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The following problems vary in scope and character, as well as difficulty. They are
all open-ended: readers are encouraged to continue their work and look for questions
beyond what is stated here.

Problem 1(a) consists essentially in applying a result in a different field in a not
completely obvious way. (Thanks are due to E. Lindenstrauss for the reference. The
application came out of a discussion between B. Bukh and the author, with further
participation by A. Harper.) Problem 1(b) is open, and may be hard; B. Bukh, M.
Kassabov and the author did some initial exploration.

Problem 2 is related to Problem 1(b). It is also open. It may be relevant to
practical applications, related to hashing [BSV].

Problem 3 is essentially asking the reader to give what would presumably be the
“right” (still unknown) proof of a known result. As is usual, the “right” proof might
give a result more general than what we know.

Problem 4 is very challenging but not completely beyond what can arguably be
reached given the current state of knowledge. It is very much a longer-term project;
its presence here is meant to encourage readers to become familiar with the literature.

Problem 1. Let p be a prime, A € F;. Assume A has order > logp.

(a) Write e, (t) = €™/, Konyagin [Kon92, Lemma 6] showed that, for any € > 0,
there is a ¢ > 0 such that, for any p > ¢, prime and a, A € (Z/pZ)* with A of order
> cc(logp)/(loglogp)'~¢ in the group (Z/pZ)*,

1
(logp)>”*”

J
> HaN /p}? =

j=0

where J = [cclogp(loglogp)?| and {z} is the element of (—1/2,1/2] such that
x — {z} is an integer.

Show that this means that S(a) = ijo e(aM /p) satisfies [S(a)| < J +1 —
1/(10gp)36/4/2 for every o € (Z/pZ)*. Use this to show that every element of Z/pZ
can be written as a sum Zfil )\j¢7 where 0 < j; < J and K is bounded by

e/4 e/4 €
K < J(logp)*" *(logp) <. (logp)**" 2(loglogp)* <. (logp)®>/**e.
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(Hint: show that for any sequence r,...,r; € Z/pZ, the number of ways of express-
ing x € Z/pZ as a sum of K elements (not necessarily distinct) of a subset A C Z/pZ
equals

1
~ Y Sal@)e(—az/p),
p a€Z/pZ
where Sa(a) = ) ,c 4 e(aa). This is the circle method over Z/pZ.)
Conclude that the graph I', y with vertex set ), and edge set

{(z,xz+1) 2z eFplU{(z,\z) 2 € Fp}

has diameter <, (logp)>/2*+<.

(b) Given A € F), of order > logp and an element x € Fp, can you find a path
from 0 to z of length O((logp)®™M), in time O((log p)°™M)?

We may call this a navigation problem, to borrow a term from [Lar03].

Notice that the bounds should be independent of A and z. You should not assume
that A is the reduction mod p of a fixed integer A\g. (If you assume that, the task is
trivial: write = in base A\gp.) You may allow travel on edges in either direction — i.e.,
you may consider the undirected graph

Hz, 2+ 1}z eFplU{{z,\z} :x € Fp}

(How does the problem on the directed graph I'j, reduce to this?

Some simple special cases:

e Aaroot of A2 = A —1 =0 mod p (Kassabov). Hint: let 7 be either of the real
roots of 72 —r —1 = 0. Then 7™ — r~" is the nth Fibonacci number. Start
by showing that every integer n can be written as a short (length O(logn))
sum of Fibonacci numbers quickly.

e )\ aroot of P(\) =0, where P(z) = an2™ + ...+ ao, a; € Z and there is an
0 < < nsuch that 3, |a;| < [a;| (Bukh). Hint: think of the Euclidean
algorithm. The constants in the diameter bound will depend on the a;’s.

Problem 2: Nawvigation in SLs.

Let g1,92 € G = SLa(FF,) generate G. We know that the diameter of the Cayley
graph of G with respect to {g1, g2} is O((logp)°(M)), where the implied constants
are absolute. The navigation problem here is as follows: given g1, g2 as above,
and h € SLy(F),), find a path in the Cayley graph from the identity to h of length
O((log p)°®), in time O((log p)°M)), say.

It is enough to be able to solve the problem for every h of the form

2 69

(Sketch why.) Tt would also be enough to solve it for every h of the form

r 0
0 r1)°

say. (Again, sketch why.)
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The problem was solved in [Lar03] for the special case

o= -G )

The solution is based on the Euclidean algorithm; it constructs any h of the form
quickly. It is a probabilistic algorithm: it finds a short path with probability > 1/2
at any given try.

Unfortunately, the algorithm breaks down already for

o= )4 9)

A solution valid for the set of generators and h arbitrary would already be
noteworthy.

Problem 3. Bourgain, Konyagin and Glibichuk [BGKO06| proved that, if H is a
subgroup of Fy with [H| > p°, and a € [y, then

S efax/p)

reH

(4) <p % |H|,

where ¢’ > 0 depends only on §. There are also more general versions, where, instead
of H, we have the product of r arbitrary sets (provided the product of their sizes is
at least p'*?), or where the condition |H| > p° is relaxed. See later versions of the
method in, e.g., [Boul0).

The proof relies crucially on the sum-product theorem, or rather on intermediate
results leading to it, such as the fact that

1
5) 6Y2X] >  max(| X[V, p)

for any X CFp, Y CFy with X = —-X,0€ X, 1 €Y. As we have already seen, ()
can be derived naturally from statements on growth in the affine group.

The (rather open-ended) task here would be to see whether one can prove estimates
on exponential sums in a natural way by using a statement on growth in the affine
group directly. Can one obtain a family of results by considering the action of a
solvable group on a nilpotent subgroup, in general?

Quite incidentally, there is a classic problem in number theory that remains open,
namely, that of showing that, for any interval I in Z/pZ of length > p° and any
character x of (Z/pZ)*,

(6) > x(@)| <p 1,

zel

where &' > 0 depends only on §. This is unknown for § < 1/4. There were once
hopes that might lead to a proof for @, but this hasn’t been the case. There
is a hidden asymmetry here: a maximal torus defined over K in SLo(K) acts on a
unipotent subgroup, but not viceversa. Discuss.
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Problem 4. The symmetric group Sym(n) is the group of all permutations of n
elements. The best known bound for the diameter of the Cayley graph of the sym-
metric group Sym(n) with respect to arbitrary generators is exp((logn)*+€) [HS14].
A folk conjecture (predating Babai’s conjecture [BS92|, which is more general) states
that the diameter should be O(n®M).

This is a difficult problem of interest in itself. There is also the additional moti-
vation of its probable relevance to bounding the diameter of linear algebraic groups
with unbounded rank. That is: yes, we have good bounds (of the form (log |G|)9»()
on the diameter of any Cayley graph of G = SL,,(F,), where n is bounded and p is
arbitrary; however, can we give good bounds (ideally (log|G|)°M) on the diameter
of any Cayley graph of SL,(FF3), say? Here 3 can be your favorite prime instead.

Part of the rationale here is the common view of Sym(n) as SL,, over the non-
existent field F, with one element. How to make sense of objects over Fy, is itself
an interesting, open-ended topic, with plenty of interesting literature.
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