
Miscellaneous preliminaries on arithmetic geometry

One definition of a hyperelliptic curve is a curve C over an algebraically closed field k
whose function field K is a degree 2 extension of a purely transcendental extension of k.

1. (a) Show that every hyperelliptic curve is birational to a curve of the form y2 = f(x)
where f ∈ k[x] is a monic squarefree polynomial.

(b) Conversely, show that every squarefree f ∈ k[x] gives rise to a hyperelliptic curve
in this way.

(c) Give an example to show that two distinct monic squarefree f ∈ k[x] can lead to
isomorphic curves.

2. (a) Given a hyperelliptic curve C : y2 = f(x) as above, let D be the divisor arising from
the function x on C. Show that the degree of D is 2 and that dim H0(C,D) = 2 if
g > 0.

(b) Show that a curve C that has a degree 2 divisor D with dim H0(C,D) = 2 is
hyperelliptic.

3. Let K be the function field of a curve C over Fq. Show that the degree 0 part of the
class group of K is finite.

The following is summarized from [Poonen, §2.4]. Recall that a closed point of a scheme
X is a point x ∈ X such that {x} is Zariski closed in X. For example, over an algebraically
closed field k, there is a bijection between X(k) and the closed points of X.

4. Let X be a variety over a field k and let x ∈ X. Prove that x is a closed point if and
only if the residue field κ(x) is a finite extension of k.

Let X be a variety over the field k. The degree of a closed point x on X is [κ(x) : k].

5. (a) Let X be the plane conic over Q cut out by f(x, y, z) = 3x2 + 4y2 + 5z2. What is
the minimal degree of a closed point on X?

(b) Let Y be the plane cubic over Q cut out by g(x, y, z) = x3 + y3 + z3. What is the
minimal degree of a closed point on X?

6. Let k = Fq and let X = Spec Fqn over k.

(a) What is #X (as a set)? Are there any closed points? If so, compute their degrees.

(b) What is #X(Fqn)?

(c) Think about why these cardinalities are not the same.



7. More generally, let X be a scheme of finite type over Fq. Let Nd be the number of closed
points of degree d on X. Prove that for any n ≥ 1, we have∑

d|n

dNd = #X(Fqn).

8. Let X = A1 over Fq.
(a) Compute the number Nd of closed points of degree d on X.

(b) Check that ∑
d|n

dNd = #X(Fqn).
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Trace formulas

Many of the questions in this section rely on a basic understanding of or comfort with étale or
`-adic cohomology. If you are not familiar with these topics, see, e.g., [Milne] for a refresher.

Let X be a smooth and proper scheme over an algebraically closed field k of characteristic
6= `. Let f : X → X be a morphism with isolated fixed points. The Lefschetz fixed point
formula says that the number of fixed points of f counted with multiplicity (if finite) is the
alternating sum of the traces of f acting on the `-adic cohomology:∑

(−1)iTr(f ∗; Hi(X,Ql)).

9. With X as above, use any method to check that the self-intersection of the diagonal ∆X

in X ×X is the Euler characteristic of X.

10. If T is a non-identity element of GL2(k), show that the fixed point scheme of T acting
on P1 has degree 2.

11. Can you generalize the above question to GLn(k) acting on Pn−1?

12. Let f : P1 → P1 be an endomorphism of degree d ≥ 2. How many fixed points, with
multiplicity, does f have?

13. Let X be a smooth projective curve of genus ≥ 2 over an algebraically closed field. Use
the trace formula to show that Aut(X)→ Aut(Jac(X)) is injective.

When k has characteristic p and f is the Frobenius map, the above formula is known as the
Grothendieck-Lefschetz trace formula.

14. Show that if f is the Frobenius map, each fixed point x ∈ X has multiplicity one (hint:
this is equivalent to showing that the action of 1− df on Ω1

X is injective — why?).

15. A Brauer-Severi variety over a field k is a variety X such that Xk is isomorphic to some
projective space Pn

K
. Use the trace formula to show that a Brauer-Severi variety over a

finite field has a rational point.
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Let X be a smooth projective variety of dimension n over k = Fq. One of the earliest
applications of the trace formula was to show that the zeta function of X is rational
(part of the Weil conjectures), though the first proof of this fact was by Dwork using p-adic
analysis. Recall that the zeta function of X is defined as

Z(X; t) := exp

(
∞∑
r=1

Nr
tr

r

)
,

where Nr = #X(Fqr).

16. Check by hand that the zeta function for P1 is rational.

17. Assume X and Y are two varieties such that Nr(X) = Nr(Y ) for all r � 0. Show that
Z(X; t) = Z(Y ; t).

18. Let V be a k-vector space and α : V → V an endomoprhism. Show by induction that

exp

(
∞∑
r=1

Tr(αr;V )
tr

r

)
= det(1− αt;V )−1,

as formal power series in t.

19. Use Question 18 and the Grothendieck-Lefschetz trace formula to give a formula for the
zeta function of X as a rational function of t.

The rest of the Weil conjectures, for X as above, are summarized below:

(i) If E is the self-intersection number (∆X)2 of the diagonal ∆X of X ×X, then the zeta
function of X satisfies a functional equation:

Z

(
X;

1

qnt

)
= ±qnE/2tEZ(X; t).

(ii) (analogue of Riemann hypothesis) The zeta function of X may be written in the
form

Z(X; t) =

∏n−1
i=0 P2i+1(t)∏n
i=0 P2i(t)

,

where P0(t) = 1− t; P2n(t) = 1− qnt; and in general, Pi(t) =
∏

j(1− αijt) ∈ Z[t] with

αij algebraic integers with norm qi/2.

(iii) If Bi := degPi(t), then E =
∑2n

i=0(−1)iBi. If X arises from a variety X̃ over a number
ring R by reducing modulo a prime ideal of R, then Bi is equal to the the dimension
of the ith Betti (singular) cohomology group for X̃ considered as a analytic space (i.e.,

the ith Betti number for X̃).
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20. Verify all the parts of the Weil conjectures for X = P1 over k = Fq. How about for Pn?

21. Let X be a genus g curve over k = Fq. Use the Weil conjectures to show that the
numbers N1, N2, . . . , Ng determine Nr for all r ≥ 1.

22. Prove the Weil conjectures for elliptic curves over Fq as follows:

(a) Show that the number of Fq-points of an elliptic curve E is the degree of the isogeny
1 − F , where F : E → E is the Fq-linear Frobenius, i.e., the qth-power map on
coordinates.

(b) If F∨ denotes the dual isogeny to F , then show that

Nr = qr − (F r + (F∨)r) + 1,

where F r + (F∨)r represents the multiplication-by-a isogeny for some integer a.

(This can be done in several different ways. See [Hartshorne, Exercise IV.4.16] or
[Silverman, §V.2] if you need additional hints.)

(c) Show that

Z(E; t) =
(1− Ft)(1− F∨t)

(1− t)(1− qt)
=

(1− at+ qt2)

(1− t)(1− qt)
.

(d) Check that the functional equation holds.

(e) Show the Hasse bound for elliptic curves: |a| ≤ 2
√
q.

(Hint: you can use a Cauchy-Schwarz type inequality on degree, which is a positive
definite quadratic form, or you can compute this even more directly from the fact
that deg(b+ cF ) > 0 for all b, c ∈ Z.)

(f) Define α1 and α2 such that

1− at+ qt2 = (1− α1t)(a− α2t).

Show that |a| ≤ 2
√
q if and only if |αi| =

√
q.

(g) Verify part (iii) about Betti numbers directly.

23. Let X be a genus g curve over k = Fq. Use the Weil conjectures for the following:

(a) Check that the only nonzero Betti numbers for X are B0 = 1, B1 = 2g, and B2 = 1.

(b) Show that Frobenius acts by the identity on H0(X,Q`) and by multiplication by q
on H2(X,Q`).

(c) Show that the absolute value of the trace of Frobenius acting on H1(X,Q`) is
≤ 2g

√
q.

(d) Conclude that |q + 1−X(Fq)| ≤ 2g
√
q.
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24. Use the estimate from Question 23 to show that every genus one curve over a finite field
has a rational point.

The Weil conjectures can be strengthened to apply to quasiprojective varieties, by using
compactly supported cohomology. In (ii), one obtains that all eigenvalues on Hi

c have absolute
value ≤ qi/2 for all embeddings.

25. (A generalization of Question 15) Let X be a smooth projective variety over a finite
field k. Assume that, over k, X has a stratification by affine spaces. Show that X has
a rational point.

26. Show that every smooth quadric or cubic surface in P3 over a finite field k has a rational
point.

27. Let X be a geometrically irreducible variety of dimension n over Fq. Show that X(Fqr)
is non-empty for all r � 0. (Hint: use the trace formula and the Weil conjectures to
show that #X(Fqr) = qrn + “lower order terms” in q. Here, “lower order terms” does
not have the usual meaning, rather terms whose sum will be of smaller order.)

28. We now extend Question 24 to higher dimensions. Let X be a torsor for an abelian
variety A over a finite field Fq.
(a) Show that A×X ∼= X ×X via (a, x) 7→ (a+ x, x).

(b) Show that Nr(A) = Nr(X) if Nr(X) 6= 0.

(c) Prove that Z(X; t) = Z(A; t) (e.g., using Questions 17 and 27).

(d) Conclude that X has an Fq-rational point, so X ∼= A even over Fq.

(e) Extend the preceding to smooth connected algebraic groups A.

Fulton’s trace formula for coherent cohomology says that if X is a proper scheme
over Fq, then the trace of Frobqn on H∗(X,OX) is #X(Fqn) (mod p).

29. Use Fulton’s trace formula to redo Question 15.

30. (A generalization of Question 26) Show that every hypersurface of degree d in Pn over
a finite field k has a rational point if d ≤ n.

31. Let E be a supersingular elliptic curve over Fp. Use Fulton’s trace formula and the Weil
conjectures for elliptic curves to show that the number E(Fp) is exactly 1 + p for p ≥ 5.
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The following problem needs some a little knowledge of stacks.

32. For a groupoid X (viewed as a category with all maps being isomorphisms), define
π0(X) as the set of isomorphism classes of objects of X, and for any x ∈ π0(X), let
π1(X, x) = Aut(x). If π0(X) and π1(X, x) are finite for all x ∈ X, then we define the
cardinality

#X :=
∑

x∈π0(X)

1

#π1(X, x)
.

Note that dividing by the size of Aut(x) in counting problems is a common theme in
many of the lectures in the workshop!

For example, if X is a groupoid with a single object and a group G worth of automor-
phisms, then #X = 1/#G. Note that if Y is a stack, then Y (S) is a groupoid for any
scheme S.

(a) For a finite group G, let BG be the stack classifying G-torsors in the étale topology,
i.e., BG is the quotient stack [pt/G]. Show (either directly, or by the trace formula)
that #BG(Fq) = 1.

In contrast, the groupoid B(G(Fq)) has cardinality 1/G(Fq).

(b) For any quasi-projective variety X over Fq with an action of a finite group G, show
that #[X/G](Fq) = #(X/G)(Fq), i.e., passage to the coarse moduli space X/G
loses no information about the number of rational points.

For any quasi-projective variety X, write Symn(X) := [Xn/Sn], the symmetric power of
X in the sense of Deligne-Mumford stacks; its coarse moduli space is what one usually
calls Symn(X).

(c) Let X be a projective variety over Fq. Calculate Symn(X)(Fq) and Symn(X)(Fq)
in terms of the action of Frobenius on H∗(X,Q`).
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Galois cohomology

See, e.g., [Serre] if you want more problems on Galois cohomology.

Recall that a profinite group is a topological group that is the projective limit of finite groups,
each with the discrete topology.

33. Show that a topological group is profinite if and only if it is compact, Hausdorff, and
totally disconnected.

34. Which of the following is a profinite group (for the natural topology)?

(a) Zp

(b) Qp

(c) Zp (the ring of integers in the algebraic closure of Qp)

(d) SLn(Zp)

(e)
∏∞

i=1 Zp

(f) ⊕∞i=1Zp

(g) CJtK

(h) FpJtK

(i) µ∞ (all roots of unity)

(j) S1 (the circle)

(k) Gal(L/K) for a Galois extension L of a field K

(l) for a group G, the projective limit Ĝ of the finite quotients of G

35. Show that every open subgroup in a profinite group has finite index. Prove the converse
or provide a counterexample.
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We recall how to compute the cohomology groups Hi(G,A), where G is a group and A is a
G-module. Let Ci(G,A) be the i-cochains Gi → A (these are continuous functions if G and
A have topologies). Then one considers the standard cochain complex:

· · · → 0→ 0→ C0(G,A)
δ0→ C1(G,A)

δ1→ C2(G,A)
δ2→ · · · .

The boundary maps δi are defined as follows on elements fi ∈ Ci(G,A):

(δ0f0)(g) = gf0(·)− f0(·)
(δ1f1)(g1, g2) = g1f1(g2)− f1(g1g2) + f1(g1)

(δifi)(g1, . . . , gi) = g1f(g2, . . . , gi) +
i∑

j=1

(−1)jf(g1, . . . , gjgj+1, . . . , gi)

+ (−1)if(g1, . . . , gi−1)

Then one defines Hi(G,A) as the quotient
ker δi

im δi−1

=
“cocycles′′

“coboundaries′′
.

36. What is C0(G,A)? What is H0(G,A)? What is H1(G,A) if G acts trivially on A?

37. Assume that G is discrete. Show that Hi(G,−) is the ith right derived functor of the
left exact functor H0(G,−).

38. Let G := limGj be a profinite group, with Gj finite groups, and let A := colim Aj with
Aj discrete Gj-modules such that the homomorphisms Aj → Ak are compatible with
the maps Gk → Gj. Show that

(a) Ci(G,A) = colim Ci(Gj, Aj) for all i ≥ 0

(b) Hi(G,A) = colim Hi(Gj, Aj) for all i ≥ 0.

(c) G = limG/H and A = colim AH , where H runs over all open normal subgroups of
G, and conclude that Hi(G,A) = colim Hi(G/H,AH) for all i ≥ 0.

Now also assume that A is a Q-vector space.

(d) Show that Hi(G,A) = 0 for i > 0.

39. Let G be a profinite group and let V be a finite-dimensional C-vector space. Assume
that G acts continuously on V under the Euclidean topology on V . Prove that the
image of the map G→ GL(V ) is finite, i.e., G acts continuously on V under the discrete
topology on V .

40. Let G be a finite group, M a (discrete) G-module over a field k, and V a k-vector space.
Prove the projection formula:

Hi(G,M)⊗k V ∼= Hi(G,M ⊗k V ).
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41. Compute H1(Ẑ,Q) when Ẑ is regarded as

(a) a discrete group.

(b) a profinite group.

42. Let G = Z/p and let k be a field of characteristic p. Consider the category G-mod
of finite dimensional k-vector spaces with a continuous action of G, where k has the
discrete topology.

(a) Let R := k[G]. Show that R ∼= k[t]/(tp), with t corresponding to g − 1 for a
generator g ∈ G.

(b) Show that G-mod identifies with the category Mod0(R) of finite R-modules.

(c) Show that the functor Hi(G,−) on G-mod identifies with ExtiR(k,−) on Mod0(R).

(d) Show that Hi(G, k) 6= 0 for all i, i.e., G has infinite cohomological dimension.

(Hint: use that k has an infinite free resolution over R of the form (· · · → R→ R→
R→ R) ∼= k with the differentials in the complex being t and tp−1 alternately.)

(e) For any A ∈ G-mod, construct a canonical isomorphism between Hi(G,A) and
Hi+2(G,A) for i ≥ 1.

(f) Extend this discussion to G = Z/pn using k[t]/(tp
n
) instead of k[t]/(tp).

43. Now let G = Zp and let k be a field of characteristic p. Again consider the category
G-mod of finite dimensional k-vector spaces with a continuous action of G, where k has
the discrete topology.

(a) Let R = k[[G]] := lim k[Z/pn]. Show that R ∼= kJtK with t corresponding to g − 1
for a topological generator g ∈ G.

(b) Show that G-mod identifies with the category Mod0(R) of finite R-modules sup-
ported (set-theoretically) at t = 0.

(c) Show that the functor Hi(G,−) on G-mod identifies with ExtiR(k,−) on Mod0(R).

(d) Show that Hi(G,M) = Hi(M → M), where the map is g − 1. In particular, G has
cohomological dimension 1.

(e) Recall from Question 38 that Hi(G,M) = colim Hi(Z/pn,MpnZp). Using Question
42, analyze these direct limits (to understand why the direct limit is 0 for i > 1
even though none of the constituent terms vanishes).

(f) Extend this discussion to G = (Zp)n using kJt1, ...., tnK instead of kJtK.

44. Let k be a field of characteristic p and let n ≥ 2.

(a) Show that Hi(Z/p, k) 6= 0 for all i.

(b) Let X be a hypersurface of degree d ≤ n in Pn over k. Show that Hi(X,OX) = 0
for all i > 0.
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(c) Show that Z/p cannot act freely on X.

(Hint: if it does, then compute the cohomology of X/G.)

45. Additive Hilbert Theorem 90. Let K be a field, and let L/K be a finite Galois extension
with group G. Show that Hi(G,L) = 0 for i > 0.

(Hint: formulate a generalization of this statement with L a product of separable field
extensions. Check the case of L =

∏
g∈GK with the permutation action. Then apply

Question 40 with V = L, using that L⊗K L ∼=
∏

g∈G L since L/K is Galois.)

46. Let K be a field with a separable closure K and absolute Galois group G.

(a) Use Question 45 to show that Hi(G,K) = 0 for i > 0 and H0(G,K) = K.

Assume now that K has characteristic p > 0.

(b) Show that the sequence of G-modules

1→ Fp → K
Frob−1−−−−→ K → 1

is exact.

(c) Show that Hi(G,Fp) = 0 for i ≥ 2, H1(G,Fp) = coker (Frob− 1), and H0(G,Fp) =

Fp. Use this to conclude that Ẑ × Ẑ cannot be the absolute Galois group of a
characteristic p field.

(d) For any Fp[G]-module M , show that Hi(G,M) = 0 for i > 1. In particular, the
p-cohomological dimension of G is ≤ 1.

(e) Give examples of characteristic p fields K whose `-cohomological dimension is large,
where ` 6= p.
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Preliminary analytic techniques

Counting lattice points in bounded regions

For a bounded open set B ⊂ Rn, let MP (B) denote the greatest d-dimensional volume of
any projection of B onto a coordinate subspace obtained by equating n − d coordinates to
zero, where d takes all values from 1 to n− 1.

47. (Davenport’s lemma, easy version:) Let B ⊂ Rn be a fixed open bounded set.
Assume that B is defined by finitely many polynomial inequalities. Prove that we have

#{g ·B ∩ Zn} = Vol(g ·B) +O(MP (g ·B)), (1)

where g ∈ GLn(R) is any diagonal matrix with positive entries, and the volume of sets
in Rn is normalized so that Zn has covolume 1.

Prove the same estimate for g = nt ∈ GLn(R), where n is a lower triangular matrix, and
t is a diagonal matrix with increasing positive diagonal entries. Hint: use the fact that
only smaller coordinates are being added to larger coordinates.

48. Modify the necessary arguments to obtain an estimate analogous to (1) when Zn is
replaced with an arbitrary lattice. In particular, when L is a lattice defined by congruence
conditions modulo finitely many prime powers pk11 , . . . , p

km
m , prove that we have

#{g ·B ∩ Zn} = Vol(g ·B)
m∏
i=1

Vol(Lp) +O(MP (g ·B)), (2)

where Lp is the p-adic closure of L in Znp and the measure on Znp is normalized so that
Znp has volume 1.

49. Modify the necessary definitions and arguments to obtain estimates analogous to (1)
and (2) when B is an open bounded multiset.

Counting using L-functions

Let (an)n≥1 be a sequence and let

L(s) :=
∑
n≥1

an
ns

be the associated L-function. The next few questions extract information about the partial
sums ∑

n≤X

an

from the analytic properties of L.

These questions follow the text of [Elkies, February 8].
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50. Prove that for any positive real numbers c and y, we have

1

2πi

∫ c+i∞

c−i∞
ys
ds

s
=

{
1 if y > 1;

0 if y < 1,

in the following sense:

lim
T→∞

1

2πi

∫ c+iT

c−iT
ys
ds

s
=

{
1 if y > 1;

0 if y < 1.

51. In fact, prove that

1

2πi

∫ c+iT

c−iT
ys
ds

s
=

{
1 +O(yc min(1, 1

T | log y|)) if y > 1;

O(yc min(1, 1
T | log y|)) if y < 1.

52. Conclude that for positive X ∈ R \ Z we have

∑
n≤X

an =
1

2πi

∫ c+iT

c−iT
XsL(s)

ds

s
+O

( ∞∑
n=1

an
Xc

nc
min

(
1,

1

T | log(X/n)|
))
.

53. Use the above estimate to give an (extremely complicated) proof of the fact that the
number of positive integers less than X is X +O(1).

An elementary sieve

We compute the “probability” that an integer is squarefree.

54. Let [X] denote the set of positive integers n ≤ X. Let [X]a (b) (resp. [X]sf) denote the
subset of integers n ∈ [X] such that n ≡ a (mod b) (resp. n is squarefree). Prove the
inclusion-exclusion formula

#[X]sf =
∞∑
n=1

µ(n)#[X]0 (n2).

55. Estimate #[X]0 (n2) for n ≤ X1/2, note that #[X]0 (n2) = 0 for n > X1/2 and prove that

lim
X→∞

#[X]sf

#[X]
=

1

ζ(2)
.

Of course, the same argument works for negative integers. Thus, with an appropriate defini-
tion of probability, we can say that the probability of an integer being squarefree is 1/ζ(2).

56. How many quadratic fields exist having discriminant bounded by X? (Warning: you
have to be careful about the conditions on the discriminant modulo 2.)
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Proof of Davenport’s theorem

Let V denote the space of binary cubic forms, i.e.,

VR := {ax3 + bx2y + cxy2 + dy3 : a, b, c, d ∈ R},

for any ring R. Consider the action of GL2 on V given by

(γ · f)(x, y) :=
1

det γ
f((x, y) · γ). (3)

Let V irr
Z (resp. V red

Z ) denote the set of integral binary cubic forms that are irreducible (resp.
reducible). Then Davenport’s Theorem [Davenport] states the following:

1. The number of GL2(Z)-orbits on V irr
Z having positive discriminant bounded by X is

π2

72
X +O(X5/6).

2. The number of GL2(Z)-orbits on V irr
Z having negative discriminant with absolute value

bounded by X is π2

24
X +O(X5/6).

Davenport originally obtained an error bound of O(X15/16). The improved error bound is
due to Bhargava. In the next several problems, we sketch a proof of the above theorem.

57. Check that (3) defines a left action of G on V .

58. Check that the discriminant ∆ of the binary cubic form is a relative invariant for the
action of G, i.e.,

∆(γ · f) = (det γ)κ∆(f),

where γ ∈ G, f ∈ V , and κ is a fixed integer. What is κ equal to?

59. Prove that the set {f ∈ VC : ∆(f) 6= 0} consists of one GL2(C)-orbit. (Hint: Use the
fact that GL2(C) acts triply transitively on P1

C.) Prove that the stabilizer in GL2(C)
of any element in this orbit is isomorphic to S3. (Hint: You only have to prove this
statement for one form f having nonzero discriminant!)

60. Prove that the set {f ∈ VR : ∆(f) 6= 0} consists of two GL2(R)-orbits, namely, the orbit
of positive discriminant binary cubic forms and the orbit of negative discriminant binary
cubic forms. Denote these two sets by V +

R and V −R , respectively. Prove that the stabilizer
in GL2(R) of any element in V +

R is isomorphic to S3, and the stabilizer in GL2(R) of any
element in V −R is isomorphic to Z/2Z.

61. Let F be any fundamental domain for the left action of GL2(Z) on GL2(R), and let
v± ∈ V ±R be a fixed vector. We consider F · v± to be a multiset, where the multiplicity
of a vector v ∈ V ±R in this multiset is given by m(v) := #{g ∈ F : g · v± = v}. Prove
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that ∑
h∈GL2(Z)

m(h · v) := #StabGL2(R)(v),

for every v ∈ V ±R . Conclude that the GL2(Z)-orbit of v is represented

#StabGL2(R)(v)/#StabGL2(Z)(v)

times in the multiset F · v±.

62. For any GL2(Z)-invariant set S ⊂ V ±R , let N(S;X) denote the number of GL2(Z)-
orbits GL2(Z) · v in S such that 0 < |∆(v)| ≤ X, where each such orbit is weighted by
1/#StabGL2(Z)(v). Conclude from the above problem that we have

n±N(S;X) = #{F · v± ∩ S|∆|≤X},

where n+ = 6, n− = 2, S|∆|≤X denotes the set of elements v ∈ S with 0 < |∆(v)| ≤ X,
and each element v in the intersection is counted with multiplicity m(v).

63. (Averaging method of Bhargava [Bhargava]) Let dg denote any Haar-measure on
GL2(R). Let G0 be a fixed nonempty open bounded set in GL2(R). It follows from the
previous problem that we have

n±N(S;X) =

∫
g∈G0

#{Fg · v± ∩ S|∆|≤X}dg∫
g∈G0

dg

.

(Check this!) Prove that∫
g∈G0

#{Fg · v± ∩ S|∆|≤X}dg =

∫
g∈F

#{gG0 · v± ∩ S|∆|≤X}dg, (4)

where again we regard gG0 · v± as a multiset, in the following steps:

1. “Unfold” the left hand side of (4) into a sum over S|∆|≤X , and show that the
contribution from each v ∈ S|∆|≤X is equal to∑

h∈GL2(R)
h·v±=v

Vol(G0 ∩ F−1h),

where the volume is taken with respect to the Haar-measure dg.

2. Using the unimodularity of the Haar-measure, conclude that

Vol(G0 ∩ F−1h) = Vol(G0h
−1 ∩ F−1) =

∫
g∈F

#{g0 ∈ G0 : gg0 = h}.
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3. “Refold” the sum to recover the right hand side of (4).

To estimate
∫
g∈F #{gG0 ·v±∩S|∆|≤X}dg, we will have to construct a convenient fundamental

domain F and choose dg and G0. For this, we use the Iwasawa decomposition:

64. Consider the subgroups

Λ = {
(
λ

λ

)
: λ > 0}, N = {

(
1
n 1

)
: n ∈ R}, A = {

(
t−1

t

)
: t > 0}, K = SO2(R).

(5)
Prove that the product ΛNAK is equal to GL +2 (R), the index-2 subgroup of GL2(R)
consisting of elements having positive determinant.

65. Prove that with these coordinates, the measure

dg := d×λdn
d×t

t2
dk :=

dλ

λ
dn
dt

t3
dk,

is a Haar-measure on GL2(R). We normalize dk such that K has volume 1.

66. Show that we may pick a fundamental domain F := {nakλ : n ∈ N ′(a), a ∈ A′, k ∈
K,λ ∈ Λ} for the left action of GL2(Z) on GL2(R), where

N ′(a) = {
(

1
n 1

)
: n ∈ ν(a)}, A′ = {

(
t−1

t

)
: t ≥ 4

√
3/
√

2}; (6)

here ν(a) is either equal to [−1
2
, 1

2
] or the union of two subintervals of [−1

2
, 1

2
] depending

only on the value of a ∈ A′.

We have picked a fundamental set F and a Haar measure dg. All we need about the set G0

is that it is nonempty, open, bounded, and K-invariant.

67. Prove that such a set G0 exists.

68. Prove the estimate

#{gG0 · v± ∩ VZ} = λ4Vol(G0 · v±) +O(λ3t3),

for g ∈ F with g = (λ, n, t, k).

69. Prove that there exists an absolute constant C such that if g ∈ F with g = (λ, n, t, k)
and t > Cλ1/3, then

#{gG0 · v± ∩ V irr
Z } = 0.
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70. Let R ⊂ VR be a set that is contained in a cube with side length T . Then prove that

#{R ∩ V red
Z = O(T 3+ε)}

via the following steps:

1. First estimate the number of forms that have x or y as a factor.

2. If f(x, y) = ax3 + bx2y + cxy2 + dy3, with a, d 6= 0 is reducible, then it must have
a linear factor px + qy with p | a and q | d. Use this to estimate the number of
possible pairs (p, q) once a and d are fixed.

3. Prove that if a, b, d, p, and q are fixed, then c is determined.

71. Modify the above proof to yield a result for sets R that are contained in boxes with
possibly different side lengths. As a consequence, obtain a bound for the following
quantity: ∫

g=(λ,n,t,k)∈F
λ≤X1/4

t<Cλ1/3

#{gG0 · v± ∩ V red
Z }dg. (7)

72. Using 68, 69, and 71, prove that∫
g∈F

#{gG0 ·v±∩{v ∈ V irr
Z : |∆(v)| ≤ X}}dg =

∫
g∈F

Vol({v ∈ gG0 ·v± : |∆(v) ≤ X})dg.

73. Using a modification of the argument in 63, show that∫
g∈F

Vol({v ∈ gG0 · v± : |∆(v) ≤ X})dg = Vol({v ∈ F · v± : |∆(v) < X|}).

74. Denote the set in the right hand side of the above equation by RX . To compute the
volume of RX , consider the map GL2(R)→ VR given by γ 7→ γ · v±. Prove the following
“change of variables” formula: dg = |∆(v)−1|dv.

75. Prove Davenport’s theorem with the improved error term of O(X5/6).

76. Modify the statement of Davenport’s theorem, and its proof, to deduce an analogous
count of integral irreducible binary cubic forms whose coefficients satisfy a finite set of
GL2(Z)-invariant congruence conditions.
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Counting cubic fields

A cubic ring is a commutative ring with unit that is free of rank 3 as a Z-module. A result
of Delone and Faddeev [DF] refined by Gan, Gross, and Savin [GGS] states that there is
a natural bijection between GL2(Z)-orbits on VZ and isomorphism classes of cubic rings.
Furthermore, if f is a binary cubic form whose GL2(Z)-orbit corresponds to the cubic ring
R, then the following are true.

1. ∆(R) = ∆(f).

2. R is an integral domain if and only if f is irreducible.

3. The splitting of a prime p in R is determined by the factoring of f modulo p.

4. The cubic ring R is nonmaximal at p if and only if f is a multiple of p or there is
a GL2(Z)-translate of f such that p2 divides the x3-coefficient and p divides the x2y-
coefficient.

77. Show that a cubic integral domain is maximal if and only if it is maximal at every prime.

78. Compute the probability that a binary cubic form corresponds to a cubic ring maximal
at p.

79. Assume that the number of cubic rings having discriminant bounded by X that are
nonmaximal at every prime dividing n is bounded by O(X/n2−ε). Then use the sieve
methods developed in previous questions to prove the Davenport-Heilbronn theorem
[DH]:

Theorem: Let N±(X) denote the number of cubic fields K such that 0 < ±∆(K) ≤ X.
Then we have

N+(X) =
X

12ζ(3)
+ o(X);

N−(X) =
X

4ζ(3)
+ o(X).

(8)

80. By studying how the error term in 76 depends on the modulus of the imposed congruence
conditions, improve the o(X) error term above to a power saving.
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Galois representations coming from field extensions, and

the associated Artin L-functions

Let K be a finite extension of Q or Qp. Let GK denote the absolute Galois group of K,
i.e., the group Gal(K/K). A representation of GK is called a Galois representation. In this
section, we shall consider Galois representations

GK → GLn(C),

where K is a number field.

Let L/K be a finite Galois extension with Galois group G and let ρ : G→ GLn(C) be a rep-
resentation. Then the representation GK → G→ GLn(C) is called an Artin representation.
We consider the incomplete Artin L-function defined by

L∗(s, ρ) :=
∏
p

det[I −N(p)−sρ(Frob(p))]−1,

where the product runs over primes p of L that do not ramify. The completed L function is
obtained by multiplying L∗ with appropriate factors at the ramified primes and the infinite
places.

In the questions that follow, all equalities of L-functions are up to a finite number of products
(at the ramified primes). Note that this does not affect several analytic properties of the
L-functions including meromorphic continuation and the position and multiplicities of its
zeroes and poles.

81. Write the Riemann zeta function as an Artin L-function. Write the Dirichlet L-functions
as Artin L-functions.

82. Assume that ρ = ρ1 ⊕ ρ2. Then L∗(s, ρ) = L∗(s, ρ1)L∗(s, ρ2).

83. Suppose M is an intermediary extension between L and K, normal over K. Denote
the Galois group of L/M by H. If ρ is a representation of G/H, then let ρ̃ denote the
natural extension to G. Prove that L∗(s, ρ) = L∗(s, ρ̃).

84. Suppose M is any intermediary extension between L and K. Denote the Galois group
of L/M by H. For a representation ρ of H, let ρ∗ denote the induced representation.
Then L(s, ρ∗) = L(s, ρ).

85. Let K over Q be a finite normal extension with Galois group G. Prove that

ζK(s) =
∏
ρ

L∗(s, ρ)dim ρ,

where the product ranges over all irreducible representations ρ of G.
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86. Assuming that the Dedekind zeta function ζK(s) has a simple pole at 1, and no other
poles, prove that L(1, χ) 6= 0 for Dirichlet L-functions L(s, χ), thus recovering the key
step in Dirichlet’s proof of the infinitude of primes in arithmetic progressions.

Artin’s conjecture states that L(s, ρ) has a meromorphic continuation to the whole complex
plane, and is analytic everywhere except for a pole at 1 with multiplicity equal to the
multiplicity of the trivial representation in ρ.

87. Prove Artin’s conjecture for L-functions arising from S3-extensions of Q.

88. Let ρ denote the irreducible 2-dimensional extension of S3. Let K be an S3-extension of
Q, and let L(s, ρ) denote the corresponding L-function. Let K3 denote one of the three
conjugate subfields of K6 that have degree 3 over Q. Determine the p-th coefficient of
L(s, ρ) in terms of the splitting of p in K3.

89. Write down the list of possible splitting behaviours of a prime p in a cubic S3-field, and
determine the “probability” of each possible splitting type as we range over the family
of all cubic fields, ordered by discriminant.

90. Consider the following family of Artin L-functions: let F be the family of all cubic
S3-fields. For each K ∈ F , let LK(s) := ζK(s)/ζ(s). Compute the average size of the
p-th coefficient of these L-functions.

These computations were done by Andrew Yang in his thesis [Yang], and he used them to
determine (assuming GRH) the symmetry type of the low lying zeroes of these L-functions.
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