Miscellaneous preliminaries on arithmetic geometry

One definition of a hyperelliptic curve is a curve C over an algebraically closed field k whose function field K is a degree 2 extension of a purely transcendental extension of k.

- 1. (a) Show that every hyperelliptic curve is birational to a curve of the form $y^2 = f(x)$ where $f \in k[x]$ is a monic squarefree polynomial.
 - (b) Conversely, show that every squarefree $f \in k[x]$ gives rise to a hyperelliptic curve in this way.
 - (c) Give an example to show that two distinct monic squarefree $f \in k[x]$ can lead to isomorphic curves.
- 2. (a) Given a hyperelliptic curve $C : y^2 = f(x)$ as above, let D be the divisor arising from the function x on C. Show that the degree of D is 2 and that dim $H^0(C, D) = 2$ if g > 0.
 - (b) Show that a curve C that has a degree 2 divisor D with dim $H^0(C, D) = 2$ is hyperelliptic.
- **3**. Let K be the function field of a curve C over \mathbb{F}_q . Show that the degree 0 part of the class group of K is finite.

The following is summarized from [Poonen, §2.4]. Recall that a **closed point** of a scheme X is a point $x \in X$ such that $\{x\}$ is Zariski closed in X. For example, over an algebraically closed field \overline{k} , there is a bijection between $X(\overline{k})$ and the closed points of X.

- 4. Let X be a variety over a field k and let $x \in X$. Prove that x is a closed point if and only if the residue field $\kappa(x)$ is a finite extension of k.
- Let X be a variety over the field k. The **degree** of a closed point x on X is $[\kappa(x) : k]$.
- 5. (a) Let X be the plane conic over \mathbb{Q} cut out by $f(x, y, z) = 3x^2 + 4y^2 + 5z^2$. What is the minimal degree of a closed point on X?
 - (b) Let Y be the plane cubic over \mathbb{Q} cut out by $g(x, y, z) = x^3 + y^3 + z^3$. What is the minimal degree of a closed point on X?
- **6**. Let $k = \mathbb{F}_q$ and let $X = \text{Spec } \mathbb{F}_{q^n}$ over k.
 - (a) What is #X (as a set)? Are there any closed points? If so, compute their degrees.
 - (b) What is $\#X(\mathbb{F}_{q^n})$?
 - (c) Think about why these cardinalities are not the same.

7. More generally, let X be a scheme of finite type over \mathbb{F}_q . Let N_d be the number of closed points of degree d on X. Prove that for any $n \ge 1$, we have

$$\sum_{d|n} dN_d = \#X(\mathbb{F}_{q^n}).$$

8. Let $X = \mathbb{A}^1$ over \mathbb{F}_q .

- (a) Compute the number N_d of closed points of degree d on X.
- (b) Check that

$$\sum_{d|n} dN_d = \# X(\mathbb{F}_{q^n}).$$

Trace formulas

Many of the questions in this section rely on a basic understanding of or comfort with étale or ℓ -adic cohomology. If you are not familiar with these topics, see, e.g., [Milne] for a refresher.

Let X be a smooth and proper scheme over an algebraically closed field k of characteristic $\neq \ell$. Let $f: X \to X$ be a morphism with isolated fixed points. The **Lefschetz fixed point** formula says that the number of fixed points of f counted with multiplicity (if finite) is the alternating sum of the traces of f acting on the ℓ -adic cohomology:

$$\sum (-1)^{i} \operatorname{Tr}(f^*; \mathrm{H}^{i}(X, \mathbb{Q}_l)).$$

- 9. With X as above, use any method to check that the self-intersection of the diagonal Δ_X in $X \times X$ is the Euler characteristic of X.
- 10. If T is a non-identity element of $\operatorname{GL}_2(k)$, show that the fixed point scheme of T acting on \mathbb{P}^1 has degree 2.
- 11. Can you generalize the above question to $GL_n(k)$ acting on \mathbb{P}^{n-1} ?
- 12. Let $f : \mathbb{P}^1 \to \mathbb{P}^1$ be an endomorphism of degree $d \ge 2$. How many fixed points, with multiplicity, does f have?
- **13**. Let X be a smooth projective curve of genus ≥ 2 over an algebraically closed field. Use the trace formula to show that $\operatorname{Aut}(X) \to \operatorname{Aut}(\operatorname{Jac}(X))$ is injective.

When k has characteristic p and f is the Frobenius map, the above formula is known as the **Grothendieck-Lefschetz trace formula**.

- 14. Show that if f is the Frobenius map, each fixed point $x \in X$ has multiplicity one (hint: this is equivalent to showing that the action of 1 df on Ω^1_X is injective why?).
- 15. A Brauer-Severi variety over a field k is a variety X such that $X_{\overline{k}}$ is isomorphic to some projective space $\mathbb{P}^n_{\overline{K}}$. Use the trace formula to show that a Brauer-Severi variety over a finite field has a rational point.

Let X be a smooth projective variety of dimension n over $k = \mathbb{F}_q$. One of the earliest applications of the trace formula was to show that the **zeta function of** X **is rational** (part of the Weil conjectures), though the first proof of this fact was by Dwork using p-adic analysis. Recall that the zeta function of X is defined as

$$Z(X;t) := \exp\left(\sum_{r=1}^{\infty} N_r \frac{t^r}{r}\right),$$

where $N_r = \# X(\mathbb{F}_{q^r})$.

- **16**. Check by hand that the zeta function for \mathbb{P}^1 is rational.
- 17. Assume X and Y are two varieties such that $N_r(X) = N_r(Y)$ for all $r \gg 0$. Show that Z(X;t) = Z(Y;t).
- **18**. Let V be a k-vector space and $\alpha: V \to V$ an endomorphism. Show by induction that

$$\exp\left(\sum_{r=1}^{\infty} \operatorname{Tr}(\alpha^r; V) \frac{t^r}{r}\right) = \det(1 - \alpha t; V)^{-1},$$

as formal power series in t.

19. Use Question **18** and the Grothendieck-Lefschetz trace formula to give a formula for the zeta function of X as a rational function of t.

The rest of the **Weil conjectures**, for X as above, are summarized below:

(i) If E is the self-intersection number $(\Delta_X)^2$ of the diagonal Δ_X of $X \times X$, then the zeta function of X satisfies a **functional equation**:

$$Z\left(X;\frac{1}{q^n t}\right) = \pm q^{nE/2} t^E Z(X;t).$$

(ii) (analogue of **Riemann hypothesis**) The zeta function of X may be written in the form

$$Z(X;t) = \frac{\prod_{i=0}^{n-1} P_{2i+1}(t)}{\prod_{i=0}^{n} P_{2i}(t)},$$

where $P_0(t) = 1 - t$; $P_{2n}(t) = 1 - q^n t$; and in general, $P_i(t) = \prod_j (1 - \alpha_{ij} t) \in \mathbb{Z}[t]$ with α_{ij} algebraic integers with norm $q^{i/2}$.

(iii) If $B_i := \deg P_i(t)$, then $E = \sum_{i=0}^{2n} (-1)^i B_i$. If X arises from a variety \widetilde{X} over a number ring R by reducing modulo a prime ideal of R, then B_i is equal to the the dimension of the *i*th Betti (singular) cohomology group for \widetilde{X} considered as a analytic space (i.e., the *i*th Betti number for \widetilde{X}).

- **20**. Verify all the parts of the Weil conjectures for $X = \mathbb{P}^1$ over $k = \mathbb{F}_q$. How about for \mathbb{P}^n ?
- **21.** Let X be a genus g curve over $k = \mathbb{F}_q$. Use the Weil conjectures to show that the numbers N_1, N_2, \ldots, N_g determine N_r for all $r \ge 1$.
- **22**. Prove the Weil conjectures for elliptic curves over \mathbb{F}_q as follows:
 - (a) Show that the number of \mathbb{F}_q -points of an elliptic curve E is the degree of the isogeny 1 F, where $F : E \to E$ is the \mathbb{F}_q -linear Frobenius, i.e., the *q*th-power map on coordinates.
 - (b) If F^{\vee} denotes the dual isogeny to F, then show that

$$N_r = q^r - (F^r + (F^{\vee})^r) + 1,$$

where $F^r + (F^{\vee})^r$ represents the multiplication-by-*a* isogeny for some integer *a*. (This can be done in several different ways. See [Hartshorne, Exercise IV.4.16] or [Silverman, $\S V.2$] if you need additional hints.)

(c) Show that

$$Z(E;t) = \frac{(1-Ft)(1-F^{\vee}t)}{(1-t)(1-qt)} = \frac{(1-at+qt^2)}{(1-t)(1-qt)}.$$

- (d) Check that the functional equation holds.
- (e) Show the Hasse bound for elliptic curves: |a| ≤ 2√q.
 (Hint: you can use a Cauchy-Schwarz type inequality on degree, which is a positive definite quadratic form, or you can compute this even more directly from the fact that deg(b + cF) > 0 for all b, c ∈ Z.)
- (f) Define α_1 and α_2 such that

$$1 - at + qt^{2} = (1 - \alpha_{1}t)(a - \alpha_{2}t).$$

Show that $|a| \leq 2\sqrt{q}$ if and only if $|\alpha_i| = \sqrt{q}$.

- (g) Verify part (iii) about Betti numbers directly.
- **23**. Let X be a genus g curve over $k = \mathbb{F}_q$. Use the Weil conjectures for the following:
 - (a) Check that the only nonzero Betti numbers for X are $B_0 = 1$, $B_1 = 2g$, and $B_2 = 1$.
 - (b) Show that Frobenius acts by the identity on $\mathrm{H}^{0}(X, \mathbb{Q}_{\ell})$ and by multiplication by q on $\mathrm{H}^{2}(X, \mathbb{Q}_{\ell})$.
 - (c) Show that the absolute value of the trace of Frobenius acting on $\mathrm{H}^1(X, \mathbb{Q}_\ell)$ is $\leq 2g\sqrt{q}$.
 - (d) Conclude that $|q+1-X(\mathbb{F}_q)| \leq 2g\sqrt{q}$.

24. Use the estimate from Question 23 to show that every genus one curve over a finite field has a rational point.

The Weil conjectures can be strengthened to apply to **quasiprojective varieties**, by using compactly supported cohomology. In (ii), one obtains that all eigenvalues on H_c^i have absolute value $\leq q^{i/2}$ for all embeddings.

- **25**. (A generalization of Question **15**) Let X be a smooth projective variety over a finite field k. Assume that, over \overline{k} , X has a stratification by affine spaces. Show that X has a rational point.
- **26**. Show that every smooth quadric or cubic surface in \mathbb{P}^3 over a finite field k has a rational point.
- 27. Let X be a geometrically irreducible variety of dimension n over \mathbb{F}_q . Show that $X(\mathbb{F}_{q^r})$ is non-empty for all $r \gg 0$. (Hint: use the trace formula and the Weil conjectures to show that $\#X(\mathbb{F}_{q^r}) = q^{rn} +$ "lower order terms" in q. Here, "lower order terms" does not have the usual meaning, rather terms whose sum will be of smaller order.)
- **28.** We now extend Question **24** to higher dimensions. Let X be a torsor for an abelian variety A over a finite field \mathbb{F}_q .
 - (a) Show that $A \times X \cong X \times X$ via $(a, x) \mapsto (a + x, x)$.
 - (b) Show that $N_r(A) = N_r(X)$ if $N_r(X) \neq 0$.
 - (c) Prove that Z(X;t) = Z(A;t) (e.g., using Questions 17 and 27).
 - (d) Conclude that X has an \mathbb{F}_q -rational point, so $X \cong A$ even over \mathbb{F}_q .
 - (e) Extend the preceding to smooth connected algebraic groups A.

Fulton's trace formula for coherent cohomology says that if X is a proper scheme over \mathbb{F}_q , then the trace of $\operatorname{Frob}_{q^n}$ on $\operatorname{H}^*(X, \mathcal{O}_X)$ is $\#X(\mathbb{F}_{q^n}) \pmod{p}$.

- **29**. Use Fulton's trace formula to redo Question **15**.
- **30**. (A generalization of Question **26**) Show that every hypersurface of degree d in \mathbb{P}^n over a finite field k has a rational point if $d \leq n$.
- **31**. Let *E* be a supersingular elliptic curve over \mathbb{F}_p . Use Fulton's trace formula and the Weil conjectures for elliptic curves to show that the number $E(\mathbb{F}_p)$ is exactly 1 + p for $p \geq 5$.

The following problem needs some a little knowledge of **stacks**.

32. For a groupoid X (viewed as a category with all maps being isomorphisms), define $\pi_0(X)$ as the set of isomorphism classes of objects of X, and for any $x \in \pi_0(X)$, let $\pi_1(X, x) = \operatorname{Aut}(x)$. If $\pi_0(X)$ and $\pi_1(X, x)$ are finite for all $x \in X$, then we define the cardinality

$$\#X := \sum_{x \in \pi_0(X)} \frac{1}{\#\pi_1(X, x)}.$$

Note that dividing by the size of Aut(x) in counting problems is a common theme in many of the lectures in the workshop!

For example, if X is a groupoid with a single object and a group G worth of automorphisms, then #X = 1/#G. Note that if Y is a stack, then Y(S) is a groupoid for any scheme S.

(a) For a finite group G, let BG be the stack classifying G-torsors in the étale topology, i.e., BG is the quotient stack [pt/G]. Show (either directly, or by the trace formula) that $\#BG(\mathbb{F}_q) = 1$.

In contrast, the groupoid $B(G(\mathbb{F}_q))$ has cardinality $1/G(\mathbb{F}_q)$.

(b) For any quasi-projective variety X over \mathbb{F}_q with an action of a finite group G, show that $\#[X/G](\mathbb{F}_q) = \#(X/G)(\mathbb{F}_q)$, i.e., passage to the coarse moduli space X/G loses no information about the number of rational points.

For any quasi-projective variety X, write $\underline{\text{Sym}}^n(X) := [X^n/S_n]$, the symmetric power of X in the sense of Deligne-Mumford stacks; its coarse moduli space is what one usually calls $\underline{\text{Sym}}^n(X)$.

(c) Let X be a projective variety over \mathbb{F}_q . Calculate $\underline{\operatorname{Sym}}^n(X)(\mathbb{F}_q)$ and $\operatorname{Sym}^n(X)(\mathbb{F}_q)$ in terms of the action of Frobenius on $\mathrm{H}^*(X, \mathbb{Q}_\ell)$.

Galois cohomology

See, e.g., [Serre] if you want more problems on Galois cohomology.

Recall that a *profinite group* is a topological group that is the projective limit of finite groups, each with the discrete topology.

- **33**. Show that a topological group is profinite if and only if it is compact, Hausdorff, and totally disconnected.
- **34**. Which of the following is a profinite group (for the natural topology)?
 - (a) \mathbb{Z}_p
 - (b) \mathbb{Q}_p
 - (c) $\overline{\mathbb{Z}_p}$ (the ring of integers in the algebraic closure of \mathbb{Q}_p)
 - (d) $\operatorname{SL}_n(\mathbb{Z}_p)$
 - (e) $\prod_{i=1}^{\infty} \mathbb{Z}_p$
 - (f) $\oplus_{i=1}^{\infty} \mathbb{Z}_p$
 - (g) $\mathbb{C}\llbracket t \rrbracket$
 - (h) $\mathbb{F}_p[\![t]\!]$
 - (i) μ_{∞} (all roots of unity)
 - (j) S^1 (the circle)
 - (k) $\operatorname{Gal}(L/K)$ for a Galois extension L of a field K
 - (l) for a group G, the projective limit \hat{G} of the finite quotients of G
- **35**. Show that every open subgroup in a profinite group has finite index. Prove the converse or provide a counterexample.

We recall how to compute the cohomology groups $H^i(G, A)$, where G is a group and A is a G-module. Let $C^i(G, A)$ be the *i*-cochains $G^i \to A$ (these are continuous functions if G and A have topologies). Then one considers the standard cochain complex:

 $\cdots \to 0 \to 0 \to C^0(G, A) \xrightarrow{\delta_0} C^1(G, A) \xrightarrow{\delta_1} C^2(G, A) \xrightarrow{\delta_2} \cdots$

The boundary maps δ_i are defined as follows on elements $f_i \in C^i(G, A)$:

$$\begin{aligned} (\delta_0 f_0)(g) &= gf_0(\cdot) - f_0(\cdot) \\ (\delta_1 f_1)(g_1, g_2) &= g_1 f_1(g_2) - f_1(g_1 g_2) + f_1(g_1) \\ (\delta_i f_i)(g_1, \dots, g_i) &= g_1 f(g_2, \dots, g_i) + \sum_{j=1}^i (-1)^j f(g_1, \dots, g_j g_{j+1}, \dots, g_i) \\ &+ (-1)^i f(g_1, \dots, g_{i-1}) \end{aligned}$$

Then one defines $\mathrm{H}^{i}(G, A)$ as the quotient $\frac{\ker \delta_{i}}{\operatorname{im} \delta_{i-1}} = \frac{\text{``cocycles''}}{\text{``coboundaries''}}$.

- **36**. What is $C^0(G, A)$? What is $H^0(G, A)$? What is $H^1(G, A)$ if G acts trivially on A?
- **37**. Assume that G is discrete. Show that $H^i(G, -)$ is the *i*th right derived functor of the left exact functor $H^0(G, -)$.
- **38**. Let $G := \lim G_j$ be a profinite group, with G_j finite groups, and let $A := \operatorname{colim} A_j$ with A_j discrete G_j -modules such that the homomorphisms $A_j \to A_k$ are compatible with the maps $G_k \to G_j$. Show that
 - (a) $C^{i}(G, A) = \operatorname{colim} C^{i}(G_{i}, A_{j})$ for all $i \geq 0$
 - (b) $\mathrm{H}^{i}(G, A) = \operatorname{colim} \mathrm{H}^{i}(G_{i}, A_{j})$ for all $i \geq 0$.
 - (c) $G = \lim G/H$ and $A = \operatorname{colim} A^H$, where H runs over all open normal subgroups of G, and conclude that $\mathrm{H}^i(G, A) = \operatorname{colim} \mathrm{H}^i(G/H, A^H)$ for all $i \geq 0$.

Now also assume that A is a \mathbb{Q} -vector space.

- (d) Show that $H^i(G, A) = 0$ for i > 0.
- **39.** Let G be a profinite group and let V be a finite-dimensional \mathbb{C} -vector space. Assume that G acts continuously on V under the Euclidean topology on V. Prove that the image of the map $G \to \operatorname{GL}(V)$ is finite, i.e., G acts continuously on V under the discrete topology on V.
- **40**. Let G be a finite group, M a (discrete) G-module over a field k, and V a k-vector space. Prove the projection formula:

$$\mathrm{H}^{i}(G, M) \otimes_{k} V \cong \mathrm{H}^{i}(G, M \otimes_{k} V).$$

- **41**. Compute $H^1(\hat{\mathbb{Z}}, \mathbb{Q})$ when $\hat{\mathbb{Z}}$ is regarded as
 - (a) a discrete group.
 - (b) a profinite group.
- 42. Let $G = \mathbb{Z}/p$ and let k be a field of characteristic p. Consider the category <u>G-mod</u> of finite dimensional k-vector spaces with a continuous action of G, where k has the discrete topology.
 - (a) Let R := k[G]. Show that $R \cong k[t]/(t^p)$, with t corresponding to g-1 for a generator $g \in G$.
 - (b) Show that <u>G-mod</u> identifies with the category $Mod_0(R)$ of finite R-modules.
 - (c) Show that the functor $H^i(G, -)$ on <u>G-mod</u> identifies with $Ext^i_R(k, -)$ on $Mod_0(R)$.
 - (d) Show that $H^i(G, k) \neq 0$ for all *i*, i.e., *G* has infinite cohomological dimension. (Hint: use that *k* has an infinite free resolution over *R* of the form $(\dots \to R \to R \to R \to R \to R) \cong k$ with the differentials in the complex being *t* and t^{p-1} alternately.)
 - (e) For any $A \in \underline{G}$ -mod, construct a canonical isomorphism between $\mathrm{H}^{i}(G, A)$ and $\mathrm{H}^{i+2}(G, A)$ for $i \geq 1$.
 - (f) Extend this discussion to $G = \mathbb{Z}/p^n$ using $k[t]/(t^{p^n})$ instead of $k[t]/(t^p)$.
- **43**. Now let $G = \mathbb{Z}_p$ and let k be a field of characteristic p. Again consider the category <u>G-mod</u> of finite dimensional k-vector spaces with a continuous action of G, where k has the discrete topology.
 - (a) Let $R = k[[G]] := \lim k[\mathbb{Z}/p^n]$. Show that $R \cong k[t]$ with t corresponding to g-1 for a topological generator $g \in G$.
 - (b) Show that <u>*G*-mod</u> identifies with the category $\underline{Mod_0(R)}$ of finite *R*-modules supported (set-theoretically) at t = 0.
 - (c) Show that the functor $H^i(G, -)$ on <u>G-mod</u> identifies with $Ext^i_R(k, -)$ on $Mod_0(R)$.
 - (d) Show that $H^i(G, M) = H^i(M \to M)$, where the map is g 1. In particular, G has cohomological dimension 1.
 - (e) Recall from Question **38** that $H^i(G, M) = \operatorname{colim} H^i(\mathbb{Z}/p^n, M^{p^n\mathbb{Z}_p})$. Using Question **42**, analyze these direct limits (to understand why the direct limit is 0 for i > 1 even though none of the constituent terms vanishes).
 - (f) Extend this discussion to $G = (\mathbb{Z}_p)^n$ using $k[t_1, ..., t_n]$ instead of k[t].
- **44**. Let k be a field of characteristic p and let $n \ge 2$.
 - (a) Show that $\mathrm{H}^{i}(\mathbb{Z}/p,k) \neq 0$ for all *i*.
 - (b) Let X be a hypersurface of degree $d \leq n$ in \mathbb{P}^n over k. Show that $\mathrm{H}^i(X, \mathcal{O}_X) = 0$ for all i > 0.

- (c) Show that Z/p cannot act freely on X.
 (Hint: if it does, then compute the cohomology of X/G.)
- **45**. Additive Hilbert Theorem 90. Let K be a field, and let L/K be a finite Galois extension with group G. Show that $H^i(G, L) = 0$ for i > 0.

(Hint: formulate a generalization of this statement with L a product of separable field extensions. Check the case of $L = \prod_{g \in G} K$ with the permutation action. Then apply Question 40 with V = L, using that $L \otimes_K L \cong \prod_{g \in G} L$ since L/K is Galois.)

- **46**. Let K be a field with a separable closure \overline{K} and absolute Galois group G.
 - (a) Use Question 45 to show that $H^i(G, \overline{K}) = 0$ for i > 0 and $H^0(G, \overline{K}) = K$.

Assume now that K has characteristic p > 0.

(b) Show that the sequence of G-modules

$$1 \to \mathbb{F}_p \to \overline{K} \xrightarrow{\text{Frob}-1} \overline{K} \to 1$$

is exact.

- (c) Show that $\mathrm{H}^{i}(G, \mathbb{F}_{p}) = 0$ for $i \geq 2$, $\mathrm{H}^{1}(G, \mathbb{F}_{p}) = \operatorname{coker}(\operatorname{Frob} 1)$, and $\mathrm{H}^{0}(G, \mathbb{F}_{p}) = \mathbb{F}_{p}$. Use this to conclude that $\widehat{\mathbb{Z}} \times \widehat{\mathbb{Z}}$ cannot be the absolute Galois group of a characteristic p field.
- (d) For any $\mathbb{F}_p[G]$ -module M, show that $\mathrm{H}^i(G, M) = 0$ for i > 1. In particular, the *p*-cohomological dimension of G is ≤ 1 .
- (e) Give examples of characteristic p fields K whose ℓ -cohomological dimension is large, where $\ell \neq p$.

Preliminary analytic techniques

Counting lattice points in bounded regions

For a bounded open set $B \subset \mathbb{R}^n$, let MP(B) denote the greatest d-dimensional volume of any projection of B onto a coordinate subspace obtained by equating n - d coordinates to zero, where d takes all values from 1 to n - 1.

47. (Davenport's lemma, easy version:) Let $B \subset \mathbb{R}^n$ be a fixed open bounded set. Assume that B is defined by finitely many polynomial inequalities. Prove that we have

$$#\{g \cdot B \cap \mathbb{Z}^n\} = \operatorname{Vol}(g \cdot B) + O(MP(g \cdot B)), \tag{1}$$

where $g \in GL_n(\mathbb{R})$ is any diagonal matrix with positive entries, and the volume of sets in \mathbb{R}^n is normalized so that \mathbb{Z}^n has covolume 1.

Prove the same estimate for $g = nt \in GL_n(\mathbb{R})$, where n is a lower triangular matrix, and t is a diagonal matrix with increasing positive diagonal entries. Hint: use the fact that only smaller coordinates are being added to larger coordinates.

48. Modify the necessary arguments to obtain an estimate analogous to (1) when \mathbb{Z}^n is replaced with an arbitrary lattice. In particular, when *L* is a lattice defined by congruence conditions modulo finitely many prime powers $p_1^{k_1}, \ldots, p_m^{k_m}$, prove that we have

$$#\{g \cdot B \cap \mathbb{Z}^n\} = \operatorname{Vol}(g \cdot B) \prod_{i=1}^m \operatorname{Vol}(L_p) + O(MP(g \cdot B)),$$
(2)

where L_p is the *p*-adic closure of L in \mathbb{Z}_p^n and the measure on \mathbb{Z}_p^n is normalized so that \mathbb{Z}_p^n has volume 1.

49. Modify the necessary definitions and arguments to obtain estimates analogous to (1) and (2) when B is an open bounded multiset.

Counting using *L*-functions

Let $(a_n)_{n>1}$ be a sequence and let

$$L(s) := \sum_{n \ge 1} \frac{a_n}{n^s}$$

be the associated L-function. The next few questions extract information about the partial sums

$$\sum_{n \le X} a_n$$

from the analytic properties of L.

These questions follow the text of [Elkies, February 8].

50. Prove that for any positive real numbers c and y, we have

$$\frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} y^s \frac{ds}{s} = \begin{cases} 1 & \text{if } y > 1; \\ 0 & \text{if } y < 1, \end{cases}$$

in the following sense:

$$\lim_{T \to \infty} \frac{1}{2\pi i} \int_{c-iT}^{c+iT} y^s \frac{ds}{s} = \begin{cases} 1 & \text{if } y > 1; \\ 0 & \text{if } y < 1. \end{cases}$$

51. In fact, prove that

$$\frac{1}{2\pi i} \int_{c-iT}^{c+iT} y^s \frac{ds}{s} = \begin{cases} 1 + O(y^c \min(1, \frac{1}{T|\log y|})) & \text{if } y > 1; \\ O(y^c \min(1, \frac{1}{T|\log y|})) & \text{if } y < 1. \end{cases}$$

52. Conclude that for positive $X \in \mathbb{R} \setminus \mathbb{Z}$ we have

$$\sum_{n \le X} a_n = \frac{1}{2\pi i} \int_{c-iT}^{c+iT} X^s L(s) \frac{ds}{s} + O\left(\sum_{n=1}^{\infty} a_n \frac{X^c}{n^c} \min\left(1, \frac{1}{T |\log(X/n)|}\right)\right).$$

53. Use the above estimate to give an (extremely complicated) proof of the fact that the number of positive integers less than X is X + O(1).

An elementary sieve

We compute the "probability" that an integer is squarefree.

54. Let [X] denote the set of positive integers $n \leq X$. Let $[X]_{a(b)}$ (resp. $[X]^{sf}$) denote the subset of integers $n \in [X]$ such that $n \equiv a \pmod{b}$ (resp. n is squarefree). Prove the inclusion-exclusion formula

$$\#[X]^{\mathrm{sf}} = \sum_{n=1}^{\infty} \mu(n) \#[X]_{0(n^2)}.$$

55. Estimate $\#[X]_{0(n^2)}$ for $n \leq X^{1/2}$, note that $\#[X]_{0(n^2)} = 0$ for $n > X^{1/2}$ and prove that

$$\lim_{X \to \infty} \frac{\#[X]^{\rm sf}}{\#[X]} = \frac{1}{\zeta(2)}.$$

Of course, the same argument works for negative integers. Thus, with an appropriate definition of probability, we can say that the probability of an integer being squarefree is $1/\zeta(2)$.

56. How many quadratic fields exist having discriminant bounded by X? (Warning: you have to be careful about the conditions on the discriminant modulo 2.)

Proof of Davenport's theorem

Let V denote the space of binary cubic forms, i.e.,

$$V_R := \{ax^3 + bx^2y + cxy^2 + dy^3 : a, b, c, d \in R\},\$$

for any ring R. Consider the action of GL_2 on V given by

$$(\gamma \cdot f)(x, y) := \frac{1}{\det \gamma} f((x, y) \cdot \gamma).$$
(3)

Let $V_{\mathbb{Z}}^{\text{irr}}$ (resp. $V_{\mathbb{Z}}^{\text{red}}$) denote the set of integral binary cubic forms that are irreducible (resp. reducible). Then **Davenport's Theorem** [Davenport] states the following:

- 1. The number of $\operatorname{GL}_2(\mathbb{Z})$ -orbits on $V_{\mathbb{Z}}^{\operatorname{irr}}$ having positive discriminant bounded by X is $\frac{\pi^2}{72}X + O(X^{5/6})$.
- 2. The number of $\operatorname{GL}_2(\mathbb{Z})$ -orbits on $V_{\mathbb{Z}}^{\operatorname{irr}}$ having negative discriminant with absolute value bounded by X is $\frac{\pi^2}{24}X + O(X^{5/6})$.

Davenport originally obtained an error bound of $O(X^{15/16})$. The improved error bound is due to Bhargava. In the next several problems, we sketch a proof of the above theorem.

- **57**. Check that (3) defines a left action of G on V.
- 58. Check that the discriminant Δ of the binary cubic form is a relative invariant for the action of G, i.e.,

$$\Delta(\gamma \cdot f) = (\det \gamma)^{\kappa} \Delta(f),$$

where $\gamma \in G$, $f \in V$, and κ is a fixed integer. What is κ equal to?

- **59.** Prove that the set $\{f \in V_{\mathbb{C}} : \Delta(f) \neq 0\}$ consists of one $\operatorname{GL}_2(\mathbb{C})$ -orbit. (Hint: Use the fact that $\operatorname{GL}_2(\mathbb{C})$ acts triply transitively on $\mathbb{P}^1_{\mathbb{C}}$.) Prove that the stabilizer in $\operatorname{GL}_2(\mathbb{C})$ of any element in this orbit is isomorphic to S_3 . (Hint: You only have to prove this statement for one form f having nonzero discriminant!)
- 60. Prove that the set $\{f \in V_{\mathbb{R}} : \Delta(f) \neq 0\}$ consists of two $\operatorname{GL}_2(\mathbb{R})$ -orbits, namely, the orbit of positive discriminant binary cubic forms and the orbit of negative discriminant binary cubic forms. Denote these two sets by $V_{\mathbb{R}}^+$ and $V_{\mathbb{R}}^-$, respectively. Prove that the stabilizer in $\operatorname{GL}_2(\mathbb{R})$ of any element in $V_{\mathbb{R}}^+$ is isomorphic to S_3 , and the stabilizer in $\operatorname{GL}_2(\mathbb{R})$ of any element in $Z_{\mathbb{R}}^+$ is isomorphic to $Z/2\mathbb{Z}$.
- **61.** Let \mathcal{F} be any fundamental domain for the left action of $\operatorname{GL}_2(\mathbb{Z})$ on $\operatorname{GL}_2(\mathbb{R})$, and let $v^{\pm} \in V_{\mathbb{R}}^{\pm}$ be a fixed vector. We consider $\mathcal{F} \cdot v_{\pm}$ to be a multiset, where the multiplicity of a vector $v \in V_{\mathbb{R}}^{\pm}$ in this multiset is given by $m(v) := \#\{g \in \mathcal{F} : g \cdot v^{\pm} = v\}$. Prove

that

$$\sum_{h \in \mathrm{GL}_2(\mathbb{Z})} m(h \cdot v) := \# \mathrm{Stab}_{\mathrm{GL}_2(\mathbb{R})}(v),$$

for every $v \in V_{\mathbb{R}}^{\pm}$. Conclude that the $\operatorname{GL}_2(\mathbb{Z})$ -orbit of v is represented

$$#$$
Stab_{GL₂(\mathbb{R})} $(v)/#$ Stab_{GL₂(\mathbb{Z})} (v)

times in the multiset $\mathcal{F} \cdot v_{\pm}$.

62. For any $\operatorname{GL}_2(\mathbb{Z})$ -invariant set $S \subset V_{\mathbb{R}}^{\pm}$, let N(S; X) denote the number of $\operatorname{GL}_2(\mathbb{Z})$ orbits $\operatorname{GL}_2(\mathbb{Z}) \cdot v$ in S such that $0 < |\Delta(v)| \leq X$, where each such orbit is weighted by $1/\#\operatorname{Stab}_{\operatorname{GL}_2(\mathbb{Z})}(v)$. Conclude from the above problem that we have

$$n^{\pm}N(S;X) = \#\{\mathcal{F} \cdot v^{\pm} \cap S_{|\Delta| \le X}\},\$$

where $n^+ = 6$, $n^- = 2$, $S_{|\Delta| \leq X}$ denotes the set of elements $v \in S$ with $0 < |\Delta(v)| \leq X$, and each element v in the intersection is counted with multiplicity m(v).

63. (Averaging method of Bhargava [Bhargava]) Let dg denote any Haar-measure on $\operatorname{GL}_2(\mathbb{R})$. Let G_0 be a fixed nonempty open bounded set in $\operatorname{GL}_2(\mathbb{R})$. It follows from the previous problem that we have

$$n^{\pm}N(S;X) = \frac{\int_{g \in G_0} \#\{\mathcal{F}g \cdot v^{\pm} \cap S_{|\Delta| \le X}\} dg}{\int_{g \in G_0} dg}.$$

(Check this!) Prove that

$$\int_{g\in G_0} \#\{\mathcal{F}g\cdot v^{\pm}\cap S_{|\Delta|\leq X}\}dg = \int_{g\in\mathcal{F}} \#\{gG_0\cdot v^{\pm}\cap S_{|\Delta|\leq X}\}dg,\tag{4}$$

where again we regard $gG_0 \cdot v^{\pm}$ as a multiset, in the following steps:

1. "Unfold" the left hand side of (4) into a sum over $S_{|\Delta| \leq X}$, and show that the contribution from each $v \in S_{|\Delta| \leq X}$ is equal to

$$\sum_{\substack{h \in \operatorname{GL}_2(\mathbb{R})\\ h \cdot v^{\pm} = v}} \operatorname{Vol}(G_0 \cap \mathcal{F}^{-1}h),$$

where the volume is taken with respect to the Haar-measure dg.

2. Using the unimodularity of the Haar-measure, conclude that

$$\operatorname{Vol}(G_0 \cap \mathcal{F}^{-1}h) = \operatorname{Vol}(G_0 h^{-1} \cap \mathcal{F}^{-1}) = \int_{g \in \mathcal{F}} \#\{g_0 \in G_0 : gg_0 = h\}.$$

3. "Refold" the sum to recover the right hand side of (4).

To estimate $\int_{g \in \mathcal{F}} #\{gG_0 \cdot v^{\pm} \cap S_{|\Delta| \leq X}\} dg$, we will have to construct a convenient fundamental domain \mathcal{F} and choose dg and G_0 . For this, we use the Iwasawa decomposition:

64. Consider the subgroups

$$\Lambda = \{ \begin{pmatrix} \lambda \\ & \lambda \end{pmatrix} : \lambda > 0 \}, \quad N = \{ \begin{pmatrix} 1 \\ n & 1 \end{pmatrix} : n \in \mathbb{R} \}, \quad A = \{ \begin{pmatrix} t^{-1} \\ & t \end{pmatrix} : t > 0 \}, \quad K = \mathrm{SO}_2(\mathbb{R}).$$
(5)

Prove that the product ΛNAK is equal to $\operatorname{GL}_{+2}(\mathbb{R})$, the index-2 subgroup of $\operatorname{GL}_2(\mathbb{R})$ consisting of elements having positive determinant.

65. Prove that with these coordinates, the measure

$$dg := d^{\times} \lambda dn \frac{d^{\times} t}{t^2} dk := \frac{d\lambda}{\lambda} dn \frac{dt}{t^3} dk,$$

is a Haar-measure on $\operatorname{GL}_2(\mathbb{R})$. We normalize dk such that K has volume 1.

66. Show that we may pick a fundamental domain $\mathcal{F} := \{nak\lambda : n \in N'(a), a \in A', k \in K, \lambda \in \Lambda\}$ for the left action of $\operatorname{GL}_2(\mathbb{Z})$ on $\operatorname{GL}_2(\mathbb{R})$, where

$$N'(a) = \{ \begin{pmatrix} 1 \\ n & 1 \end{pmatrix} : n \in \nu(a) \}, \quad A' = \{ \begin{pmatrix} t^{-1} \\ & t \end{pmatrix} : t \ge \sqrt[4]{3}/\sqrt{2} \}; \tag{6}$$

here $\nu(a)$ is either equal to $\left[-\frac{1}{2}, \frac{1}{2}\right]$ or the union of two subintervals of $\left[-\frac{1}{2}, \frac{1}{2}\right]$ depending only on the value of $a \in A'$.

We have picked a fundamental set \mathcal{F} and a Haar measure dg. All we need about the set G_0 is that it is nonempty, open, bounded, and K-invariant.

- **67**. Prove that such a set G_0 exists.
- **68**. Prove the estimate

$$#\{gG_0 \cdot v^{\pm} \cap V_{\mathbb{Z}}\} = \lambda^4 \operatorname{Vol}(G_0 \cdot v^{\pm}) + O(\lambda^3 t^3),$$

for $g \in \mathcal{F}$ with $g = (\lambda, n, t, k)$.

69. Prove that there exists an absolute constant C such that if $g \in \mathcal{F}$ with $g = (\lambda, n, t, k)$ and $t > C\lambda^{1/3}$, then

$$#\{gG_0 \cdot v^{\pm} \cap V_{\mathbb{Z}}^{\operatorname{irr}}\} = 0.$$

70. Let $R \subset V_{\mathbb{R}}$ be a set that is contained in a cube with side length T. Then prove that

$$#\{R \cap V_{\mathbb{Z}}^{\mathrm{red}} = O(T^{3+\epsilon})\}$$

via the following steps:

- 1. First estimate the number of forms that have x or y as a factor.
- 2. If $f(x, y) = ax^3 + bx^2y + cxy^2 + dy^3$, with $a, d \neq 0$ is reducible, then it must have a linear factor px + qy with $p \mid a$ and $q \mid d$. Use this to estimate the number of possible pairs (p, q) once a and d are fixed.
- 3. Prove that if a, b, d, p, and q are fixed, then c is determined.
- **71.** Modify the above proof to yield a result for sets R that are contained in boxes with possibly different side lengths. As a consequence, obtain a bound for the following quantity:

$$\int_{\substack{g=(\lambda,n,t,k)\in\mathcal{F}\\\lambda\leq X^{1/4}\\t< C\lambda^{1/3}}} \#\{gG_0\cdot v^{\pm}\cap V_{\mathbb{Z}}^{\mathrm{red}}\}dg.$$
(7)

72. Using 68, 69, and 71, prove that

$$\int_{g\in\mathcal{F}} \#\{gG_0 \cdot v^{\pm} \cap \{v \in V_{\mathbb{Z}}^{\operatorname{irr}} : |\Delta(v)| \le X\}\} dg = \int_{g\in\mathcal{F}} \operatorname{Vol}(\{v \in gG_0 \cdot v^{\pm} : |\Delta(v) \le X\}) dg.$$

73. Using a modification of the argument in **63**, show that

$$\int_{g \in \mathcal{F}} \operatorname{Vol}(\{v \in gG_0 \cdot v^{\pm} : |\Delta(v) \le X\}) dg = \operatorname{Vol}(\{v \in \mathcal{F} \cdot v^{\pm} : |\Delta(v) < X|\}).$$

- 74. Denote the set in the right hand side of the above equation by \mathcal{R}_X . To compute the volume of \mathcal{R}_X , consider the map $\operatorname{GL}_2(\mathbb{R}) \to V_{\mathbb{R}}$ given by $\gamma \mapsto \gamma \cdot v^{\pm}$. Prove the following "change of variables" formula: $dg = |\Delta(v)^{-1}| dv$.
- **75**. Prove Davenport's theorem with the improved error term of $O(X^{5/6})$.
- 76. Modify the statement of Davenport's theorem, and its proof, to deduce an analogous count of integral irreducible binary cubic forms whose coefficients satisfy a finite set of $\operatorname{GL}_2(\mathbb{Z})$ -invariant congruence conditions.

Counting cubic fields

A cubic ring is a commutative ring with unit that is free of rank 3 as a \mathbb{Z} -module. A result of Delone and Faddeev [DF] refined by Gan, Gross, and Savin [GGS] states that there is a natural bijection between $\operatorname{GL}_2(\mathbb{Z})$ -orbits on $V_{\mathbb{Z}}$ and isomorphism classes of cubic rings. Furthermore, if f is a binary cubic form whose $\operatorname{GL}_2(\mathbb{Z})$ -orbit corresponds to the cubic ring R, then the following are true.

1. $\Delta(R) = \Delta(f)$.

- 2. R is an integral domain if and only if f is irreducible.
- 3. The splitting of a prime p in R is determined by the factoring of f modulo p.
- 4. The cubic ring R is nonmaximal at p if and only if f is a multiple of p or there is a $GL_2(\mathbb{Z})$ -translate of f such that p^2 divides the x^3 -coefficient and p divides the x^2y -coefficient.
- 77. Show that a cubic integral domain is maximal if and only if it is maximal at every prime.
- 78. Compute the probability that a binary cubic form corresponds to a cubic ring maximal at p.
- 79. Assume that the number of cubic rings having discriminant bounded by X that are nonmaximal at every prime dividing n is bounded by $O(X/n^{2-\epsilon})$. Then use the sieve methods developed in previous questions to prove the Davenport-Heilbronn theorem [DH]:

Theorem: Let $N^{\pm}(X)$ denote the number of cubic fields K such that $0 < \pm \Delta(K) \leq X$. Then we have

$$N^{+}(X) = \frac{X}{12\zeta(3)} + o(X);$$

$$N^{-}(X) = \frac{X}{4\zeta(3)} + o(X).$$
(8)

80. By studying how the error term in 76 depends on the modulus of the imposed congruence conditions, improve the o(X) error term above to a power saving.

Galois representations coming from field extensions, and the associated Artin *L*-functions

Let K be a finite extension of \mathbb{Q} or \mathbb{Q}_p . Let G_K denote the absolute Galois group of K, i.e., the group $\operatorname{Gal}(\overline{K}/K)$. A representation of G_K is called a *Galois representation*. In this section, we shall consider Galois representations

$$G_K \to \mathrm{GL}_n(\mathbb{C}),$$

where K is a number field.

Let L/K be a finite Galois extension with Galois group G and let $\rho : G \to \operatorname{GL}_n(\mathbb{C})$ be a representation. Then the representation $G_K \to G \to \operatorname{GL}_n(\mathbb{C})$ is called an Artin representation. We consider the incomplete Artin *L*-function defined by

$$L^*(s,\rho) := \prod_{\mathfrak{p}} \det[I - N(\mathfrak{p})^{-s}\rho(\operatorname{Frob}(\mathfrak{p}))]^{-1},$$

where the product runs over primes \mathfrak{p} of L that do not ramify. The completed L function is obtained by multiplying L^* with appropriate factors at the ramified primes and the infinite places.

In the questions that follow, all equalities of L-functions are up to a finite number of products (at the ramified primes). Note that this does not affect several analytic properties of the L-functions including meromorphic continuation and the position and multiplicities of its zeroes and poles.

- 81. Write the Riemann zeta function as an Artin *L*-function. Write the Dirichlet *L*-functions as Artin *L*-functions.
- **82.** Assume that $\rho = \rho_1 \oplus \rho_2$. Then $L^*(s, \rho) = L^*(s, \rho_1)L^*(s, \rho_2)$.
- 83. Suppose M is an intermediary extension between L and K, normal over K. Denote the Galois group of L/M by H. If ρ is a representation of G/H, then let $\tilde{\rho}$ denote the natural extension to G. Prove that $L^*(s, \rho) = L^*(s, \tilde{\rho})$.
- 84. Suppose M is any intermediary extension between L and K. Denote the Galois group of L/M by H. For a representation ρ of H, let ρ^* denote the induced representation. Then $L(s, \rho^*) = L(s, \rho)$.
- 85. Let K over \mathbb{Q} be a finite normal extension with Galois group G. Prove that

$$\zeta_K(s) = \prod_{\rho} L^*(s, \rho)^{\dim \rho},$$

where the product ranges over all irreducible representations ρ of G.

86. Assuming that the Dedekind zeta function $\zeta_K(s)$ has a simple pole at 1, and no other poles, prove that $L(1,\chi) \neq 0$ for Dirichlet *L*-functions $L(s,\chi)$, thus recovering the key step in Dirichlet's proof of the infinitude of primes in arithmetic progressions.

Artin's conjecture states that $L(s, \rho)$ has a meromorphic continuation to the whole complex plane, and is analytic everywhere except for a pole at 1 with multiplicity equal to the multiplicity of the trivial representation in ρ .

- 87. Prove Artin's conjecture for L-functions arising from S_3 -extensions of \mathbb{Q} .
- 88. Let ρ denote the irreducible 2-dimensional extension of S_3 . Let K be an S_3 -extension of \mathbb{Q} , and let $L(s, \rho)$ denote the corresponding L-function. Let K_3 denote one of the three conjugate subfields of K_6 that have degree 3 over \mathbb{Q} . Determine the p-th coefficient of $L(s, \rho)$ in terms of the splitting of p in K_3 .
- 89. Write down the list of possible splitting behaviours of a prime p in a cubic S_3 -field, and determine the "probability" of each possible splitting type as we range over the family of all cubic fields, ordered by discriminant.
- **90.** Consider the following family of Artin *L*-functions: let *F* be the family of all cubic S_3 -fields. For each $K \in F$, let $L_K(s) := \zeta_K(s)/\zeta(s)$. Compute the average size of the *p*-th coefficient of these *L*-functions.

These computations were done by Andrew Yang in his thesis [Yang], and he used them to determine (assuming GRH) the symmetry type of the low lying zeroes of these L-functions.

References

- [BBP] K. Belabas, M. Bhargava, and C. Pomerance, *Error terms for the Davenport-Heilbronn theorems*, Duke Math. J. **153** (2010), 173-210.
- [Bhargava] M. Bhargava, The density of discriminants of quartic rings and fields, Ann. of Math. 162, 1031–1063.
- [Davenport] H. Davenport, On the class-number of binary cubic forms I and II, J. London Math. Soc. 26 (1951), 183–198.
- [DH] H. Davenport and H. Heilbronn, On the density of discriminants of cubic fields II, Proc. Roy. Soc. London Ser. A 322 (1971), no. 1551, 405–420.
- [DF] B. N. Delone and D. K. Faddeev, *The theory of irrationalities of the third degree*, AMS Translations of Mathematical Monographs **10**, 1964.
- [GGS] W. T. Gan, B. Gross, and G. Savin, Fourier coefficients of modular forms on G_2 , Duke Math. J. **115** (2002), no. 1, 105169.
- [Elkies] N. Elkies, Lecture notes for Math 229, http://www.math.harvard.edu/~elkies/ M229.09/index.html.
- [Hartshorne] R. Hartshorne, Algebraic Geometry, Springer, 1977.
- [Milne] J. S. Milne, *Lectures on Etale Cohomology*, http://www.jmilne.org/math/ CourseNotes/lec.html.
- [Poonen] B. Poonen, Rational Points on Varieties, http://www-math.mit.edu/~poonen/ papers/Qpoints.pdf.
- [Serre] J. P. Serre, *Galois Cohomology*, Springer, 1997.
- [Silverman] J. Silverman, The Arithmetic of Elliptic Curves, Springer, 1986.
- [Yang] A. Yang, Distribution problems associated to zeta functions and invariant theory, Thesis (Ph.D.)–Princeton University, 2009.