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Course outline

The interplay among “arithmetic”, “topology”, and “geometry” has been a central
theme in algebraic geometry since long before the Weil conjectures. This course is in-
tended to give a taste of a number of related questions where ideas in one area directly
imply ideas in another, or (more subtly) suggest through metaphor statements one should
hope/believe/expect/prove to be true.

The first lecture will discuss symmetric powers. Symmetric powers in topology (a ver-
sion of a configuration space) have a great deal of structure. A simple version of this is
Macdonald’s formula for the Euler characteristic (with compact supports) of the symmet-
ric power in terms of the Euler characteristic of the original space. A fancier version is the
Dold-Thom theorem, which says that the nth symmetric power, as n → ∞, “stabilizes”
to something easily describable in terms of the original space.

(This is a first example of how “stabilization” as some parameter gets large can lead
to more structure being visible. This will be a theme of this course. It has also been a
central player in a number of Arizona Winter School courses in recent years, by Poonen,
Ellenberg, and Matchett Wood. See for example [P, EVW, VW].)

By enriching the notion of Euler characteristic, we are led to Grothendieck’s roadmap
for proving the Weil conjectures (except for the Riemann hypothesis). The topology tells
us precisely what we want from the cohomology theory. But by enriching it in different
ways, we get geometric information too — for example, on (mixed) Hodge structures of
symmetric powers — which was proved surprisingly long after the Weil conjectures (in
Jan Cheah’s 1994 Ph.D. thesis).

The second lecture will continue this theme. By trying to make sense of “Euler char-
acteristic” in as much generality, we are led to the definition of the Grothendieck ring of
varieties. Fix a field k. The Grothendieck ring K = K0(Vark) of varieties over k is generated
as an abelian group by the classes of finite type k-schemes up to isomorphism. If Y is a
closed subscheme of X, and U is its (open) complement, then we impose the condition
[X] = [U] + [Y]. Defining a product by [X][Y] := [X×k Y] makes K into a commutative ring,
with [Speck] as unit. A number of important properties factor through this ring, including
the point-counting map (if k is a finite field), and Hodge structures. This ring has some
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surprisingly pathological/interesting properties (see for example the ingenious ideas of
[LL]).

Define the “Lefschetz motive” L := [A1]. There are many reasons to consider the lo-
calization KL (including motives; motivic integration; possible rationality of the motivic
zeta function; the homotopy axiom in topology; some further reasons given in [VW]; . . . ).
Point-counting and Hodge structures both extend to this localization.

The group K is filtered by the subgroups generated by varieties of dimension at most d,
as d varies. This “dimensional filtration” extends to KL. The completion K̂L inherits not
just a group structure, but also a ring structure. (This completion was first introduced by
Kontsevich in his theory of motivic integration.)

Hodge structures extend to this completion, after suitably extending the codomain,
but the point-counting map KL → Q is not continuous (consider the sequence (2q)nL−n

where k = Fq). Ekedahl provides a fix for this problem in [E], by giving a more refined yet
geometrically natural filtration which allows for a map from the “Ekedahl completion”
to R.

By working with this “Euler characteristic”, one can show a number of results anal-
ogous to known results in arithmetic and in topology. And conversely, results one can
show working with the Grothendieck ring lead to conjectural statements in both arith-
metic and topology. (See [VW] for more.) In most cases, the cleanest statements are on
the stabilizations.

The third lecture will describe geometric analogs of recent famous stabilization results
in number theory. Bhargava’s celebrated results tell us “how many” degree d extensions
of Q there are, counted in the only reasonable way, [B1, B2]. The constructions he uses
are geometric and ancient. For example, to count quartic extensions of Q, the geom-
etry/algebra is that of how we solve quartic equations in one variable by reducing to
cubics.

On the geometric side, Mukai’s constructions of moduli spaces of curves of genus 6
through 9, and of moduli of K3 surfaces of low degree, largely parallel the classical con-
structions. As a more simple example, the moduli space of elliptic normal curves in Pn (a
nondegenerate genus 1 curve of degree n+ 1 in P1) fits into this family as well.

But Bhargava’s results suggest more — that the space of curves of genus g that are
degree d covers of P1 should in some sense stabilize for d = 3, 4, 5, as g → ∞. (These are
called trigonal, tetragonal, and pentagonal curves, respectively; for d = 2, they are called
hyperelliptic curves.) This is true for d = 3 and d = 4, and not yet shown for d = 5.
Bhargava also has an explicit conjecture for how his results extend beyond degree 5, and
this has an unexpected and somewhat alarming geometric analogue.

The geometric results translate back into arithmetic geometry to suggest possible new
results, by point-counting. We should be able to “count” the number of genus g hyper-
elliptic, trigonal, and tetragonal curves (or more precisely, understand the behavior as
g → ∞). One might even hope to “count” genus g curves over Q for small genus.
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The fourth lecture will take as its starting point the discussion of the geometry of the
space of elliptic normal curves in Pn in the third lecture. This is essentially the space of
genus 1 curves with a degree n+ 1 line bundle. The beautiful arithmetic of quadratic, cu-
bic, and quadratic fields (and even quintic fields) suggests that there should be beautiful
structure involving this moduli space, and indeed this is the case, by considering genus
1 fibrations over P1 (along with a line bundle of relative degree d). As a key base case,
I will discuss the consequences for various spaces of 12 points on P1, and then discuss
generalizations (due to A. Deopurkar and A. Patel). This lecture will make contact with
the other courses in this Winter School, as these fibrations are conveniently understood
using Brauer groups.

Sample problems

A number of problems of different flavors and different levels of difficulty naturally
come out of these ideas. Here is a representative sample.

1. How many hyperelliptic/trigonal/tetragonal genus g curves are there over Fq? Over
Q (counted by discriminant)? (I would expect a good answer only as g → ∞.)

2. Even though completing the Grothendieck ring (with L inverted) using the dimen-
sional filtration seems to destroy point-counting information, Ekedahl [E] suggests that in
good circumstances it should be possible to still count points. Can this be made precise?
Can we use this to transport geometric results directly into arithmetic, e.g., to give a new
proof of Poonen’s “Bertini theorem for finite fields” [P], and also generalizations?

3. Can one prove arithmetic results analogous to the geometric ones directly, inspired
by the geometric arguments? As one example, can one generalize Poonen’s theorem in
the way suggested by the geometric generalization?

4. This general philosophy suggests experimental questions as well. In a beautiful pa-
per [EM], Elkies and McMullen explain the following fact. If you look at the “fractional”
parts of

√
1,
√
2, . . . ,

√
n as n gets large, they get equidistributed in [0, 1) — they look

like they are randomly chosen points. But if you look at the difference between adjacent
points in this set (in (0, 1]), they no longer look random! The proof of Elkies and Mc-
Mullen is very special to this situation, but one can wonder if this is the first case of some
interesting phenomena. For example, we are looking at points on x = y2 for integral val-
ues of x; what makes this curve special? Is it that it is rational? Is there something special
for cube roots? (There are a number of questions in this vein.)
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