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1. FUNCTIONS ON CONGRUENCE RINGS

As was emphasized by C.F. Gauss in the Disquisitiones Arithmeticae (and probably much earlier),
the concept of congruences (a.k.a arithmetic progressions of some modulus g, a.k.a the ring Z/qZ)
is central in number theory. It is therefore fundamental to understand spaces of functions over the
ring Z/qZ.

One of the first classes of such functions to have been studied systematically (and one of the
most interesting even today) is the group of Dirichlet’s characters of modulus ¢, (Z7q?)x, the group
homomorphisms

X :(Z/qZ)* — C*.
Indeed these functions enter crucially in Dirichlet’s proof that there are infinitely many primes in
any admissible arithmetic progression of modulus ¢ [7].

The studying of integral solutions of diophantine equations is another important source of func-
tions on congruence rings: these arise as a manifestation of some general local-global principles or
more directly when using the circle method. For instance, while investigating the set of representa-
tions of an integer d by some integral, positive, definite, quadratic form in four variables ¢(z, y, z, t),
ie. the integral solutions to the equation

(1‘1) d = Q('CC7 y? Z? t)? x? y? Z7t 6 Z7

Kloosterman came up with the very important function modulo ¢, the so-called ”Kloosterman
sums”,

1
m (mod q) — Kly(m;q) := i Z eq(mx +y),
zy=1 (mod q)

where e,4(-) denote the additive character of (Z/qZ,+)

2mix

).

By evaluating the fourth moment of this function over Z/qZ, Kloosterman established the following
non-trivial bound

(1.2) Kly(m; q) < ¢¥/3~ Y2

and deduced from it an asymptotic formula for the number of solutions to the equations (1.1]).
Kloosterman sums are also fundamental for the analytic theory of modular forms, ie. analytic
functions living on arithmetic quotients of the Poincare upper-half space:

f:zeH/T - C, H={2=2+4+iyc€ C, y >0}, I C SLy(Z).

One possible connection is via Petersson’s formula (for holomorphic forms) and Kuznetsov’s for-

mula (for Maass forms) which compute averages of Fourier coefficients of these in terms of sums

of Kloosterman sums. This together with Kloosterman’s bound implies non-trivial bounds

for the Fourier coefficients of modular forms and non-trivial lower bounds for eigenvalue of the
1

eq(x) == exp(



hyperbolic Laplacian. This, in turn, together with the theta correspondance implies that the set
of representations suitably normalized becomes equidistributed [7,/17].

With further developments in analytic number theory and other areas, new and more complicated
functions have appeared, like the hyper-Kloosterman sums

1
L e | (mod q)

and it became apparent that not only the size of these functions is important but also the way these
functions vary with m and ¢. When trying to understand these questions, the Chinese Reminder
Theorem is certainly a good start; one is then reduced to the case of ¢ a prime power and there the
hardest case is when ¢ is itself a prime; the congruence ring Z/¢Z is then a finite field noted Fj,.

2. TRACE FUNCTIONS

When ¢ is a prime, the Dirichlet characters, Kloosterman sums and hyper-Kloosterman sums
are special case of trace functionsﬂ

Trace function have their origin in the problem of counting the number of points on algebraic
varieties defined over the finite filed Fy. After some initial work of Hasse for elliptic curves, Weil
solved the problem completely for curves of any genus and on the way established the Riemann
Hypothesis for zeta functions of curves |18]. As a consequence, Weil also obtained the optimal
bound for Kloosterman sums of prime modulus,

| Kla(m;q)] <2

and similar bounds for more general algebraic exponential sums in one variables. Weil also made
a serie of precise conjectures to address the counting problem fo higher dimensional varieties.
The Weil conjectures triggered the invention of etale (¢-adic) cohomology (¢ # ¢ a prime) by
Grothendieck which was further developed by him and his school through the SGAs and which
culminated in Deligne’s proof of the Weil conjectures [1}2].

A trace function

K:F,—Q,—C
is associated an f-adic sheaf noted J; the datum F is ”essentially” an ¢-adic Galois representation

o7 : Gal(Fy[X]**/Fq) = GL(F)

where J¢ is a finite dimensional Q-vector space. Given some F,-point z € A'(F,) at which the
representation o is unramified (the inertia group I, acts trivially on H’E) the value K (z) is given
as the trace of the Frobenius conjugacy class

K(z) = tr(Frob, |Fg);
more generally, K could be extended to all x by
K (x) = tr(Frob, \3’%”)

although there are other possibilities of extension.
For applications, we will impose some extra boundedness conditions:
- The eigenvalues of the Frobenius elements view as complex numbers via the above embed-

ding have absolute values bounded by 1 (more precisely the ¢-adic sheaf is mixed of weight
<0).

IThat Kloosterman and hyper-Kloosterman sums are are deep results of Deligne and Katz
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- Whenever ones has to consider families of traces functions possibly for varying character-
istics ¢, we assume that the dimension and the Artin conductors of all the representations
involved are bounded independently of q.

These imply that the trace function is bounded independently of ¢ in absolute value.

For our purpose, the important properties satisfied by trace functions are the Lefschetz trace
formula which expresses the sum of K over A}(F,) as a sum of traces of the Frobenius Frob, €
Gal(F,/F,) acting on related ¢-adic vector spaces (the ¢-adic cohomology groups of F)

Theorem (Lefschetz trace formula).
2

> K(x) =) (—1)'tr(Froby, |H§(A1F7|ff).

zeFy =0
The dimensions of these spaces are under control (for instance H, E(A;—‘?) = 0 if oy is geomet-
q

rically irreducible (ie. when restricted to Gal(F,[X]**®/F,), oy is irreducible). The second main
result control the size of the eigenvalues

Theorem (Deligne’s Theorem on Weights). The eigenvalues of Frob, acting on Hg(A;—]ff) are
q

bounded in absolute values by ¢'/2.

In particular, if g5 is geometrically irreducible (which is the case of hyper-Kloosterman sums)

one has
> K(z) = O(¢"?)
z€F,

which beat the trivial bound Og(q) by a factor ¢'/2.

3. COURSE AND PROJECT

This course will not be a presentation f-adic cohomology per se but rather a presentation of trace
functions from a very utilitarian point of view, with an eye on applications to analytic number
theoretic problems and by using /-adic cohomology as much as possible as a black box using the
representation theory language along the line initiated by Fouvry, Kowalski and myself [3H5].

A trace function while of geometric origins is naturally identified with a (g-periodic) function on
Z which itself is contained in the field of real numbers and so can and should be compared with
other functions on Z of more analytical origin; building on the works and books of Katz [9-11] we
will discuss specific method permitting to evaluate how much a given trace function correlate with
other arithmetic functions: for instance, identifying F, with the interval Z N[0, ¢ — 1] it is natural
to try to evaluate the partial sum

> K(@)

0<e<X
which has no clear geometric interpretation unless X = ¢ — 1 (in which case one case invoque the
Lefschetz trace formula and Deligne’s theorem.) The Polya-Vinogradov method enable to handle
this question in a satisfactory way as long as X is sufficiently large (a bit larger than q/ 2) and it
eventually reduces to evaluating the following complete sums for y € F,

1
FT(K)() = 75 3 K(@)eg(ay)
4 zcFy
to which one can use the above mentioned theorems because the function

z = K(r)eq(ry)
3



is most of the time a trace functiorﬂ This is of course a very simple example and more complicated
problems yield more complicated manipulations and then more complicated trace functions to
evaluate on average.

We will discuss a variety of methods coming mainly from the works of Deligne and Katz to decide
when two trace functions correlate or not (ie. when the sum

> K(@)K'(z)

z€F,

is large or small) and apply these to specific classical problems including relevant parts of Y. Zhang
proof of the existence of bounded gaps between primes and the improvement that followed within
the Polymath8a project [6,16L/19].

The project sessions will be concerned with handling new analytic number theoretic problems
or with improving existing results, using the tools on trace function gathered during the course.

3.1. Project 1. Sometime ago, together with Fouvry [12], inspired by earlier work of Friedlander
and Iwaniec, we studied bilinear sums of algebraic exponentials of the shape

Z Z am B K (mn)

m<Mn<N
for K of the shape
K(z) :=eq(f(2)), [ € Z(X).
In some special cases we were able to obtain bounds for such sums when the length of the variables
M, N are slightly below the so-called Polya-Vinogradov range ¢'/2. In particular, we were able

to do so for auy,, B, general complex numbers (dealing with ”Type II” bilinear sums) and f a
quasi-monomial ie. of the shape

F(X)=X*+aX, keZ-{0,1,2}.

Recently, jointly with Kowalski and Sawin, we obtained such bounds in the more difficult case of
K being hyper-Kloosterman sums. The objective of this project will be to extend the bounds of
[12] to more general fractions f using some of the methods developed in [14].

3.2. Project 2. In the paper [14], for K = Kl an hyper-Kloosterman sum, we remarked (Remark
2.7) that our estimate on the bilinear sum

Z Z o Brn K (mn)

m<Mn<N

could be improved by using a higher exponent in some application of the Holder inequality. The
objective of this project will be to verify that claim (by following closely the arguments of [14]) and
to look whether these improved estimates would transfer to an improvement of the error term of
Theorem 1.5 of the same paper.

3.3. Project 3. In the recent preprint [13], Khan and Ngo have given a nice improvement (3/8)
on the work of Iwaniec and Sarnak [8] who gave a lower bound (1/3) of the proportion of Dirichlet
characters x of conductor ¢ (prime) whose central value L-function L(x, 1/2) does not vanish. As
in [8] the proof uses the mollification method but the source of improvement ultimately comes from
bounding non trivially sums of (products of) exponential sums. The objective of the project will
be to understand the method, what is the limiting factor and if a more sophisticated treatment of
the sums of exponential sums could improve further the proportion obtained in [13|. This project
is a bit more speculative than the two others.

2 1t is a deep result of Laumon that the function y — FT(K)(y) is most of the time a trace function [15]
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