving some geometric meaning to the
non-canonicity of the Hodge-Tate decomposition mentioned in Remark 3.0.42. The characteristic p analog
of this is the Deligne-Illusie result, recalled next.

Remark 3.0.6 (Deligne-Illusie obstructions to liftability). Remark 3.0.5 is analogous to a more classical
picture from [DI], which we recall. Let k be a perfect field of characteristic p, and let X/k be a smooth
k-scheme. Consider the truncated de Rham complex K := τ≤1Ω•X/k. Note that the differentials in the de
Rham complex Ω•X/k are linear over k and the p-th powers OpX of functions onX . Thus, we may view Ω•X/k
(and thus K) as a complex of coherent sheaves on the Frobenius twist X(1) of X relative to k. By a theorem
of Cartier, one has Hi(Ω•X/k) ' Ωi

X(1)/k
. Thus, the complex K sits in an exact triangle

OX(1) → K → Ω1
X(1)/k

[−1].

The boundary map for this triangle is a map

Ω1
X(1)/k

[−1]→ OX(1) [1],

and can thus be viewed as an element obX ∈ Ext2
X(1)(Ω

1
X(1)/k

,OX(1)). One of the main observations of

[DI] is that obX is precisely the obstruction to lifting the k-scheme X(1) along the square-zero extension
W2(k)→ k of k.

3.1 The cotangent complex and perfectoid rings

We recall the construction and basic properties of the cotangent complex; much more thorough accounts
can be found in [Qu2, Ill1, Ill2] and [SP, Tag 08P5]. Once the basics have been introduced, we shall explain
some applications to the perfectoid theory; the key point is that maps between perfectoids are formally étale
in a strong sense, and this perspective helps conceptualize certain results about them (such as the tilting
correspondence and Fontaine’s calculation of differential forms in Theorem 2.3.1) better. We begin with the
following construction from non-abelian homological algebra:

Construction 3.1.1 (Quillen). For any ring A and a set S, we write A[S] for the polynomial algebra over A
on a set of variables xs indexed by s ∈ S. The functor S 7→ A[S] is left adjoint to the forgetful functor from
A-algebras to sets. In particular, for any A-algebra B, we have a canonical map ηB : A[B] → B, which
is evidently surjective. Repeating the construction, we obtain two natural A-algebra maps ηA[B], A[ηB] :

A[A[B]] → A[B]. Iterating this process allows one to define a simplicial A-algebra P •B/A augmented over
B that looks like

P •B/A :=
(
...A[A[A[B]]]

////// A[A[B]]
//
// A[B]

)
// B.

This map is a resolution of B in the category of simplicial A-algebras, and is called the canonical simplicial
A-algebra resolution of B; concretely, this implies that the chain complex underlying P •B/A (obtained by

2Forthcoming work of Conrad-Gabber [CG] shows that this obstruction class is always 0, at least when X is assumed to be
proper. Nevertheless, this class admits an integral analog, which can be nonzero; see Remark 3.1.15.
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taking an alternating sum of the face maps as differentials) is a free resolution of B over A. Slightly more
precisely, there is a model category of simplicialA-algebras, and the factorizationA→ P •B/A → B provides
a functorial cofibrant replacement of B, and can thus be used to calculate non-abelian derived functors. We
do not discuss this theory here, and will take certain results (such as the fact that such polynomial A-algebra
resolutions are unique up to a suitable notion of homotopy) as blackboxes; a thorough discussion, in the
language of model categories, can be found in [Qu1].

Using the previous construction, the main definition is:

Definition 3.1.2 (Quillen). For any map A → B of commutative rings, we define its cotangent complex
LB/A, which is a complex of B-modules and viewed as an object of the derived category D(B) of all
B-modules, as follows: set LB/A := Ω1

P •/A ⊗P • B, where P • → B is a simplicial resolution of B by
polynomial A-algebras. Here we view the simplicial B-module Ω1

P •/A⊗P • B as a B-complex by taking an
alternating sum of the face maps as a differential.

For concreteness and to obtain a strictly functorial theory, one may choose the canonical resolution P •B/A
in the definition above. However, in practice, just like in homological algebra, it is important to allow
the flexibility of changing resolutions without changing LB/A (up to quasi-isomorphism). The following
properties can be checked in a routine fashion, and we indicate a brief sketch of the argument:

1. Polynomial algebras. If B is a polynomial A-algebra, then LB/A ' Ω1
B/A[0]: this follows because

any two polynomial A-algebra resolutions of B are homotopic to each other, so we may use the
constant simplicial A-algebra with value B to compute LB/A.

2. Künneth formula. If B and C are flat A-algebras, then LB⊗AC/A ' LB/A ⊗A C ⊕ B ⊗A LC/A:
this reduces to the case of polynomial algebras by passage to resolutions. The flatness hypothesis
gets used in concluding that if P • → B and Q• → C are polynomial A-algebra resolutions, then
P • ⊗A Q• → B ⊗A C is also a polynomial A-algebra resolution. (In fact, this reasoning shows that
the flatness hypotheses can be relaxed to the assumption TorA>0(B,C) = 0 provided one uses derived
tensor products of chain complexes in the formula above.)

3. Transitivity triangle. Given a composite A→ B → C of maps, we have a canonical exact triangle

LB/A ⊗LB C → LC/A → LC/B

in D(C). To prove this, one first settles the case where A → B and B → C are polynomial maps
(which reduces to a classical fact in commutative algebra). The general case then follows by passage
to the canonical resolutions as the exact sequences constructed in the previous case were functorial.

4. Base change. Given a flat map A → C and an arbitrary map A → B, we have LB/A ⊗A C '
LB⊗AC/C . Again, one first settles the case of polynomial rings, and then reduces to this by resolutions,
using flatness to reduce a derived base change to a classical one. (Again, this reasoning shows that
the flatness hypothesis can be relaxed to the assumption TorA>0(B,C) = 0 provided one uses derived
tensor products of chain complexes in the formula above.)
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5. Vanishing for étale maps. We claim that if A → B is étale, then LB/A ' 0. For this, assume first
that A→ B is a Zariski localization. Then B ⊗A B ' B, so (2) implies that LB/A ⊕ LB/A ' LB/A
via the sum map. This immediately gives LB/A = 0 for such maps. In general, as A → B is étale,
the multiplication map B ⊗A B → B is a Zariski localization, and thus LB/B⊗AB ' 0. By the

transitivity triangle for B i1−→ B ⊗A B → B, this yields LB⊗AB/B ⊗B⊗AB B ' 0. But, by (4),
we have LB⊗AB/B ' LB/A ⊗A B, so the base change of LB/A along A → B → B ⊗A B → B

vanishes. The latter is just the structure map A → B, so LB/A ⊗A B ' 0. The standard map
LB/A → LB/A ⊗A B has a section coming from the B-action on LB/A, so LB/A ' 0.

6. Étale localization. If B → C is an étale map of A-algebras, then LB/A ⊗B C ' LC/A: this follows
from (3) and (5) as LC/B ' 0.

7. Relation to Kähler differentials. For any map A → B, we have H0(LB/A) ' Ω1
B/A. This can be

shown directly from the definition.

8. Smooth algebras. If A → B is smooth, then LB/A ' Ω1
B/A[0]. By (6), there is a natural map

LB/A → Ω1
B/A[0]. To show this is an isomorphism, we may work locally on A by (6). In this

case, there is an étale map B′ := A[x1, ..., xn] → B. We know that LB′/A ' Ω1
B′/A[0] by (1) and

LB/B′ ' 0 by (6). By (3), it follows that LB/A ' LB′/A ⊗B′ B ' Ω1
B/A[0].

We give an example of the use of these properties in a computation.

Example 3.1.3 (Cotangent complex for a complete intersection). Let R be a ring, let I ⊂ R be an ideal
generated by a regular sequence, and let S = R/I . Then we claim that LS/R ' I/I2[1]. In particular,
this is a perfect complex, i.e., quasi-isomorphic to a finite complex of finite projective modules. To see
this isomorphism, consider first the case R = Z[x1, ..., xr] and I = (xi). In this case, S = Z, and the
transitivity triangle for Z → R → S collapses to give LS/R ' Ω1

R/Z ⊗R S[1] ' I/I2[1], where the
isomorphism I/I2 → Ω1

R/Z⊗R S is defined by f 7→ df . For general R, once we choose a regular sequence
f1, ...fr generating I , we have a pushout square of commutative rings

Z[x1, ..., xr]
xi 7→fi //

xi 7→0
��

R

��
Z // S.

As the fi’s form a regular sequence, this is also a derived pushout square, i.e., Tor
Z[x1,...,xr]
>0 (R,Z) = 0.

Base change for the cotangent complex implies that LS/R ' LZ/Z[x1,...,xr] ⊗Z S ' I/I2[1].
Assume now that with R, I, S as above, the ring R is smooth over a base ring k. Then LR/k ' Ω1

R/k is
locally free. The transitivity triangle for k → R → S then tells us that LS/k is computed by the following
2-term complex of locally free S-modules:

I/I2
f 7→df−−−→ Ω1

R/k ⊗R S.

Here the identification of the differential involves unraveling some of the identifications above. In particular,
LS/k is also a perfect complex. Conversely, it is a deep theorem of Avramov (conjectured by Quillen) that
if k is a field and LS/k is perfect for a finite type k-algebra S, then S is a complete intersection.
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Remark 3.1.4 (Naive cotangent complex). For most applications in algebraic geometry and number theory
(including all that come up in these notes), it suffices to work with the truncation τ≥−1LB/A. This is a
complex of B-modules with (at most) two non-zero cohomology groups in degrees −1 and 0. It can be
constructed explicitly using a presentation: if A → B factors as A → P → B with A → P a polynomial
algebra and P → B surjective with kernel I , then we have

τ≥−1LB/A :=
(
I/I2

f 7→df−−−→ Ω1
P/A ⊗P B

)
.

This object is sometimes called the naive cotangent complex, and its basic theory is developed in [SP, 00S0].
Despite the elementary definition, it is sometimes awkward to work with the truncated object, so we stick to
the non-truncated version in these notes.

The main reason to introduce the cotangent complex is that it controls deformation theory in complete
generality, analogous to how the tangent bundle controls deformations of smooth varieties. In particular, the
following consequence is relevant to us:

Theorem 3.1.5 (Deformation invariance of the category of formally étale algebras). For any ring A, write
CA for the category of flat A-algebras B such that LB/A ' 0. Then for any surjective map Ã → A with
nilpotent kernel, base change induces an equivalence CÃ ' CA. In other words, every A → B in CA lifts
uniquely (up to unique isomorphism) to Ã→ B̃ in CÃ.

Any étale A-algebra B is an object of CA; conversely, every finitely presented A-algebra B in CA is étale
over A (see [SP, Tag 0D12] for a more general assertion). Thus, for such maps, Theorem 3.1.5 captures the
topological invariance of the étale site (see [SP, Tag 04DZ]). However, the finite presentation hypothesis is
too restrictive for applications in the perfectoid theory; instead, the following class of examples is crucial:

Proposition 3.1.6. Assume A has characteristic p. Let A → B be a flat map that is relatively perfect, i.e.,
the relative Frobenius FB/A : B(1) := B ⊗A,FA

A→ B is an isomorphism. Then LB/A ' 0.

Proof. We first claim that for anyA-algebraB, the relative Frobenius induces the 0 mapLFB/A
: LB(1)/A →

LB/A: this is clear whenB is a polynomialA-algebra (as d(xp) = 0), and thus follows in general by passage
to the canonical resolutions. Now if A → B is relatively perfect, then LFB/A

is also an isomorphism by
functoriality. Thus, the 0 map LB(1)/A → LB/A is an isomorphism, so LB/A ' 0.

This leads to the following conceptual description of the Witt vector functor:

Example 3.1.7 (Witt vectors via deformation theory). Let R be a perfect ring of characteristic p. Then R is
relatively perfect over Z/p. Proposition 3.1.6 tells us that LR/Fp

' 0, so Theorem 3.1.5 implies that R has
a flat lift Rn to Z/pn for any n ≥ 1, and that this lift is unique up to unique isomorphism. In fact, this lift is
simply given by the Witt vector construction Wn(R). Setting W (R) = limnWn(R) gives the Witt vectors
of R, which can also be seen as the unique p-adically complete p-torsionfree Zp-algebra lifting R. This
perspective also allows one to see some additional structures on W (R). For example, the map R → R of
multiplicative monoids lifts uniquely across any map Wn(R) → R: the monoid R is uniquely p-divisible,
while the fiber over 1 ∈ R of Wn(R)→ R is p-power torsion. Explicitly, one simply sends r ∈ R to r̃np

n

,
where r̃n ∈ Wn(R) denotes some lift of rn := r

1
pn . The resulting multiplicative maps R → Wn(R) and

R→W (R) are called the Teichmüller lifts, and denoted by r 7→ [r].
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Remark 3.1.8 (Fontaine’s Ainf and the map θ). Fix a ring A and a map A → B in CA. With a bit more
care in analyzing deformation theory via the cotangent complex (see [SP, Tag 0D11]), one can show the
following lifting feature: if C ′ → C is a surjective A-algebra map with a nilpotent kernel, then every A-
algebra map B → C lifts unique to an A-algebra map B → C ′. In particular, given a p-adically complete
Zp-algebra C, a perfect ring D, and a map D → C/p, we obtain a unique lift Wn(D) → C/pn of the
composition Wn(D)→ D → C/p for each n. Taking limits, we obtain unique map W (D)→ C lifting the
map W (D)→ C/p arising via W (D)→ D → C/p. Applying this in a universal example of such a D for
a given C, we obtain Fontaine’s map θ from [Fo2] via abstract nonsense:

Proposition 3.1.9. Given any p-adically complete ringR, the canonical projection map θ : R[ := limφR/p→
R/p lifts to a unique map θ : Ainf (R) := W (R[)→ R.

Note that the map θ : R[ → R/p is surjective exactly when R/p is semiperfect, i.e., has a surjective
Frobenius. In this case, the map θ is also surjective by p-adic completeness.

We next explain the relevance of these ideas to the perfectoid theory. As the definition of perfectoid
algebras varies somewhat depending on context, we define the notion we need (see [BMS2, §3.2] for more
on such rings), using the map θ introduced above:

Definition 3.1.10. A ring R is integral perfectoid if R is π-adically complete for some element π with
πp | p, the ring R/p has a surjective Frobenius, and the kernel of Ainf (R) := W (R[)→ R is principal.

Note that being integral perfectoid is a property of the ringR as an abstract ring (as opposed to a topological
ring, or an algebra over some other fixed ring). Important examples include the rings of integers of perfectoid
fields (in the sense of [Sc1, Definition 3.1]), and any perfect ring of characteristic p. In fact, if C is a
perfectoid field of characteristic 0, then a p-adically complete and p-torsionfree OC-algebra R is integral
perfectoid exactly when the map OC/p→ R/p is relatively perfect in the sense of Proposition 3.1.6.

Remark 3.1.11 (Tilting). For an integral perfectoid ring R, the map θ : Ainf (R) → R from Proposi-
tion 3.1.9 fits into the following commutative diagram

Ainf (R)
θ //

��

R

��
R[

θ // R/p,

where each map can be regarded as a pro-infinitesimal thickening of the target by the perfectoidness assump-
tion. In particular, all 4 rings are pro-infinitesimal thickenings of R/p. Theorem 3.1.5 and Proposition 3.1.6
may then be used to prove half of the tilting correspondence from [Sc1, Theorem 5.2].

We make some remarks on the differential aspects of perfectoid rings.

Remark 3.1.12 (Formally étale nature of Ainf and differential forms). Let A be a perfect ring of charac-
teristic p. By Example 3.1.7, the map Zp → W (A) satisfies the following crucial feature: the cotangent
complex LA/Fp

' 0, so the p-adic completion ̂LW (A)/Zp
vanishes by base change for cotangent complexes
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and Nakayama’s lemma for p-adically complete complexes. By the transitivity triangle, for any W (A)-
algebra R, we have L̂R/Zp

' ̂LR/W (A). Now specialize to the case where R is an integral perfectoid ring
and A = R[, with R viewed as an algebra over W (A) = Ainf (R[) via θ. Then we learn that

L̂R/Zp
' ̂LR/Ainf (R[).

But the map θ : Ainf (R[) → R is a quotient by a nonzerodivisor in Ainf (R[) (see [BMS2, Lemma 3.10
(i)] for a proof). Using Example 3.1.3, this tells us that

L̂R/Zp
' ker(θ)/ ker(θ)2[1].

In particular, this is a free R-module of rank 1. In the special case where R = OC for a complete and
algebraically closed extension C/Qp, this essentially recovers Fontaine’s theorem 2.3.1; to arrive at the
precise Galois module structure given in Theorem 2.3.1, one simply observes that if ε := (1, εp, εp2 , ....) ∈
O[C is a non-trivial compatible sequence of p-power roots of 1, then µ := [ε]− 1 ∈ ker(θ), and its image in

ker(θ)/ ker(θ)2 spans a copy of OC(1); the quotient
(

ker(θ)/ ker(θ)2
)
/OC(1) is then torsion, and can be

shown to be killed by p
1

p−1 .

Remark 3.1.13 (Breuil-Kisin twists). For future reference, we remark that the OC-module

Ω := Tp(Ω
1
OC/Zp

) ' L̂OC/Zp
[−1] ' ker(θ)/ ker(θ)2

is a canonically defined invertible OC-module (as it is abstractly free of rank 1), and we shall write

M 7→M{i} := M ⊗OC
Ω⊗i

for the corresponding twisting operation on OC-modules; when M carries a Galois action, so does the twist.
These objects are called the Breuil-Kisin twists of M , and are related to the Tate twist via an inclusion
M(i) ⊂ M{i} for i ≥ 0 with a torsion cokernel (see the construction following Theorem 2.3.1 for an
explanation of the origin of this inclusion). Slightly more generally, the same discussion applies when
OC is replaced by an integral perfectoid ring R to define a twisting operation M 7→ M{1} := M ⊗R
ker(θ)/ ker(θ)2 on R-modules (but one loses the analog of the inclusion M(1) ⊂ M{1} available for
R = OC).

One fruitful viewpoint on integral perfectoid rings is to view them as integral analogs of perfect rings:
they share some of the miraculous properties of perfect characteristic p rings without themselves having
characteristic p. This perspective leads one to predict certain results in mixed characteristic, and we explain
how this plays out for the Deligne-Illusie theorem in the next two remarks.

Remark 3.1.14 (Deligne-Illusie, revisited). Let k be a perfect field of characteristic p. Then k ' W (k)/p,
so Lk/W (k) ' k[1] by Example 3.1.3. Now consider a smooth k-algebra R. The transitivity triangle for
W (k)→ k → R is

Lk/W (k) ⊗k R→ LR/W (k) → LR/k.

Using the smoothness of R and the previous computation of Lk/W (k), this simplifies to

R[1]→ LR/W (k) → Ω1
R/k.
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As this construction is functorial in R, we may sheafify it to obtain the following: for smooth k-scheme X ,
we have a functorial exact triangle

OX [1]→ LOX/W (k) → Ω1
X/k.

In particular, the boundary map for this triangle is

Ω1
X/k → OX [2],

and can thus be identified as a class

obX/W (k) ∈ Ext2(Ω1
X/k,OX).

Using the deformation-theoretic interpretation of the cotangent complex (and unravelling Example 3.1.3),
one can show that obX/W (k) is precisely the obstruction to lifting X to W2(k). The main theorem of
Deligne-Illusie [DI] is that the obstruction class obX constructed in Remark 3.0.6 via the de Rham complex
coincides with obX(1)/W (k); equivalently, the complex LX(1)/W [−1] identifies with τ≤1Ω•X/k.

Remark 3.1.15 (The integral analog of Deligne-Illusie). The analogy between perfect rings and inte-
gral perfectoid rings is strong enough that we can directly repeat the discussion of Remark 3.1.14 when
the ring k is only assumed to be an integral perfectoid ring. In this case, we must replace W (k) with
Ainf (k) = W (k[) and the map W (k) → k with Fontaine’s map θ : Ainf (k) → k. Given a smooth
k-scheme X , the discussion in Remark 3.1.14 goes through (using Remark 3.1.12) to construct a class
obX/Ainf (k) ∈ Ext1X(Ω1

X/k,OX{1}) from the complex LX/Ainf (k): it measures the failure to lift X across

θ : Ainf (k)/ ker(θ)2 → k. In this setting, the analog of the Deligne-Illusie theorem is then the subject of
[BMS2, §8]; the rational version for k = OC with C an algebraically closed perfectoid field of characteristic
0 is the identification of LX/Ainf (k)[−1][1p ] with τ≤1Rν∗ÔXC

, as alluded to in Remark 3.0.5.

The notation Ainf (and its cousin Acrys) were adopted for geometric reasons, as we briefly recall.

Remark 3.1.16 (Nomenclature of Ainf and Acrys). Let R be an integral perfectoid ring. By definition,

the map θ : R[ → R/p is a projective limit of the maps R/p
φn−→ R/p; by the perfectoidness of R, each

of these latter maps is a infinitesimal thickening (i.e., is surjective with nilpotent kernel). Thus, we may
regard R[ as a projective limit of infinitesimal thickenings on R. Moreover, by perfectness, R[ → R/p is
the universal such object in characteristic p rings: for any other infinitesimal thickening S → R/p with S
an Fp-algebra, there is a unique map R[ → S factoring θ. As in Proposition 3.1.9, one then checks that
θ : Ainf (R) → R/p is also a projective limit of infinitesimal thickenings of R/p, and is the universal such
object amongst all thickenings. Stated differently, Ainf (R) is the global sections of the structure sheaf of
the infinitesimal site for Spec(R/p) (see [Gro] for the infinitesimal and crystalline site); this is the origin of
Fontaine’s notation Ainf (R) (which arose in the example R = OCp first). Likewise, in this case, adjoining
divided powers along the kernel of θ and p-adically completing produces Fontaine’s period ring Acrys(R),
which comes equipped with a factorization Ainf (R) → Acrys(R) → R; one can then show that the map
Acrys(R) → R realizes Acrys(R) as the global sections of the structure sheaf on the crystalline site of
Spec(R/p), once again explaining the notation.
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3.2 Recollections on the pro-étale site

We now return to the setup at the start of the section: C is a complete and algebraically closed extension
of Qp, and X/C is a smooth rigid-analytic space. Viewing X as an adic space, Scholze has attached its
pro-étale site Xproet in [Sc2, §3] (see also lectures by Kedlaya and Weinstein3). A typical object here is a
pro-object U := {Ui} of Xet such that all transition maps Ui → Uj are finite étale covers for i, j large.
Heuristically, one wishes to allow towers of finite étale covers of an open in X . The following class of
objects in Xproet plays a crucial role:

Definition 3.2.1. An object U := {Ui} ∈ Xproet is called affinoid perfectoid if it satisfies the following:

1. Each Ui = Spa(Ri, R
+
i ) is affinoid.

2. Setting R+ := ̂colimiR
+
i (where the completion is p-adic) and R = R+[1p ], the pair (R,R+) is a

perfectoid affinoid algebra.

For such an object U , we write Û := Spa(R,R+) for the corresponding perfectoid space.

For our purposes, the main reason to enlarge the étale site Xet to the pro-étale site Xproet is that the
following theorem, stating roughly that there are enough affinoid perfectoid objects to cover any object,
becomes true (see [Sc2, Corollary 4.7]):

Theorem 3.2.2 (Locally perfectoid nature of Xproet). The collection of U ∈ Xproet which are affinoid
perfectoid form a basis for the topology.

Remark 3.2.3. The construction of pro-étale site makes sense any noetherian adic spaceX over Spa(Qp,Zp).
Moreover, Theorem 3.2.2 is true in this generality; this is due to Colmez, see [Sc2, Proposition 4.8].

Theorem 3.2.2 is a remarkable assertion: it allows us to reduce statements about (pro-)étale sheaves on
rigid-analytic spaces to those for perfectoid spaces. In practice, this means that affinoid perfectoids play
a role in p-adic geometry that is somewhat analogous to the role of unit polydisks in complex analytic
geometry. We do not prove Theorem 3.2.2 in these notes. Instead, we content ourselves by describing the
key construction that goes into its proof, which is analogous to the one in §2.2.

Example 3.2.4 (The perfectoid torus). Let X := T1 := Spa(C〈T±1〉,OC〈T±1〉) be the torus. Consider
the object U := {Ui}i∈N ∈ Xproet given by setting Un = X for all n, with the transition map Un+1 → Un
being given by the p-power map on the torus. To avoid confusion, choose co-ordinates so as to write
Un = Spa(C〈T±

1
pn 〉,OC〈T±

1
pn 〉). Then U is indeed affinoid perfectoid: the corresponding perfectoid

affinoid algebra is simply (C〈T±
1

p∞ 〉,OC〈T±
1

p∞ 〉). Note that each map Un+1 → Un is a µp(C)-torsor, and
hence U → X is a pro-étale Zp(1)-torsor. Explicitly, we have a (continuous) direct sum decomposition

C〈T±
1

p∞ 〉 '
⊕̂
i∈Z[ 1

p
]

C · T i.

3The definition of the pro-étale site has evolved a bit over time. For our purposes, the original one from [Sc2, §3], which is
perhaps the most intuitive, suffices. Other variants that are technically much more useful were discovered later, and are discussed
in the lectures of Kedlaya and Weinstein. In particular, the notion discussed in these notes is called the flattening pro-étale topology
in Kedlaya’s lectures. The reader may freely use any of these variants whilst reading these notes.
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This decomposition is equivariant for the Zp(1)-action, and an element ε := (εn) ∈ limµpn(C) =: Zp(1)

acts on the summands via
T

a
pm 7→ εamT

a
pm .

For convenience, we often abbreviate this action as

T i 7→ εiT i.

In particular, in this case, we have a profinite étale cover of X by an affinoid perfectoid in Xproet. More
generally, a similar construction applies when X admits an étale map to the n-dimensional torus Tn that
factors as a composition of rational subsets and finite étale maps (see [Sc2, Lemma 4.6]). In general, one
can always cover X by affinoid opens that admit such maps.

We now recall some “vanishing theorems” on Xproet. Recall that we have already discussed the morphism
ν : Xproet → Xet of sites. Using this morphism, we obtain the sheaves O+

X := ν∗O+
Xet

and OX :=

ν∗OXet on Xproet; here OXet and O+
Xet

are the usual structure sheaves on the étale site Xet. The completed

structure sheaves are then defined as Ô+
X = limO+

X/p
n and ÔX = Ô+

X [1p ]. Given an affinoid perfectoid

U := {Spa(Ri, R
+
i )} ∈ Xproet as in Definition 3.2.1 with limit Û := Spa(R,R+), one has the expected

formulae
Ô+
X(U) = R+ and ÔX(U) = R,

see [Sc2, Lemma 4.10]. The first vanishing theorem concerns the cotangent complex:

Corollary 3.2.5. The cotangent complex L
Ô+
X/OC

vanishes modulo p on Xproet. Hence, the p-adic comple-

tion of L
Ô+
X/OC

vanishes.

Proof. By Theorem 3.2.2, it is enough to show that the presheaf U 7→ L
Ô+
X(U)/OC

⊗LZp
Z/p vanishes

on affinoid perfectoid U ∈ Xproet. But Ô+
X(U) = R+ for a perfectoid affinoid (R,R+). We are then

reduced to the vanishing modulo p of the cotangent complex for perfectoids, which may be deduced from
Proposition 3.1.6 as OC/p→ R+/p is flat and relatively perfect.

In other words, there is no differential geometric information available when working on the ringed site
(Xproet, ÔX). We shall see later that the differential forms on X can nevertheless be recovered from
(Xproet, ÔX) via pushforward down to Xet. The second vanishing theorem concerns the cohomology of
ÔX on affinoid perfectoids (see [Sc2, Lemma 4.10]):

Theorem 3.2.6 (Acyclicity of the structure sheaf on affinoid perfectoids). Let U ∈ Xproet be an affinoid

perfectoid. Then H i(U, Ô+
X) is almost zero4 for i > 0, and thus H i(U, ÔX) = 0 for i > 0.

4The phrase “almost zero” refers to a notion introduced by Faltings [Fa1]: an OC -module is almost zero if it is killed by the
maximal ideal of OC . Intuitively, such a module is “very small” and can often be safely ignored when performing computations.
Faltings theory of “almost mathematics” (expounded in [GR]) is based on the idea of systematically developing various notions
of commutative algebra and algebraic geometry up to almost zero error terms (as in Theorem 3.2.6), i.e., one works with rings,
modules, etc. in the ⊗-category of almost OC -modules, defined as the quotient of the category of all OC -modules by almost zero
ones. Whilst we have avoided any discussion of this notion in these notes, it is important to note that almost mathematics lurks in
the background when working with perfectoid spaces, is most directly visible in the integral aspects of theory.
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In particular, this theorem gives us a technique for calculating the cohomology of ÔX for any affinoid U ∈
Xproet: if we choose a pro-étale cover V → U with V affinoid perfectoid as provided by Theorem 3.2.2,
then Cech theory gives an identification

H i(U, ÔX) ' H i
(
ÔX(V )→ ÔX(V ×U V )→ ÔX(V ×U V ×U V )→ ...

)
as V , V ×U V , V ×U V ×U V , etc. are all affinoid perfectoid; here the differentials are the alternating
sums of the pullbacks along the various projections. If we can further ensure that V → U is a G-torsor for a
profinite group (see Example 3.2.4 for an example), then V ×U V ' V ×G (where G is the “topologically
constant” sheaf on Xproet defined by the association W 7→ Mapconts(|W |, G), where |W | is the natural
topological space attached to W ∈ Xproet), so the above formula simplifies to

H i(U, ÔX) = H i
conts(G, ÔX(V )).

In other words, we can calculate the cohomology of ÔX in terms of the continuous group cohomology. The
same strategy also applies for the integral sheaf Ô+

X in the almost category, and will be used repeatedly in
the sequel.

3.3 The key calculation

Continuing the notation from §3.2, we record the main calculation describing Rν∗ÔX .

Lemma 3.3.1. The OX -module R1ν∗ÔX is locally free of rank n, and taking cup products gives an isomor-
phism ∧iR1ν∗ÔX ' Riν∗ÔX .

Proof. This is a local assertion, so we may assume that X is affinoid, and that there exists an étale map
X → Tn that factors as a composition of rational subsets and finite étale covers. By the vanishing of higher
coherent sheaf cohomology on affinoids, it is enough to show the following:

1. The OX(X)-module H1(Xproet, ÔX) is free of rank n.

2. Taking cup products gives an isomorphism ∧iH1(Xproet, ÔX) ' H i(Xproet, ÔX) for each i.

3. The preceding two properties are compatible with étale localization on X .

We shall explain the first two in the key example of a torus, leaving the rest to the references.
Consider first the case X = T1 := Spa(C〈T±1〉,OC〈T±1〉) of a 1-dimensional torus with co-ordinate T .

Write X∞ ∈ Xproet for the affinoid perfectoid object constructed in Example 3.2.4. Then Theorem 3.2.6
shows that

RΓ(X∞,proet, ÔX) ' C〈T±
1

p∞ 〉.

As X∞ → X is a Zp(1)-torsor, this implies (see discussion following Theorem 3.2.6) that

RΓ(Xproet, ÔX) ' RΓconts(Zp(1), C〈T±
1

p∞ 〉).
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Now that canonical presentation

C〈T±
1

p∞ 〉 '
⊕̂
i∈Z[ 1

p
]

C · T i

is equivariant for the action of Zp(1) described in Example 3.2.4. In particular, if ε = (εn) ∈ limµpn(C) =

Zp(1) is a generator, then, by standard facts about the continuous group cohomology of pro-cyclic groups,
we have

RΓ(Xproet, ÔX) '
⊕̂
i∈Z[ 1

p
]

(
C · T i T i 7→(εi−1)T i

−−−−−−−−→ C · T i
)

;

here we follow the convention that if i = a
pm a ∈ Z, then εi = εam. In particular, the differential is trivial

on the summands indexed by i ∈ Z (as εi = 1 for such i) and an isomorphism for non-integral i ∈ Z[1p ] (as
εi − 1 6= 0 for such i). Thus, up to quasi-isomorphism, we can ignore the non-integral summands to get

RΓ(Xproet, ÔX) '
⊕̂
i∈Z

(
C · T i 0−→ C · T i

)
.

This presentation (and some unraveling of isomorphisms) shows thatH∗(Xproet, ÔX) is the exterior algebra
on its H1, and that H1(Xproet, ÔX) is free of rank 1, as wanted.

The preceding analysis applies equally well (modulo bookkeeping) when X = Tn is an n-dimensional
torus for any n ≥ 1. The general case is then deduced from this one by the almost purity theorem and
base change properties of group cohomology, as explained in [Sc3, Proposition 3.23] and [Sc2, Lemma 4.5,
5.5].

3.4 Construction of the map

In this section, we give a global construction of the map

Φi : Ωi
X/C(−i)→ Riν∗ÔX

that will eventually give the isomorphism in Theorem 3.0.3. This construction is analogous to the one in
[BMS2, §8.2] and differs from that in [Sc3, §3.3].

We choose a formal model X/OC of X , and write Xaff for the category of affine opens in X with the
indiscrete topology (so all presheaves are sheaves). Then we have evident morphisms

(Xproet, ÔX)
ν−→ (Xet,OX)

π−→ (Xaff ,OX)

of ringed sites, and write µ = π ◦ ν for the composite. We shall construct5 a natural morphism

Φ1,′ : Ω1
X/OC

→ R1µ∗ÔX(1).

5Here Ω1
X/OC

denotes the sheaf of Kähler differentials on the formal scheme, and is computed as follows: if X = Spf(R)

for flat OC -algebra R that is topologically of finite presentation, then Ω1
X/OC

is the coherent OX-sheaf associated to the finitely
presented R-module of continuous Kähler differentials on R, see [EGA, §0.20.1] and [GR, 7.1.23]. This module is computed as
the p-adic completion of module Ω1

R/OC
in the algebraic sense. In particular, the sheaf Ω1

X/OC
has the following key feature for

our purposes: its values on affines are p-adically complete.
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By formal properties of adjoints, this defines a map

π∗Ω1
X/OC

= π−1Ω1
X/OC

⊗π−1OX
OX → R1ν∗ÔX(1).

The left side identifies with Ω1
X/C , so untwisting defines the desired map Φ1. The remaining Φi’s are

obtained by passage to exterior powers using the anticommutative cup product on ⊕iRiν∗ÔX .
Consider the maps

Zp → OC → Ô+
X

of sheaves of rings on Xproet. Attached to this, there is a standard exact triangle

LOC/Zp
⊗OC

Ô+
X → L

Ô+
X/Zp

→ L
Ô+
X/OC

of cotangent complexes. Corollary 3.2.5 shows that the last term vanishes after a p-adic completion. Hence,
we obtain an isomorphism

̂
LOC/Zp

⊗OC
Ô+
X ' L̂Ô+

X/Zp
.

By Theorem 2.3.1, the first term identifies with Ω ⊗OC
Ô+
X [1], where Ω is a free OC-module of rank 1 that

Galois equivariantly looks like OC(1) up to torsion. In particular, inverting p gives

ÔX(1)[1] ' L̂
Ô+
X/Zp

[
1

p
]. (3.1)

Now consider the map µ of ringed sites. Via pullback, this yields a map

L̂X/Zp
→ Rµ∗L̂

Ô+
X/Zp

→ Rµ∗L̂
Ô+
X/Zp

[
1

p
] ' Rµ∗ÔX(1)[1]. (3.2)

To proceed further, we claim that there is a natural identification

H0(L̂X/Zp
) ' Ω1

X/OC
. (3.3)

Granting this claim, passage to H0 in (3.2) yields the map

Φ1,′ : Ω1
X/OC

→ R1µ∗ÔX(1),

and hence the maps Φi, as explained earlier. To prove (3.4), consider the sequence

Zp → OC → OX

of rings on Xaff . The transitivity triangle then takes the form

LOC/Zp
⊗OC

OX → LX/Zp
→ LX/OC

.

On applying the derived p-adic completion functor, we obtain an exact triangle where the term on the left
has no H0, so we obtain an identification

H0(L̂X/Zp
) ' H0(L̂X/OC

).
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The upshot of this reduction is that the right side is a geometric object: X is a topologically finitely presented
formal scheme over OC . Using this fact, one can check that

H0(L̂X/OC
) = Ω1

X/OC
,

which then gives the desired (3.4); we refer to the discussion surrounding [GR, Lemma 7.1.25] for more on
the relationship between the cotangent complex and continuous Kähler differentials, and [GR, Proposition
7.1.27] for the proof of the above equality.

3.5 Conclusion: the isomorphy of Φi

Combining the material in §3.4 with the calculation §3.3, we learn that both the source and the target of

⊕iΦi :
⊕
i

∧i
(
Ω1
X/C(−1)

)
→
⊕
i

Riν∗ÔX

are exterior algebras on the i = 1 terms. Thus, to prove that Φi is an isomorphism for all i, it suffices to do
so for i = 1. Moreover, note that both sides are coherent sheaves of an étale local nature on X . Thus, we
may assume X = Tn, and may pass to global sections. Thus, we need to show that the

Φ1(X) : Ω1
X/C(−1)→ H1(Xproet, ÔX)

of free rank n OX(X)-modules is an isomorphism. Both sides are compatible with taking products of adic
spaces, so one reduces to the case n = 1. Choose coordinates to writeX := T1 := Spa(C〈T±1〉,OC〈T±1〉).
Then d log(T ) ∈ Ω1

X/C is a generator, and it suffices to show that Ψ1(d log(T )) is also a generator. This can
be checked by making explicit the construction of §3.4 as in [BMS2, §8.3].
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4. Lecture 4: Integral aspects

Let C/Qp be a complete and algebraically closed field with residue field k. Let X be a smooth and proper
formal scheme1 over OC . Write X = XC for the generic fibre, and Xk for the special fibre. We then have
the degenerate Hodge-Tate spectral sequence

Ei,j2 : H i(X,Ωj
X/C)(−j)⇒ H i+j(X,C).

leading to the equality

dimQp H
n(Xet,Qp) = dimC H

n(X,C) =
∑
i+j=n

dimC H
i(X,Ωj

X/C) (4.1)

relating étale and Hodge-cohomology for the generic fiber. As X admits a good model X, the groups
appearing on either side of the equality above admit good integral and mod-p variants: we have

H i(Xk,Ω
j
X/k) and Hn(Xet,Fp).

It is thus natural to ask if (4.1) admits a mod-p variant. The following theorem was proven recently in
[BMS2]

Theorem 4.0.1. One has inequalities

dimFp H
n(Xet,Fp) ≤

∑
i+j=n

dimkH
i(Xk,Ω

j
X/k). (4.2)

4.1 Examples

In this section, we record some examples showing that the inequality in Theorem 4.0.1 can be strict. The
strategy is to construct certain interesting degenerations of group schemes, and then to approximate their
classifying stacks. To motivate this idea and subsequent constructions, we begin with a purely topological
calculation.

1Not much will be lost if one assumes that C = Cp and that X arises as the p-adic completion of a proper smooth OC -scheme
X. For our constructions, though, it will nevertheless be convenient to work with formal schemes. The added generality is also
useful in some geometric applications, see [CLL] for a recent concrete example arising from the following phenomenon: even
though K3 surfaces over C with good reduction might only do so in the world of algebraic spaces, the special fibre of a good model
will be a scheme, and hence formal completion of a good model will be a formal scheme.
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Example 4.1.1. Let G = Z/p. Consider the classifying space BG of G-torsors; this space can be defined
as EG/G, where EG is a contractible space with a free G-action. The cohomology of BG agrees with
the group cohomology of G. We claim that there exist G-torsors fi : Xi → BG for i ∈ {0, 1} such
that H1(X0,Fp) ' 0, but H1(X1,Fp) 6= 0. In fact, for X0, we take X0 = EG, with f0 : X0 → BG

being the universal G-torsor: as EG is contractible, we have H>0(X0,Fp) ' 0. For X1, we simply
take X1 = BG × G with f1 : X1 → BG being the projection, realizing X1 as the trivial G-torsor over
BG. Then H1(X1,Fp) contains H1(BG,Fp) as a summand, and is thus nonzero since H1(BG,Fp) '
Hom(G,Fp) 6= 0.

As a thought experiment, imagine that one can construct a family degenerating f0 to f1, i.e., a continuous
one parameter family ft : Xt → BG of G-torsors indexed by t ∈ [0, 1] coinciding with the construction
above for t = 0, 1. The total space X of this degeneration would then admit a fibration X → [0, 1] whose
fibers have varying Fp-cohomologies. Unfortunately, it is impossible to find such a degeneration in topology.
Indeed, any such family would correspond to a non-constant path in the “space of G-torsors on BG” that
degenerates the non-trivial torsor X0 to the trivial torsor X1. The space of such torsors is tautologically
Map(BG,BG); as G is discrete and abelian, this space admits no non-trivial paths2, so no such families
exist. (Even more directly, the fibers of a fibration over [0, 1] are homotopy-equivalent, and hence can’t have
distinct cohomologies.)

However, we can produce such a degeneration in algebraic geometry in positive or mixed characteristic,
essentially because morphisms between finite group schemes can vary in families in this setting; for example,
Hom(Z/p, µp) ' µp is not discrete in characteristic p. Using this idea, one can rather readily find the
phenomenon described in the previous paragraph in the world of algebraic stacks (see [BMS1, Example
4.1]). To stay within the world of schemes, one needs an additional approximation argument. The example
recorded next (from [BMS2, §2.1]) accomplishes both of these tasks, albeit in a hidden fashion.

Example 4.1.2. Assume p = 2. Let S/OC be a proper smooth morphism with π1(SC)
'−→ π1(S)

'←−
π1(Sk) ' Z/2; one may construct an Enriques surface with such properties. Let E/OC be an elliptic
curve with good ordinary reduction. Hence, there is a canonical subgroup µ2 ⊂ E (see Caraiani’s lectures).
Choosing the element −1 ∈ µ2(OC) defines a map

α : Z/2→ µ2 ⊂ E

of group schemes over OC . If S̃ → S denotes the universal Z/2-cover of S, then we may push out S̃ → S

along α to obtain an E-torsor f : Y → S by setting Y := S̃ ×Z/2 E (where Z/2 acts via the covering
involution on S̃, and by translation using α on E) with f : Y → S the map induced by projection onto
S̃/(Z/2) ' S. This E-torsor has the following properties:

1. The special fiber Yk → Sk is identified with the split torsor Ek × Sk → Sk: the construction of Y is
compatible with restriction to the special fibre, and αk is the 0 map as −1 = 1 over k.

2More precisely, for any pair of discrete groups H and G, the space Map(BH,BG) can be modeled by a groupoid whose
objects are group homomorphisms f : H → G, and morphisms f → f ′ are given by group elements g ∈ G that conjugate f to f ′.
When G is abelian (as above), this description collapses to identify Map(BH,BG) as the product of the discrete set Hom(H,G)

with the groupoidBG. In particular, a path in [0, 1]→ Map(BH,BG) is “trivial,” i.e., the corresponding mapBH×[0, 1]→ BG

factors through the second projection.
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2. The generic fibre YC → SC is a non-split EC-torsor (i.e., it has no section): using the exact sequence

0→ Z/2
C

αC−−→ EC
β−→ E′C → 0 (4.3)

(where E′C is defined as the quotient of the elliptic curve EC by the non-trivial 2-torsion point coming
from α, and is thus also an elliptic curve over C), the triviality of the torsor YC → SC would give a
non-constant map SC → E′C . But one can show that there are no non-constant maps from a smooth
proper variety over C with finite étale fundamental group into an abelian variety3, so we are done.

We now calculate both sides of (4.2) in this example in degree 1. On the étale side, we give a topological
argument after choosing an isomorphism C ' C; alternately, a purely algebraic version of the same set of
ideas can be found in [BMS2, §2.1]. The map YC → SC is an EC-torsor, so fixing a (suppressed) base point
on SC gives an exact sequence of homotopy groups

π1(EC)
µ−→ π1(YC)

ν−→ π1(SC)→ 0,

where the surjectivity on the right comes from the connectedness of the fibers. We shall show that µ is
injective, and identify the resulting extension. Consider the map Y → E′C := EC/(Z/2) coming from the
definition of Y . The composite EC → Y → E′C is clearly injective on π1 (as it is a non-constant map of
smooth proper curves of genus 1), and thus µ must be injective. This data fits into a map of short exact
sequences:

0 // π1(EC)
µ // π1(YC)

ν //

��

π1(SC) //

η

��

0

0 // π1(EC) // π1(E
′
C)

τ // Z/2 // 0.

Here the target of τ is identified via the boundary map induced by the fibration coming from the short exact
sequence (4.3). Unraveling definitions shows that η is the identity; in fact, slightly more canonically, the
target of τ is naturally µ2(C) viewed as the canonical subgroup on E(C), and the map η arises from our
choice of −1 ∈ µ2(OC) at the start of the construction defining α. Putting these together, we see that η is
an isomorphism, and hence π1(YC) ' π1(E′C) ' Z⊕2. In particular, we get

dimF2 H
1(YC,et,F2) = 2. (4.4)

We now move to the Hodge side. Here, we have Yk ' Sk × Ek. In particular, one has

h0,1(Yk) = h0,1(Sk) + h0,1(Ek) and h1,0(Yk) = h1,0(Sk) + h1,0(Ek)

by the Künneth formula for the cohomology of the structure sheaf and differential forms. Now h0,1(Ek) =

h1,0(Ek) = 1 by general facts about elliptic curves. Also, we claim that H1(Sk,OSk
) 6= 0, and hence

3Fix a map g : Z → A over C, where Z is a smooth proper variety, A is an abelian variety, and πet
1 (Z) is finite. Then

the induced map g∗ : πet
1 (Z) → πet

1 (A) is constant as πet
1 (A) is topologically a free abelian group, and thus the pullback

g∗ : H1(A,C) → H1(Z,C) is the 0 map. As H∗(A,C) ' ∧∗H1(A,C) via cup products, it follows that g∗ : Hn(A,C) →
Hn(Z,C) is 0 for all n > 0. In particular, if L ∈ Pic(A) is an ample line bundle, then c1(g∗L) = g∗c1(L) is 0. On the other
hand, if g was non-constant, then there would exist a curve i : C ↪→ Z such that g ◦ i : C → A is finite, and thus i∗g∗L is ample,
so deg(i∗g∗L) = c1(i∗g∗L) = i∗c1(g∗L) is positive. This contradicts the triviality of c1(g∗L), so there are no such curves, and
hence g must be constant.
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h0,1(Sk) > 0: as π1(Sk) ' Z/2, there is a non-trivial element in H1(Sk,et,F2), which contributes a
non-trivial element to H1(Sk,OSk

) from the Artin-Schreier exact sequence

0→ F2 → OSk

F−1−−−→ OSk
→ 0.

Putting these together, we learn that

dimkH
1(Yk,OYk) + dimkH

0(Yk,Ω
1
Yk/k

) ≥ 3. (4.5)

Comparing (4.4) and (4.5) shows that (4.2) can be strict.

The inequality (4.2) is a consequence of the following stronger inequality

dimFp H
n(Xet,Fp) ≤ dimkH

n
dR(Xk/k),

proven in (4.6) below. Now both sides have a canonical mixed characteristic deformation: étale cohomology
with Zp-coefficients on the left, and crystalline cohomology on the right. In fact, as explained in (4.7), the
previous inequality may be improved to compare the torsion in the two lifts: one has

`Zp(H i(Xet,Zp)tors) ≤ `W (k)(H
i
crys(Xk/W (k))tors).

It is natural to ask if this last inequality is actually a reflection of an inclusion of groups. For example, if
H i(Xet,Zp) contains an element of order p2, is the same true for H i

crys(Xk/W (k))? We shall answer this
question negatively. The crucial idea going into the construction of the example is again a phenomenon
exhibited by finite flat group schemes away from equicharacteristic 0: one can degenerate a finite group
scheme of order exactly p2 in characteristic 0 into a finite group scheme that is killed by p in characteristic
p. An explicit construction of such a degeneration is recorded next.

Construction 4.1.3. Let E/OC be an elliptic curve with supersingular reduction. Choose a point x ∈ E(C)

of order exactly p2, so x defines an inclusion Z/p2 ↪→ EC of group schemes. Taking the closure, we obtain
a finite flat group subscheme G ↪→ E with G|C ' Z/p2. The special fibre Gk ⊂ Ek is a subgroup of order
p2 on the elliptic curve Ek. As Ek is supersingular, all p-power torsion subgroups of Ek are infinitesimal.
In particular, there is a unique subgroup of order p2, given (as a scheme) by the (p2 − 1)-th infinitesimal
neighbourhood of 0 ∈ Ek. As Ek[p] is a subgroup of order p2, we must have Gk = Ek[p], so Gk is killed by
p, while GC is a cyclic group scheme of exact order p2.

Passing from the above construction of group schemes to their classifying stacks yields the sought-for
examples in the world of algebraic stacks; the example below approximates this construction using smooth
projective varieties.

Example 4.1.4. Choose G as in Construction 4.1.3. Then we may choose a smooth projective OC-scheme
Y that has relative dimension 2 and comes equipped with a free G-action. In fact, one may (and we do)
choose4 Y to be a general complete intersection surface in Pn for n � 0. Set X = Y/G to be the quotient,
so X is a smooth projective OC-scheme of relative dimension 2 equipped with a G-torsor π : Y→ X.

4The existence of such complete intersections is a general fact that is valid for all finite flat group schemes; this fact goes back
to the work of Serre [Se] and Atiyah-Hirzeburch [AH]. More recent accounts of this construction include [To, §1], [MV, §4.2], and
[Ill3, §6], and the details necessary for our purposes can be found in [BMS2, §2.2].
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On the étale side, the Hochschild-Serre spectral sequence for theG-torsor π shows thatH2(XC,et,Zp)tors '
Z/p2. Indeed, as Y is a complete intersection surface, the groupsH i(YC,et,Zp) are torsionfree for i ∈ {0, 2}
and 0 for i = 1 by the Lefschetz theorems; the desired claim immediately falls out of the low degree terms for
the spectral sequence. Slightly more conceptually, the G-torsor π is classified by a map X→ BG; we have
H2(BGC,et,Zp)tors = H2(Z/p2,Zp)tors = Z/p2, and this group maps isomorphically toH2(Xet,Zp)tors.

On the crystalline side, we claim that H2
crys(Xk/W (k))tors is killed by multiplication by p. By repeating

the reasoning used above, we are reduced to showing that H i
crys(BGk/W (k)) is killed by multiplication by

p. But Gk itself is killed by multiplication by p, and hence so is its cohomology. (The argument given in the
last sentence is meant to convey intuition, and is not a rigorous one as the relevant technology to analyze the
crystalline cohomology of stacks has not been documented (to the best of the author’s knowledge); a more
indirect but precise argument can be found in [BMS2, §2.2].)

Putting the conclusions of the previous paragraphs together, we learn that H2(Xet,Zp)tors contains an
element of order p2, while H2

crys(Xk/W (k))tors is killed by p. In particular, the length inequality

`Zp(H i(Xet,Zp)tors) ≤ `W (k)(H
i
crys(Xk/W (k))tors)

cannot be upgraded to an inclusion of groups.

4.2 The main theorem

Fix a complete and algebraically closed field C/Qp with residue field k. As C is a perfectoid field, its valua-
tion ring OC is integral perfectoid, giving rise to its deformation Ainf := Ainf (OC) as in Proposition 3.1.9;
write φ : Ainf → Ainf for the automorphism deduced by functoriality from Frobenius on O/p, and write
θ̃ := θ ◦φ−1 : Ainf → OC . Writing C[ for the fraction field of O[C , we also have the maps Ainf →W (C[)

and Ainf → W (k) arising from the functoriality of W (−), and the map Ainf → O[C arising by setting
p = 0. The scheme Spec(Ainf ) together with the points and divisors arising from all these maps is depicted
in Figure 4.1 (which is borrowed from [Bh]).

Fix a proper smooth formal scheme X/OC with generic fibre X of dimension d. Theorem 4.0.1 asserts the
existence of a numerical inequality between two mod-p cohomology theories: one is topological in nature
and is attached to the generic fibre X , while the other is algebro-geometric and is attached to the special
fibre Xk. This inequality is deduced by constructing a specialization from one cohomology theory to the
other over the base Ainf , as follows:

Theorem 4.2.1 (The Ainf -cohomology theory). There exists a functorial perfect complex RΓA(X) ∈
D(Ainf ) together with a Frobenius action φX : φ∗RΓA(X) → RΓA(X) that is an isomorphism outside

the divisor Spec(OC)
θ̃
↪→ Spec(Ainf ) defined by θ̃. Moreover, one has the following comparison isomor-

phisms5:

1. Étale cohomology: there exists a canonical φ-equivariant identification

RΓA(X)⊗Ainf
W (C[) ' RΓ(Xet,Zp)⊗W (C[).

5See Figure 4.1 for a depiction of the loci in Spec(Ainf ) where this comparison isomorphisms take place.
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In fact, such an isomorphism already exists after base change to Ainf [ 1µ ], where µ ∈ Ainf is the
element from Remark 3.1.12.

2. de Rham cohomology: there exists a canonical isomorphism

RΓA(X)⊗LAinf ,θ
OC ' RΓdR(X/OC).

3. Hodge-Tate cohomology: there exists an E2-spectral sequence

Ei,j2 : H i(X,Ωj
X/OC

){−j} ⇒ H i+j(θ̃∗RΓA(X)).

Here the twist {−j} refers to the Breuil-Kisin twist from Remark 3.1.13.

4. Crystalline cohomology of the special fibre: there exists a canonical φ-equivariant identification

RΓA(X)⊗LAinf
W (k) ' RΓcrys(Xk/W (k)).

In fact, the properness assumption on X is only necessary for Theorem 4.2.1 (1): the de Rham, Hodge-Tate
and crystalline comparisons hold true for any smooth formal scheme X. Applications of Theorem 4.2.1
include the following:

1. Recovering the Hodge-Tate decomposition. The element µ ∈ Ainf is invertible at the generic point of

the divisor Spec(OC)
θ̃
↪→ Spec(Ainf ) (marked as the Hodge-Tate specialization in Figure 4.1). Thus,

the base change of RΓA(X) along Ainf
θ̃−→ OC ⊂ C is described by both Theorem 4.2.1 (1) and (3).

Combining these gives the Hodge-Tate spectral sequence from Theorem 3.0.1.

2. Recovering the inequality in Theorem 4.0.1. Consider the perfect complex K := RΓA(X) ⊗Ainf

O[C over the valuation ring O[C (which is labelled as the modular specalization in Figure 4.1). By
Theorem 4.2.1 (1), we have

K ⊗ C[ ' RΓ(Xet,Fp)⊗ C[.

By Theorem 4.2.1 (2) or (3), we have

K ⊗ k ' RΓdR(Xk/k).

By semicontinuity for the ranks of the cohomology groups of a perfect complex, we learn that

dimFp H
n(Xet,Fp) ≤ dimkH

n
dR(Xk/k). (4.6)

On the other hand, the existence of the Hodge-to-de Rham spectral sequence shows that

dimkH
n
dR(Xk/k) ≤

∑
i+j=n

dimkH
i(Xk,Ω

j
Xk/k

).

Combining these, we obtain (4.2).
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3. Relating torsion in étale to crystalline or de Rham cohomology. The reasoning used above can be
upgraded to show the following inequality

`Zp(H i(Xet,Zp)tors/p
n) ≤ `W (k)(H

i
crys(Xk/W (k))tors/p

n)

for all n ≥ 0, and thus

`Zp(H i(Xet,Zp)tors) ≤ `W (k)(H
i
crys(Xk/W (k))tors). (4.7)

In particular, if H i
crys(Xk/W (k)) is torsion free, so is H i(Xet,Zp). Once one defines a suitable

normalized length6 for finitely presented torsion OC-modules, the de Rham analogs of the previous
two inequalities also hold true, as observed by Cesnavicus [Ce, Theorem 4.12]: one has

`Zp(H i(Xet,Zp)tors/p
n) ≤ `OC

(H i
dR(X/OC)tors/p

n)

for all n ≥ 0, and thus

`Zp(H i(Xet,Zp)tors) ≤ `OC
(H i

dR(X/OC)tors). (4.8)

Example 4.1.4 shows that this inequalities cannot be upgraded to an inclusion of groups in general.

4. The zero locus of φX. Theorem 4.2.1 asserts that the map φX : φ∗RΓA(X) → RΓA(X) is an iso-

morphism outside the divisor Spec(OC)
θ̃
↪→ Spec(Ainf ) defined by θ̃. Specializing this picture along

Ainf → W (k) and using the crystalline comparison recovers the Berthelot-Ogus theorem [BO1,
Theorem 1.3] that φXk

is an isogeny on RΓcrys(Xk/W (k)).

5. The absolute crystalline comparison theorem. Recall from Remark 3.1.16 that Fontaine’s period ring
Acrys is defined as the p-adic completion of the divided power envelope of the map θ : Ainf →
OC ; concretely, we choose a generator ξ ∈ ker(θ) and define Acrys as the p-adic completion of
Ainf [{ ξ

n

n! }n≥1] ⊂ Ainf [1p ]. The Frobenius automorphism φ of Ainf induces a Frobenius endo-
morphism φ of Acrys. More conceptually, the ring Acrys may be regarded as the absolute crys-
talline cohomology of Spec(OC/p), with φ corresponding to Frobenius. The image of the map
Spec(Acrys)→ Spec(Ainf ) is depicted in Figure 4.1.

The absolute crystalline cohomology RΓcrys(XO/p) of XOC/p is naturally an Acrys-complex. One
may show that this Acrys-complex lifts the de Rham cohomology RΓdR(X/OC) of X along the map
Acrys → OC arising from θ, and lifts the crystalline cohomology RΓcrys(Xk/W (k)) along the map
Acrys → W (k) factoring the canonical map Ainf → W (k). For this object, one has the following
comparison isomorphism, which unifies and generalizes Theorem 4.2.1 (2) and (4): there exists a
canonical φ-equivariant isomorphism

RΓA(X)⊗LAinf
Acrys ' RΓcrys(XOC/p), (4.9)

6More precisely, given a finitely presented torsion OC -module M , there is a unique way to define a number `OC (M) ∈ R≥0

that behaves additively under short exact sequences, and carries OC/p to 1. A high-brow perspective on this length arises from
algebraic K-theory: by the excision sequence for OC → C, one may identify K0 of the category of finitely presented torsion
OC -modules with K1(C)/K1(OC) ' C∗/O∗C . Postcomposing with the p-adic valuation map C∗/O∗C → R (normalized to send
p to 1) gives the desired normalized length function; see also [Ce, §4.10].
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which is the absolute crystalline comparison theorem. This isomorphism can be then used to prove
the crystalline comparison theorem, see [BMS2, Theorem 14.5].

6. Bounding the failure of integral comparison maps to be isomorphisms. Consider the element

ξ = µ/φ−1(µ) =
[ε]− 1

[ε
1
p ]− 1

=

p−1∑
i=0

[ε
i
p ].

This element can be checked to be a generator for ker(θ), and thus φ(ξ) generates ker(θ̃). We
also have the formula µ = ξ · φ−1(µ) which provides justification for the heuristic formula “µ =∏
n≥0 φ

−n(ξ).” The zero locus of µ is depicted in orange in Figure 4.1.

The construction of RΓA(X) shows that there is a naturally defined map

RΓA(X)→ RΓ(Xet,Zp)⊗Zp Ainf

in the almost category that has an inverse up to µd, where d = dim(X). Specializing along the natural
map Ainf → Acrys and using (5), we obtain a naturally defined almost map

RΓcrys(XOC/p)→ RΓ(Xet,Zp)⊗Zp Acrys

which is also invertible up to µd. In particular, one has reasonable control on the failure of the integral
comparison maps to be isomorphism, as in the work of Faltings [Fa3, Fa4].

7. Recovering crystalline cohomology of the special fibre from the generic fibre, integrally. Each coho-
mology group M of RΓA(X) can be shown to be a finitely presented Ainf -module equipped with

a map φM : φ∗M → M that is an isomorphism outside Spec(OC)
θ̃→ Spec(Ainf ), and is free

after inverting p; such pairs (M,φM ) are analogues over C of the Breuil-Kisin modules from [Ki],
were introduced and studied by Fargues, and were called Breuil-Kisin-Fargues modules in [BMS2,
§4.3]. Using some abstract properties of such modules and Theorem 4.2.1, one can show the follow-
ing: if H i

crys(Xk/W (k)) and H i+1
crys(Xk/W (k)) are torsionfree, then H i

crys(Xk/W (k)) is determined
functorially from the generic fibre X (see [BMS2, Theorem 1.4]). In particular, in naturally arising
geometric situations (such as K3 surfaces), this implies that for different good models for the same
generic fibre X , the integral crystalline cohomology of the special fibres is independent of the choice
of good model.

4.3 Strategy of the proof

Theorem 4.2.1 posits the existence of an Ainf -valued cohomology theory attached to X. A natural way to
construct such a theory is to work locally on X, i.e., construct a complex AΩX of sheaves of Ainf -modules
on the formal scheme X, and try to prove all the comparisons in Theorem 4.2.1 at the level of sheaves. With
one caveat, this is essentially how the construction goes.

The necessary tools are:
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1. The nearby cycles map. Breaking from the notation used in §3, we write ν : Xproet → X for the
nearby cycles map; this it the map on topoi whose pullback is induced by the observation that if
U ⊂ X is an open subset, then we get a rational open subset U ⊂ X on passage to generic fibres. The
reason behind calling this map the “nearby cycles map” name is a theorem of Huber [Hu2, Theorem
0.7.7]: for any integer n, the stalk of Rν∗Z/n at a point x ∈ X is given by the cohomology of the
“nearby fiber”, or the “Milnor fiber”, i.e., by RΓ(Spec(OshX,x[1p ])et,Z/n).

2. The pro-étale sheafAinf,X . Fontaine’s construction ofAinf (R) := W (R[) and the map θ : Ainf (R)→
R makes sense for any ring p-adically complete ring R (see Remark 3.1.8). In particular, this yields
a presheaf Ainf,X := Ainf (O+

X) of Ainf -modules on the pro-étale site of X . Using the locally per-
fectoid nature of Xproet from Theorem 3.2.2, this presheaf can be checked to be a sheaf. By a variant
of the primitive comparison theorem (see Theorem 3.0.2), the cohomology of Ainf,X is almost iso-
morphic to H∗(Xet,Zp)⊗Zp Ainf ; as we shall see, this is the only place where properness enters the
proof of Theorem 4.2.1.

3. Killing torsion in the derived category. Given a ring A and a nonzerodivisor f ∈ A, we need a
systematic technique for killing the f -torsion in the homology of a chain complex K of A-modules;
the adjective “systematic” means roughly that the construction should only depend on the class ofK in
the derived categoryD(A). While this is impossible to achieve with an exact functorD(A)→ D(A),
the following non-exact functor on chain complexes does the job: given a chain complex K• of
f -torsionfree A-modules, define a new chain complex ηfK

• as a subcomplex of K•[ 1f ] with the
following terms:

(ηfK
•)i = {α ∈ f iKi | d(α) ∈ f i+1Ki+1}.

One easily checks thatH i(ηfK
•) identifies withH i(K•)/(f -torsion), and thus the associationK• →

ηfK
• derives to give a functor Lηf : D(A) → D(A). This construction is motivated by ideas of

Berthelot-Ogus in crystalline cohomology [BO2, §8], can be thought of as a “decalage” of the f -adic
filtraton on K in the sense of Deligne [De1], and discussed in much more depth in [BMS2, §6], [Bh,
§6], [Mor, §2].

With these tools in play, here are the two main steps in the construction:

1. The first approximation. Consider the complex AΩpre
X := Rν∗Ainf,X as an object of the derived

category D(X, Ainf ) of Ainf -modules on the formal scheme X. As explained above, we have

RΓ(X, Rν∗Ainf,X) = RΓ(Xproet, Ainf,X)
a' RΓ(Xet,Zp)⊗Zp Ainf .

As almost zero modules die7 after base change along Ainf → W (C[), this tells us that the complex
RΓ(X, AΩpre

X ) satisfies Theorem 4.2.1 (1). Now let’s instead consider the Hodge-Tate specialization
θ̃∗RΓ(X, AΩpre

X ), where θ̃ = θ ◦φ−1 : Ainf → OC . By formal nonsense with the projection formula,

this complex identifies with the OC-complex RΓ(Xproet, Ô
+
X), viewed as an Ainf -complex via θ̃. To

7In terms of Figure 4.1, the locus where almost zero modules lives is the crystalline specialization, which does not intersect the
locus defined by Spec(W (C[))→ Spec(Ainf ) the étale specialization.
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compute this explicitly, assume further that X = Spf(OC〈t±1〉) is the formal torus. One can then
essentially repeat the calculation given in Lemma 3.3.1 to obtain that

RΓ(Xproet, Ô
+
X) '

⊕̂
i∈Z[ 1

p
]

(
OC · T i

T i 7→(εi−1)T i

−−−−−−−−→ OC · T i
)

'
⊕̂
i∈Z

(
OC · T i

T i 7→(εi−1)T i

−−−−−−−−→ OC · T i
)
⊕

⊕̂
i∈Z[ 1

p
]−Z

(
OC · T i

T i 7→(εi−1)T i

−−−−−−−−→ OC · T i
)

'
⊕̂
i∈Z

(
OC · T i

0−→ OC · T i
)
⊕ Err,

(4.10)

where Err is an OC-complex whose homology is killed by ε
1
p − 1 (since εi − 1 | ε

1
p − 1 for any

i ∈ Z[1p ]−Z). Thus, when viewed as an Ainf -complex via θ̃, this tells us that RΓ(Xproet, Ô
+
X) looks

like it has the right size for the Hodge-Tate comparison, up to an error term Err whose homology
is killed by µ := [ε] − 1. One can also repeat the same calculation without specializing to compute
RΓ(X, AΩpre

X ) directly in this case8 to see that the error term Err above comes from an analogous
summand of RΓ(X, AΩpre

X ) whose homology is also µ-torsion. Thus, we want to modify AΩpre
X in a

manner that functorially kill the µ-torsion in its homology.

2. The main construction. The preceding analysis suggests defining

AΩX := LηµAΩpret
X := LηµRν∗Ainf,X and RΓA(X) := RΓ(X, AΩX)

In this definition, the Frobenius φX is induced by the sequence

φ∗(AΩX) ' Lηφ(µ)φ∗Rν∗Ainf,X ' Lηφ(ξ)LηµRν∗Ainf,X → LηµRν∗Ainf,X =: AΩX,

where the first isomorphism is by “transport of structure”, the second isomorphism relies on a transi-
tivity property of the Lη-functor (namely, Lηf ◦ Lηg ' Lηfg with obvious notation), the third map
exists because of the structure of Rν∗Ainf,X (namely, the construction of Lηf shows that if K can be
represented by a chain complex K• of f -torsionfree modules with Ki = 0 for i < 0, then there is
an evident map Lηf (K) → K) and the fact that φ∗Ainf,X ' Ainf,X , and the last isomorphism is a
definition.

This definition does indeed work, and we only briefly indicate what goes into proving the required
comparison isomorphisms:

• Étale cohomology. We have already explained in (1) above why RΓ(X, AΩpre
X ) satisfies the

requisite comparison isomorphism with étale cohomology after base change toW (C[). The rest
follows immediately Lηµ(K) and K are naturally isomorphic after inverting µ for any complex
K.

8The entire calculation remains the same: one simply replaces OC with Ainf in the formulas above, and one is not allowed to
simplify the differential on the first summand to 0 as [ε]i − 1 is not zero on Ainf for i ∈ Z.
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• Hodge-Tate cohomology. This comparison was essentially forced to be true by the calculation
in (1) above. More precisely, one defines a map a Ω1

X/OC
{−1} → H1(θ̃∗AΩX) via a variant of

the construction in §3.4, and then checks that it yields isomorphisms

Ωi
X/OC

{−i} ' Hi(θ̃∗AΩX)

by unraveling the preceding map and matching it with the computation in (4). The Hodge-Tate
spectral sequence is then simply the standard spectral sequence expressing the hypercohomology
of a complex of sheaves in terms of the hypercohomology of its cohomology sheaves. We refer
to [BMS2, §8], [Bh, §6] for more details.

• de Rham cohomology. This comparison results from the previous one using the following ob-
servation:

Proposition 4.3.1. For any ring A with a nonzerodivisor f ∈ A and a complex K ∈ D(A), the
complex LηfK/f is naturally represented by the chain complex

(H∗(K/f),Bockf ) :=
(
....→ H i(f iK/f i+1K)

Bockf−−−−→ H i+1(f i+1K/f i+2K)→ ....
)
,

where Bockf is the boundary map “Bockstein” on cohomology associated to the exact triangle

f i+1K/f i+2K
µ−→ f iK/f i+2K

std−−→ f iK/f i+1K

inD(A). Moreover, whenK admits the structure of a commutative algebra inD(A), the preced-
ing identification naturally makesLηf (K)/f into a differential graded algebra via cup products.

We apply this observation to K = Lηφ−1µRν∗Ainf,X and f = ξ = µ/φ−1(µ) is the dis-
played generator of ker(θ). Note that AΩX ' Lηξ(K). Applying the previous observa-
tion tells us that θ∗AΩX ' AΩX/ξ is naturally represented by the differential graded algebra
(H∗(K/ξ),Bockξ). The complex K is a Frobenius twist of AΩX; keeping track of the twists,
one learns thatK/ξ is the Hodge-Tate specialization θ̃∗AΩX. Thus, by the previous comparison,
the i-th term of H∗(K/ξ) is thus given by

Ωi
X/OC

{−i} ⊗OC
ξi/ξi+1 ' Ωi

X/OC
,

i.e., by differential forms. Unraveling these isomorphisms, the Bockstein differential Bockξ can
then be checked to coincide with the de Rham differential, thus proving that AΩX/ξ ' Ω•X/OC

.
We refer to [Mor, Theorem 5.9] and [Bh, Proposition 7.9] for more details on the implementation
of this approach.

• Crystalline cohomology. There are two possible approaches here: one either repeats the ar-
guments given for the de Rham comparison above using de Rham-Witt complexes to identify
AΩX/µwith the relative de Rham-Witt complex of X/O, or one directly proves thatAΩX⊗̂

L
Ainf

Acrys
identifies with the absolute crystalline cohomology of X over Acrys. Both approaches yield
strictly finer statements than Theorem 4.2.1 (4). We refer to [BMS2, §11], [Mor] for the first
approach, and [BMS2, §12] for the second approach.
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Figure 4.1: A cartoon of Spec(Ainf ). This depiction of the poset of prime ideals inAinf emphasizes certain
vertices and edges that are relevant to p-adic cohomology theories.

• The darkened vertices (labelled ‘l’ or ‘l’) indicate (certain) points of Spec(Ainf ) and are labelled
by the corresponding residue field.

• The gray/orange arrows indicate specializations in the spectrum, while the blue label indicates the
completed local ring along the specialization.

• The arrow labelled φ on the far right indicates the Frobenius action on Spec(Ainf ), which fixes the 4

vertices of the outer diamond in the above picture.

• The labels in purple match the arrows to one of the specializations that are important for p-adic
comparison theorems.

• The smaller bullets (labelled ‘•’ or ‘•’) down the middle are meant to denote the φZ-translates to the
two drawn points labelled C (with φZ≥0 translates of the generic point of the de Rham specialization
in orange, and the rest in black), and are there to remind the reader that not all points/specialization in
Spec(Ainf ) have been drawn.

• The vertices/labels/arrows in orange mark the points and specializations that lie in Spec(Ainf/µ) ⊂
Spec(Ainf ).

• The triangular region covered in teal identifies the image of Spec(Acrys)→ Spec(Ainf ).

38



5. Exercises

This section was written jointly with Daniel Litt.

Using the Hodge-Tate decomposition

1. Calculate hi,j(X) (in the sense of Deligne’s mixed Hodge theory) for the following varieties X by
using the Hodge-Tate decomposition and calculating the corresponding étale cohomology groups (as
Galois modules) first.

(a) X = Gr(k, n) is a Grassmannian.

(b) X is a smooth affine curve.

(c) X = P1/{0,∞} is nodal rational curve.

(d) X ⊂ P2 is a cubic curve with 1 cusp.

2. Let R be a finitely-generated integral Z-algebra with fraction field K, and let X,Y be smooth proper
R-schemes. Suppose that if p is any closed point of Spec(R), and k/κ(p) is any finite extension, then
#|X(k)| = #|Y (k)|.

(a) Use the Hodge-Tate decomposition to show that hi,j(XK) = hi,j(YK) for all X,Y . (Hint: Use
the Lefschetz fixed-point formula to figure out how Frobenii act; use Chebotarev to conclude that
the Galois representations on the cohomology of X and Y are the same. Use the Hodge-Tate
decomposition to finish the proof.)

(b) * Let X,Y be birational Calabi-Yau varieties over the complex numbers (i.e. varieties with
trivial canonical bundle). Show that they have the same Hodge numbers. (Hint: Use p-adic
integration to count points of reductions.)

3. The goal of this exercise is to use the Hodge-Tate decomposition to translate a point-counting state-
ment to a geometric one1. LetX/C be a smooth projective variety that is defined over Q. For a prime
p, write Xp for a reduction of X to Fp; this makes sense for all but finitely many p’s once an integral
model of X has been chosen. Assume that there exists a polynomial PX such that for all but finitely
many p, we have PX(p) = #X(Fp). We shall

1We restrict ourselves to working over Q to avoid notational complications. The general version of the result in this exercise is
due Katz, see [HR, Appendix].
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(a) Show that for each n, the GQ-representation Hn(X,Q`) is isomorphic to a direct sum of copies
of Q`(−i) up to semisimplification. (Hint: use the Weil conjectures and Chebotarev.)

(b) Show that hi,j(X) = 0 for i 6= j. (Hint: use the Hodge-Tate decomposition.)

We also encourage the reader to think about the converse assertion: if hi,j(X) = 0 for i 6= j, then is
the function p 7→ #X(Fp) given by a polynomial, at least on a large set of primes? (Hint: try to use
the “Newton-lies-above-Hodge” theorem.)

Inverse limits of schemes and perfectoid abelian varieties

4. Let {Xi} be a cofiltered system of quasi-compact and quasi-separated schemes with affine transition
maps fij : Xi → Xj .

(a) Show that the inverse limitX∞ := limiXi exists in the category of schemes, and coincides with
the inverse limit in the category of locally ringed spaces. Write fi : X∞ → Xi for the projection
map.

(b) For any quasi-coherent sheaf F on some X0, show that the natural pullback induces a isomor-
phisms

H∗(X∞, f
∗
i F) ' colim

fi0:Xi→X0

H∗(Xi, f
∗
i0F).

Much more material on such limits can be gleaned from [SP, Tag 01YT].

5. Let k be an algebraically closed field and A/k an abeliann variety of dimension g. The purpose of
this problem is to show that A is a K(π, 1).

(a) Show that any connected finite étale cover of A is also an abeliann variety (note that this is not
true for commutative group schemes which are not proper – find a commutative group scheme
with a connected finite étale cover which does not admit the structure of a group scheme).

(b) Deduce from the previous part that the étale fundamental group of A is canonically isomorphic
to its Tate module.

(c) LetB be an abelian group. Show that any class inH1(Aét, B) is killed by some finite étale cover
of A.

(d) Observe that if R = Fq is a finite field, the ring H∗(Aét, R) is given a Hopf-algebra structure
by the multiplication on A. Conclude that if the characteristic of R is different from that of
k, then H∗(Aét, R) is an exterior algebra on 2g generators in degree 1. What happens if the
characteristic of R equals that of k?

(e) Deduce from the previous part the following fact: for any finite abeliann group B, the natural
map

H∗(πét
1 (A), B)→ H∗(Aét, B)

is an isomorphism.
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6. The goal of this exercise is to sketch why the inverse limit of multiplication by p on an abelian
scheme over OC gives a perfectoid space. For this exercise, we shall need the relative Frobenius
map: if S is a scheme of characteristic p, and f : X → S is a map, then we define the Frobenius twist
X(1) := X×FrobS ,SS as the base change of f along the Frobenius on S, and write FX/S : X → X(1)

for map induced by the Frobenius on X . This fits into the following diagram:

X

f

��

FrobX

$$

FX/S

!!
X(1)

f (1)

��

FrobS // X

f

��
S

FrobS // S.

Given a flat2 map f : X → S, we shall say that f is relatively perfect if FX/S is an isomorphism.
Note that the functor X 7→ X(1) on S-schemes preserves finite limits, and thus carries (commutative)
group schemes to (commutative) group schemes.

(a) Let R be a p-adically complete and p-torsionfree OC-algebra such that the map Spec(R/p) →
Spec(OC/p) relatively perfect. Show that R[1p ] is naturally a perfectoid algebra.

(b) Let A be a ring of characteristic p, and let G be a finite flat group scheme over A. Assume that
the relative Frobenius map G → G(1) is the trivial map. Using Verschiebung, show that G is
killed by p. Deduce the following: if H is a smooth group scheme over A, then the relative
Frobenius map H → H(1) factors multiplication by p on H .

(c) Let A be a ring of characteristic p. Let A be an abelian scheme over A. Show that the inverse
limit of multiplication by p on A is relatively perfect over A.

(d) Let A/OC be a smooth abelian group scheme with generic fiber A. Show that the inverse limit
limpA of multiplication by p on A is naturally a perfectoid space.

(e) Let A/OC be a smooth abelian group scheme. Show that the p-adic completion of the inverse
limit limpA depends only on the abelian OC/p-scheme A⊗OC

OC/p.

Derived completions of complexes

7. For any complex K of torsionfree abelian groups, define K̂ := limK/pnK.

(a) Show that the operation K 7→ K̂ passes to the derived category D(Ab) of abelian groups, i.e., it
carries quasi-isomorphisms of chain complexes to quasi-isomorphisms. We write the resulting
functor D(Ab)→ D(Ab) also by K 7→ K̂, and call it the p-adic completion functor.

(b) Show that the p-adic completion functor is given by the formula

K 7→ R lim
n

(K ⊗LZ Z/pn).

2More generally, it is convenient to adopt the same terminology if f and FrobS are Tor-independent.
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(c) Show that the p-adic completion functor is exact, i.e., preserves exact triangles.

(d) Show that ̂̂K ' K̂, i.e., the completion is complete.

(e) Show that K ∈ D(Ab) is complete (i.e., K ' K̂) if and only if RHom(Z[1p ],K) ' 0.

(f) Prove Nakayama’s lemma: for K ∈ D(Ab), if K ⊗LZ Z/p ' 0, then K̂ ' 0.

(g) If A is a p-divisible abelian group, show that Â ' Tp(A)[1], where Tp(A) is the Tate module.

The cotangent complex, perfect rings, perfectoid rings

8. Let A → B be an lci map of rings, i.e., after Zariski localization on both rings, the map factors as
A

a−→ P
b−→ B, where a is a polynomial extension, and b is a quotient defined by a regular sequence.

(a) Show that H1(LB/A) is torsionfree (i.e., not killed by a nonzerodivisor on B).

(b) Show that if A → B is flat and f ∈ A is a nonzerodivisor with A[ 1f ] → B[ 1f ] smooth, then
LB/A ' Ω1

B/A.

(c) Let K/Qp be a nonarchimedean extension, and let L/K be an algebraic extension. Show that
LOL/OK

' Ω1
OL/OK

.

9. Let A be a perfect Fp-algebra.

(a) Use the “transitivity triangle” to show that LA/Fp
= 0.

(b) Deduce that A admits a unique flat deformation over Z/pn for any n.

(c) Using (a), show that the derived p-adic completion of LW (A)/Zp
vanishes. Convince yourself

that it is necessary to take a completion here.

(d) Using the transitivity triangle, show that for any mapA→ B of perfect Fp-algebras, the derived
p-adic completion of LW (B)/W (A) vanishes.

(e) More generally, if R → S is a map of p-torsionfree Zp-algebras such that R/p → S/p is
relatively perfect, show that the p-adic completion of LS/R vanishes.

10. Let A→ B be a map of integral perfectoid rings.

(a) Show that the square
W (A) //

θ
��

W (B)

θ
��

A // B

is a pushout square of commutative rings. (Hint: use [BMS2, Remark 3.11]).

(b) Show that the derived p-adic completion of LB/A vanishes.

11. Give examples of:

(a) Give an example of a map A → B of finite type C-algebras where LB/A ∈ D≤−2(B), i.e.,
H i(LB/A) = 0 for i ≥ −1.
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(b) A p-adically complete ring A such that A/p is semiperfect, but W (A)
θ−→ A does not have a

principal kernel.

(c) A semiperfect Fp-algebra A such that LA/Fp
is nonzero.

(d) (*) An Fp-algebra A such that LA/Fp
= 0, but A is not perfect.

12. This exercise is meant to illustrate a general feature of certain valuation rings, and is not relevant to
the rest of these notes. Let Zp → V be a faithfully flat map with V a valuation ring. Assume that
Frac(V ) is algebraically closed.

(a) (*) Show that V can be written as a filtered colimit of regular Zp-algebras. (Hint: use de Jong’s
alterations theorem from [dJ]).

(b) Deduce that V [1p ] is ind-smooth over Qp. (This can be proven without using (a)).

(c) Show that any regular Zp-algebra is lci over Zp.

(d) Deduce that LV/Zp
' Ω1

V/Zp
.

Group cohomology and the pro-étale site

13. Fix a finite group G. Let X be a topological space equipped with an action of G, and let f : X → Y

be a G-equivariant map (for the trivial G-action on Y ). Let A be a coefficient ring.

(a) Show that the natural pullback H0(Y,A) → H0(X,A) has image contained inside the G-
invariants H0(X,A)G. Using the spectral sequence for a composition of derived functors,
deduce that there is a natural map H i(Y,A) to groups H i

G(X,A) which are computed by a
Hochschild-Serre spectral sequence

Ei,j2 : H i(G,Hj(X,A))⇒ H i+j
G (X,A).

(b) Lift the preceding assertion to construct a natural map

RΓ(Y,A)→ RΓ(G,RΓ(X,A))

in the derived category D(A).

(c) If f is aG-torsor (i.e., f realizes Y as the quotient ofX byG, and theG-action has no non-trivial
stabilizers on X), then show that the maps above are isomorphisms, i.e., we have

H i(Y,A) ' H i
G(X,A) and RΓ(Y,A) ' RΓ(G,RΓ(X,A)).

(d) Assume that X is contractible, and that f is a G-torsor. Show that the above maps identify
H∗(X,A) with the group cohomology H∗(G,A) of G.

14. The goal of this exercise is to show that the ideas going into the construction of the pro-étale site lead
to a sheaf-theoretic perspective on continuous cohomology, at least with a large class of coefficients;
see [BS, §4.3], [Sc2, §3, erratum] for more. Let G be a profinite group. Let CG be the category of sets
equipped with a continuousG-action. Equip CG with the structure of a site by declaring all continuous
surjective maps to be covers. Write H∗(CG,−) for the derived functors of F 7→ F(∗), where ∗ is the
1 point set with the trivial G-action.
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(a) Let X be a topological space equipped with a continuous G-action. Show that HomG(−, X)

defines a sheaf on CG. We write FX for this sheaf; if X is a G-module, then FX is naturally a
sheaf of abelian groups, likewise for rings, etc..

(b) Let A be a topological abelian group equipped with a continuous G-action. By considering the
Cech nerve of the continuous G-equivariant map G→ ∗, show that there is a canonical map

cA : H∗cts(G,A)→ H∗(CG,FA).

Write D for the category of all A such that cA is an isomorphism.

(c) Show that any discrete G-module lies in D. (Hint: first show the analogous assertion for the
category C

f
G of finite G-sets with a continuous G-action, and then analyze the natural morphism

Sh(CG)→ Sh(CfG) on the categories of sheaves.)

(d) Fix a sequence

M1 →M2 → ...→Mn
fn→Mn+1....

in D with Mi being Hausdorff and the fn’s being closed immersions. Show that the colimit
colimiMi also belongs to D.

(e) Fix a sequence

...Mn+1
fn→Mn → ....→M2 →M1 →M0 = 0

Assume that each fn has sections after base change along a continuous map K →Mi with K a
profinite set, and that ker(fn) ∈ D for all n ≥ 1. Then limnMn ∈ D.

(f) Fix a finite extension K/Qp. Let G = Gal(K/K). Fix a completed algebraic closure Cp of K,
and let V be a finite dimensional Cp-vector space with a continuous semilinear G-action. Show
that V ∈ D.

15. LetG = ⊕ni=1Zp ·γi be a finite free Zp-module with generators γi; we viewG as a profinite group. Let
M be a discrete G-module. Show that H∗cts(G,M) is computed as the cohomology of the complex

⊗ni=1

(
M

γi−1→ M
)
.

Étale and de Rham cohomology in equicharacteristic p

16. Let k be a field of characteristic p > 0 and X a k-variety. Compute H1(Xét,Fp) if

(a) X = A1
k (Hint: Use the Artin-Schreier exact sequence).

(b) X is a smooth, proper, geometrically connected curve of genus 1 (Hint: The answer depends on
the curve).

17. Let X be a smooth variety over a perfect field k of characteristic p > 0.

(a) Suppose X admits a flat lift X ′ to W2(k), and that Frobenius lifts to X ′. Show that the Cartier
isomorphism lifts to a map of complexes

Ω1
X(p)/k

→ F∗Ω
•
X/k.
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(b) In the situation above, let F1, F2 be two different lifts of Frobenius. Show that the maps con-
structed in (a) using these two lifts are homotopic.

(c) Now suppose thatX lifts toW2(k), but do not assume that Frobenius lifts. Show that the Cartier
isomorphism lifts to a map

Ω1
X(p)/k

→ F∗Ω
•
X/k

in Db(X). (Hint: Cover X by affines and use a Cech complex.)

p-adic Hodge theory

18. Let X be a commutative group scheme over OCp .

(a) Use the construction of the Hodge-Tate comparison map to define a pairing∫
: Tp(X)×H1

dR(X)→ Cp(1).

(b) One can think of the above pairing as “integrating a form along a (closed) cycle.” What is the
analogue of a path integral?

(c) In the case X = Gm, make everything as explicit as you can.

19. Let C be a complete and algebraically closed extension of Qp. Let K/Qp be a finite extension that is

contained in C. Recall that there is a natural surjective map Ainf
θ−→ OC . Write B+

dR → C for map
obtained from the previous one by inverting p and completing, i.e., B+

dR is the completion of Ainf [1p ]

along ker(θ[1p ]).

(a) Show that the map OK → OC lifts across Ainf → OC if and only if K/Qp is unramified.

(b) Show that the map K → C always lifts uniquely across B+
dR → C.

Now let X0/K be a smooth rigid space, and let X/C denote its base change.

(c) Using the deformation theoretic interpretation from the notes, show that the complex τ≤1Rν∗ÔX
on Xproet splits for X as above.
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6. Projects

This section was written jointly with Matthew Morrow. Let C be a complete and algebraically closed
extension of Qp.

1. Understand the Hodge-Tate filtration for singularities1.The primitive comparison theorem holds
true for non-smooth spaces X as well. Thus, for X proper, we still have a “Hodge-Tate” spectral
sequence

Ei,j2 : H i(X,Rjν∗ÔX)⇒ H i+j(X,C).

It is thus of interest to understand the sheavesRjν∗ÔX . This problem turns out to be closely related to
the singularities of X . Recall first that a ring R is called semi-normal if and only if, for any y, z ∈ R
satisfying y3 = z2, there exists a unique x ∈ R satisfying x2 = y, x3 = z. A relevant source
for the basic theory of semi-normal rings, schemes, and rigid analytic spaces is [KL, §1.4, §3.7]. In
particular, perfectoid rings are semi-normal and so, for any rigid analytic space X , the pro-étale sheaf
ÔX takes values in semi-normal rings; in fact, the pro-étale site of X and of its semi-normalisation
are equivalent (as ringed topoi).

(a) Deduce that if X is not semi-normal, then OX → R0ν∗ÔX cannot be an isomorphism. See this
explicitly in the case of a cusp X = Sp(C〈X,Y 〉/(X2 − Y 3)) by computing H0(Xproet, ÔX).
In fact, [KL, Theorem 8.23] proves that OX → R0ν∗ÔX is an isomorphism if and only if X is
semi-normal; their proof shows how resolutions of singularities enters the picture.

(b) Are the sheaves Rjν∗ÔX coherent? A first attempt might be to try and reduce to the smooth
case using resolution of singularities.

(c) The construction given in the notes still produces a map

Ω1
X/C(−1)→ R1ν∗ÔX .

When is this map an isomorphism? Moreover, when is the induced map Ωi
X/C(−i)→ Riν∗ÔX

an isomorphism? For example, is it true with mild control on the singularities of X , such as
quotient singularities? Note that if X has quotient singularities (say X = Y/G) then the “h-
differential forms on X” equal the G-stable forms on Y , by [HJ, Proposition 4.10]. For general
X , the case j = dimX may be most accessible.

1This question comes from David Hansen via Kedlaya.
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(d) Combining the isomorphism of (a) with [HJ, Proposition 4.5] shows that R0ν∗ÔX is related
to the h-sheafification of OX (here we implicitly assume that X is an algebraic variety, and
we abusively also write X for the associated rigid analytic space). Is there a similar relation
between Rjν∗ÔX and the h-sheaves Ωj

−/C,h obtained by sheafifying U 7→ H0(U,Ωj
U/C) for the

h-topology on varieties over C. For example, do we have

dimH i(X,Rjν∗ÔX) = dimH i
h(X,Ωj

−/C,h)

when X is proper? Note that H i
h(X,Ωj

−/C,h) is grj for Deligne’s Hodge filtration on H i+j
dR (X).

An alternative approach to some of these questions may come from the notion of sousperfectoid
rings. An affinoid algebra R over C is said to be sousperfectoid if and only if there exists a perfectoid
Tate algebra R∞ and a continuous algebra homomorphism R → R∞ which admits an R-module
splitting. It seems to be true that this is equivalent to R being semi-normal2. If R → R∞ is flat, then
sousperfectoid implies semi-normal by [KL, Lemma 1.4.13].

2. Understanding torsion discrepancies. Let X be a proper smooth formal scheme over OC with
generic fibre X . In this situation, we have several natural integral cohomology theories:

• Étale cohomology Hn(Xet,Zp).

• Hodge-Tate cohomology Hn(θ̃∗RΓA(X)).

• de Rham cohomology Hn
dR(X/OC).

• Crystalline cohomology Hn
crys(Xk/W (k))

• Hodge cohomology ⊕i+j=nH i(X,Ωj
X/OC

).

Each of these is a finitely presented module over a p-adic valuation ring, and they all have the same
rank by fundamental results of p-adic Hodge theory. The first four of these are essentially specializa-
tions of RΓA(X); the order in which they appear above is roughly inverse to the order in which the
corresponding specializations are described in Ainf -picture in the notes.

The main theorems of [BMS2], as explained in the notes, imply that the torsion in étale cohomology
is bounded above by the torsion in the de Rham and crystalline cohomology. One expects the same
relation to hold for Hodge and Hodge-Tate cohomology as well:

(a) Does one have

`Zp(Hn(Xet,Zp)tors) ≤ `OC
(H i(θ̃∗RΓA(X))tors) ≤

∑
i+j=n

`OC
(H i(X,Ωj

X/OC
)tors),

where `OC
is the normalized length, as explained in the notes?

2This is asserted in problem 6 of http://scripts.mit.edu/˜kedlaya/wiki/index.php?title=The_

Nonarchimedean_Scottish_Book. It might be worthwhile to rediscover the proof.
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As we have seen in the notes, such inequalities can sometimes be strict, and cannot in general be
upgraded to an inclusion of torsion subgroups. The goal of this project is to investigate relationships
between the torsion subgroups occurring in these cohomology theories, both theoretically as well as
through examples. Two natural unanswered questions here are:

(b) By [BMS2], de Rham and Hodge-Tate cohomologies occur as specializations of RΓA(X) along
θ and θ̃. Is there a relation between the torsion subgroups of these cohomology theories? For
example, is it always the case that `OC

(Hn
dR(X/OC)tors) ≥ `OC

(Hn(θ̃∗RΓA(X))tors)? In a
search for counterexamples, a natural starting point, as in [BMS2, §2], is to construct “inter-
esting” finite flat group schemes over OC , and to consider cohomology of quotients of smooth
projective schemes by free actions of such groups.

(c) Does there exist an example of an X as above where the étale and de Rham cohomologies are tor-
sionfree, but the Hodge cohomology is not? What about an example where Hodge cohomology
has more torsion than de Rham cohomology?

Notice that we did not include crystalline cohomology above. The reason is that [BMS2, Lemma
4.18] asserts: for a fixed n, Hn

crys(Xk/W (k)) is torsionfree if and only if Hn
dR(X/OC). This is a

statement entirely on the “de Rham” side and requires no knowledge of étale cohomology; however,
the proof passes through the Ainf -cohomology theory and étale cohomology of the generic fibre.

(d) Find a direct proof of the preceding assertion without passing through étale cohomology or the
generic fibre.

We end by briefly discussing spectral sequences. The construction of the Hodge-Tate spectral se-
quence also works integrally to give a spectral sequence

Ei,j2 : H i(X,Ωj
X/OC

){−j} ⇒ H i+j(θ̃∗RΓA(X))

converging to the Hodge-Tate cohomology introduced above.

(e) Show that by reduction modulo the maximal ideal of OC , the integral Hodge-Tate spectral se-
quence admits a natural map to the conjugate spectral sequence

Ei,j2 : H i(X
(1)
k ,Ωj

X(1)/OC
)⇒ H i+j

dR (Xk/k),

where X
(1)
k denotes the Frobenius twist relative to k of X. (This exercise entails understanding

the construction of RΓA(X).)

(f) Find an X as above for which integral Hodge-Tate spectral sequence does not degenerate. In
view of the preceding compatibility, a natural starting point would be to find a smooth variety
Y/k for which the conjugate spectral sequence does not degenerate, and then find a lift X of Y to
OC . Note that the non-degeneration of the conjugate spectral sequence is closely related to the
non-liftability of Y to W2(k) (and thus the non-liftability of X to Ainf/ ker(θ)2); this suggests
that a suitable Y might be constructed by approximating a finite flat group scheme over k that
lifts to OC but not to W2(k).
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3. Perfectoid universal covers for abelian varieties: Let A/C be an abelian variety. Consider the
tower

A∞ :=
(
...→ A

p−→ A
p−→ A

)
of multiplication by p maps on A. This tower is an object A∞ ∈ Aproet, and the structure map
f : A∞ → A is a pro-étale Tp(A)-torsor. The question we want to explore is: is A∞ representable
by a perfectoid space? More precisely, is there a perfectoid space that is ∼ to (in the sense of [Sc3,
Definition 2.20]) the limit of the above tower? In some ways, this question appears to be the p-adic
analog of the fact that the universal cover of a complex abelian variety is a Stein space3.

Why this should be true. When A has good reduction, the arguments sketched in the exercises explain
why A∞ is naturally a perfectoid space. More generally, an affirmative answer in general can likely
be extracted in general from a careful reading of [Sc4, §III]. However, any such argument would be
necessarily indirect (as it would entail invoking the structure of the boundary in the minimal com-
pactification of Ag, as well as using the Hodge-Tate period map to move the moduli point of A to a
“sufficiently close to ordinary” one), and it would be better to come up with a direct argument that is
intrinsic to A.

Possible strategy via p-adic uniformization. One might try to construct A∞ as a perfectoid space by
mimicing the construction that works in the good reducition case using the Neron model to replace the
non-existent good model, i.e., by contemplating the generic fibre of the p-adically completed inverse
limit of multiplication by p on the identity component A of the Neron model of A. However, this
does not quite work: when A has bad reduction, the generic fibre of the p-adic completion of A is
not all of A, but rather just an open subgroup of A (as adic spaces), so at best this approach would
construct an open subspace of A∞ as a perfectoid space. But this suggests an obvious strategy: using
p-adic uniformization of abelian varieties, we may write A = E/M in rigid geometry, where E
is an extension of an abelian variety B with good reduction by a torus T (and is constructed as an
enlargement of the generic fibre of A), and M ⊂ T ⊂ E is a lattice of “periods” defining A. In fact,
the covering map π : E → A can be constructed from A (see [BL1, §1] for a summary, and [Hu1, §5]
for the adic geometry variant) and has sections locally on A. Thus, one may attempt the following:

(a) Try to show that the inverse limit of multiplication by p on E is naturally a perfectoid space by
putting together the analogous assertions for B and T .

(b) If (a) works, then try to conclude that A∞ is perfectoid using the fact that π has local sections.

Assuming the preceding strategy to represent A∞ by a perfectoid space works, we would learn:

• Unlike the approach via the Hodge-Tate period map, the approach via p-adic uniformization
also potentially applies to “abeloid spaces” A that are not necessarily algebraic (see [Lu]), i.e.,
the rigid-geometry analog of complex tori; this appears to be the correct generality, at least in
analogy with the universal cover from complex geometry.

3For example, the perfectoidness of A∞ implies the following, which can also be seen using the Stein property of the universal
cover in complex geometry: for any constructible sheaf F of Fp-vector spacesA, the direct limit lim−→n

Hi(A, [pn]∗F ) vanishes for
i > dim(Supp(F )). In other words, the cohomology of constructible Fp-sheaves on A∞ behaves like that on a Stein space.
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• The perfectoidness ofA∞ should yield, via [Sc4, II.2] and almost purity theorem, the following:
for any subvariety X ⊂ A, the “universal cover” X∞ → X is naturally a perfectoid space. For
the more geometrically inclined, it might be fun to try to prove this last statement directly when
X is a hyperbolic curve.

4. Lη and pro-complexes. This is essentially a question in homological algebra, but it is motivated by
integral p-adic Hodge theory. Fix a complex K ∈ D(Zp) that is derived p-adically complete together
with an isomorphism φ : Lηp(K) ' K. The Berthelot-Ogus theorem [BO2, §8] tells us that the
crystalline cohomology complex of any smooth affine scheme in characteristic p carries this structure.
What can be said about such K’s in general?

(a) Iterating φ gives an isomorphism Lηpn(K) ' K. Proposition 4.3.1 then tells us that K/pn can
be represented by the chain complex (H∗(K/pn),Bockpn) for all n. As K is derived p-adically
complete, it is tempting to guess that the pair (K,φ) carries no homotopical information. More
precisely, say C is the∞-category4 of all K as above (suitably defined). Is C discrete?

(b) One has the standard restriction map K/pn+1 → K/pn. Via the identification of K/pn as
(H∗(K/pn),Bockpn), one can check that this gives a map R : H i(K/pn+1) → H i(K/pn) on
the i-th term that is compatible with the Bockstein differential. On the other hand, there is also
a standard map F : H i(K/pn+1) → H i(K/pn). How are these related? Is there a connection
to the F -V -pro-complexes appearing in the work of Langer-Zink (see [LZ], [BMS2, §10.2]).

4If you don’t know what this means, ask me for a concrete formulation.
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