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1. Introduction

The lectures will be concerned with statistics for the zeroes of L-functions in natural families. This will
include discussions of the number field and the function field case (the latter case being the study of zeta
functions and L-functions of curves over finite fields), and comparing the two worlds. Those comparisons are
usually through analogy, but we will also discuss some surprising recent work [ERGR13] where the results
for L-functions of curves over finite fields (obtained from the deep equidistribution theorems of Katz and
Sarnak) can be used to prove results for L-functions over number fields.

Since the work of Montgomery [Mon73] on the pair correlation of the zeroes of the Riemann zeta function,
it is known that there are many striking similarities between the statistics attached to zeroes of L-functions
and the statistics attached to eigenvalues of random matrices. The work of Montgomery was extended and
generalised in many directions, in particular to the study of statistics of zeroes in families of L-functions. It
is predicted by the Katz and Sarnak philosophy that the statistics for the zeroes in families of L-functions,
in the limit when the conductor of the L-functions gets large, follow the distribution laws of classical random
matrices. Those conjectures are based on the fact that for L-functions of curves over finite fields, those dis-
tribution laws can be proven at the q-limit (when the size of the finite field Fq tends to infinity). In this case,
the zeroes of the L-functions have a spectral interpretation: the zeroes are the reciprocal of the eigenvalues
of Frobenius acting on the first cohomology (with `-adic coefficients) of the curve. In their seminal work,
Katz and Sarnak [KS99a] used this spectral interpretation, and some deep equidistribution results due to
Deligne, to prove that the pair correlation of zeroes of zeta functions of curves of large genus over large finite
fields satisfy the Montgomery law (i.e. their result holds averaging over curves of genus g at the limit when
q tends to infinity). Katz and Sarnak were then led to conjecture that the corresponding statistics for the
zeroes of L-functions over number fields should also be given by the random matrix model as the limit for
the large conductor. The statistics are then given by the scaling density associated to the random matrix
measures when the size of the matrices goes to infinity. There is a vast literature of results investigating those
conjectures over number fields, and obtaining partial results confirming the Katz and Sarnak philosophy.

In the last few years, a new approach to study statistics for zeroes of curves over finite fields emerged from
the work of Rudnick and his collaborators, which is to obtain statistics for families of curves for q fixed, and
when the genus of the curves (which is the analogue of the conductor for this case) tends to infinity. Then,
one cannot use the powerful equidistribution theorems of Katz and Sarnak, and there are many similarities
between the number field and the function field case. Some natural families of curves over finite fields that
were studied in the recent years include hyperelliptic curves [KR09, FR10, Rud10, RG12], cyclic `-covers
[BDFL10b, CWZ, Xio10b], trigonal curves [Woo12, TX14], families of smooth curves embedded in a fixed
ambient space [BDFL10a, EW12, BK12] and Artin-Schreier curves [BDF+12, BDFL, Ent12, Ent13], and
we will concentrate in the lectures on those families. We will give a picture of this body of recent work,
stressing among others the similarities and differences between the number fields and function fields, the
compatibility with the q-limit results of Katz and Sarnak, and the particular geometry of each family which
influences the counting and the statistics. Some statistics are very robust, while some others are influenced
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by the geometry of each family.
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2. Statistics over number fields: n-correlation and n-level density

Let ζ(s) be the Riemann zeta function defined for s > 1 as

ζ(s) =

∞∑
n=1

n−s =
∏
p

(
1− p−s

)−1
,

where the equality between the sum and the Euler product follows from the fundamental theorem of arith-
metic. Riemann introduced the idea to look at ζ(s) as a function of the complex variable s in the complex
plane, and he showed that ζ(s) has analytic continuation to the complex plane C with a simple pole at s = 1,
and satisfies the functional equation

Λ(s) := π−s/2Γ(s/2)ζ(s) = Λ(1− s),
where

Γ(s) =

∫ ∞
0

ts−1e−t dt

is defined for Re(s) > 0, and have analytic continuation to the whole complex plane with simple poles at
0,−1,−2, . . . . From the functional equation and the Euler product, it follows that the only zeroes of ζ(s)
outside the critical strip 0 ≤ Re(s) < 1 corresponds to the poles of Γ(s/2), namely at s = −2,−4,−6, . . . .
Those are called the trivial zeroes of ζ(s).

For the zeroes of ζ(s) in the critical strip 0 ≤ Re(s) ≤ 1, Riemann made several conjectures. First, if

N(T ) = # {γ = σ + it : ζ(γ) = 0, 0 ≤ σ ≤ 1, 0 < t < T} ,
then the Riemann-Von Mangoldt formula states that

N(T ) =
T

2π
log

T

2π
− T

2π
+

7

8
+O(log T ) ∼ T log T

2π
.

And of course the famous Riemman Hypothesis (RH): All non-trivial zeroes of ζ(s) are on the line Re(s) =
1/2.

So, from the Riemann-Von Mangoldt formula, we know how many zeroes we have up to height T . How are

they distributed? For example, do they look like
T log T

2π
random points on an interval of length T? In fact,

they do not, for example, they do not cluster as random point tends to do, there is a repulsion phenomenon
between the zeroes.

Trying to understand the distribution of the zeroes, Montgomery [Mon73] studied the pair correlation of
the zeroes. Let

γ̃ =
γ log T

2π
,

i.e. we normalise the zeroes so that they have mean spacing 1. Then, for any α < β, how many zeroes γ, γ′

are such that

α < γ̃ − γ̃′ < β?

Conjecture 2.1 (Montgomery’s Pair Correlation conjecture). Let f be a function in the Schwartz space
S(R) (i.e. smooth and rapidly decreasing). Then

lim
T→∞

1

N(T )

∑
0<γ,γ′≤T

f(γ̃ − γ̃′) =

∫ β

α

f(x)

(
1−

(
sin (πx)

πx

)2
)
dx

What Montgomery actually proved was that the above theorem holds for test functions f such that the

support of the Fourier transform f̂ is limited, giving evidence for the conjecture for general test functions f .
We will see how to prove such results, over number fields and over functions fields.

Dyson noticed that Montgomery has found that the pair correlation between zeroes of the Riemann zeta
function was given by the same distribution function which gives the pair correlation between eigenvalues of
random unitary matrices, when the size of the matrices tends to infinity.

More precisely, let U(N) be the set of N ×N unitary matrices in MN (C). We recall that a unitary matrix
U satisfies the condition

U∗U = UU∗ = IN
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where IN is the identity matrix and U∗ is the conjugate transpose of U . Because U is unitary, its eigenvalues
have absolute value 1.

Let U ∈ U(N), and let λk(U) = eiθk(U) be the eigenvalues, with 0 ≤ θ1(U) ≤ θ2(U) · · · ≤ θN (U) ≤ 2π.
Let f ∈ S(R). The pair correlation measures the distribution between pairs of eigenvalues of U , and is
defined as

Cf (U) =
1

N

∑
1≤j,k≤N
j 6=k

f

(
N

2π
(θj(U)− θk(U))

)
.

Again, we have normalised the eigenangles in such a way that there are N angles on an interval of length N .
Then, with the appropriate measure on U(N) (which is the translation invariant Haar measure), one can
show that (see [KS99a])

lim
N→∞

∫
U(N)

Cf (U) dU =

∫ β

α

f(x)

(
1−

(
sin (πx)

πx

)2
)
dx.(1)

In the 1980s, Andrew Odlyzko began an intensive numerical study of the statistics of the zeros of ζ(s). He
computed millions of zeroes at heights around 1020 and spectacularly confirmed the Montgomery’s conjecture.
We remark that even if we were able to prove Montgomery’s Pair Correlation conjecture, it would not mean
that the zeroes are distributed as the eigenvalues of large unitary matrix, but that the pair correlations are
the same for the two sets. But Montgomery, and others, went on to conjecture that perhaps all the statistics,
not just the pair correlation statistic, would match up for zeta-zeros and eigenvalues of random matrices.
This conjecture has the flavor of a spectral interpretation of the zeros, though it gives no indication of what
the particular operator is.

There is one case where zeroes of zeta functions have a spectral interpretation: the case of zeta functions
of curves over finite fields, where the zeroes are the reciprocal of eigenvalues of Frobenius acting on the first
cohomology (with `-adic coefficients) of the curve. In their seminal work, Katz and Sarnak used this spectral
interpretation, and the equidistribution results due to Deligne, to prove that Montgomery’s conjecture is true
for the zeta functions of most curves of large genus over large finite fields, i.e. their result holds averaging
over curves of genus g at the limit when q and g tends to infinity, see [KS99a, Theorem 12.2.3].

Katz and Sarnak also studied other families of curves over finite fields, and it is believed that the statistics
for families of L-functions of curves over finite fields should match up the statistics for eigenvalues of classical
matrix groups at the q-limit, provided that the monodromy group of the family is big enough, i.e. for families
where one can prove an analogue of Deligne’s equidistribution theorem [Del74, Del80], which is one of the
main ingredient for proving Montgomery’s conjecture for L-functions of curves over finite fields.

Back to the number field world, the work of Montgomery was massively generalised by Rudnick and
Sarnak [RS96] to the n-correlation of L-functions L(s, π) attached to cuspidal automorphic representations

of GLm over Q, again for test functions f with Fourier transform of limited support. Let C
(n)
f (T ) be the

n-correlation between the zeroes of L(s, π) at height T with test function f ∈ S(Rn) (i.e. C
(n)
f (T ) measures

the distribution of the differences between the normalised imaginary parts of all sets of n zeroes at height
T ). Then, it is shown in [RS96] that

lim
T→∞

C
(n)
f (T ) =

∫
Rn
f(x1, . . . , xn)W (n)(x1, . . . , xn) dx1 . . . dxn,

where the test function f(x1, . . . , xn) is such that its Fourier transform f̂(u1, . . . , un) has support contained in∑n
j=1 |uj | < 2/m, and where W (n)(x1, . . . , xn) is the scaling density for the n-correlation between eigenvalues

of large unitary matrices. For n = 1 and L(s, π) = ζ(s), we have that

C
(1)
f (T ) =

1

N(T )

∑
0<γ,γ′≤T

f(γ̃ − γ̃′)

W (1)(x) = 1−
(
sin(πx)

πx

)2

,

and we retrieve the result of Montgomery. We will define the scaling density more precisely in the context
of the n-level density in Section 2.1.
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Then, the scaling density for the n-level correlation is universal, i.e. it is the same for all L-functions.
However, other statistics, as the one-level density, or in general the n-level density, will differ depending of
the “symmetry type” of the family (unitary, symplectic, orthogonal, even orthogonal and odd orthogonal).

2.1. One-level density. The pair correlation is a universal statistics, and it is believed to be the same
for all families of L-functions. We will see other examples of such statistics, as the number of (normalised)
zeroes in intervals for families of curves over finite fields. There are some statistics which depend on the
symmetry type of the family, as the one-level density, or in general the n-level density. We discuss in this
section the n-level density for 2 families of L-functions: Dirichlet L-functions (with symplectic symmetries)
and L-functions attached to elliptic curves (with orthogonal symmetries). In particular, we explain how the
explicit formulas can be used to get results about the n-level density for test functions with Fourier transform
of limited support. This should be compared with case of function fields that we will study afterwards.

The one-level density is about the behavior of low-lying zeroes of L-functions, so we need to consider
families of L-functions, as inspired by the work of Katz and Sarnak, in order to get statistics. We first
consider families of L-functions attached to elliptic curves.

Let E be an elliptic curve over Q with L-function

L(s, E) =
∏
p-NE

(
1− ap(E)

ps
+

1

p2s−1

)−1 ∏
p|NE

(
1− ap(E)

ps

)−1

,

where NE is the conductor of E, and functional equation

Λ(s, E) :=

√
NE
2π

Γ(s)L(s, E) = wEΛ(2− s, E),

where wE = ±1 is the root number of E.
Let f be an even Schwartz test function, and F be a family of elliptic curves (we will consider precise

families of elliptic curves that will be defined later). For each E ∈ F , we define

Wf (E) =
∑
γE

f
(γE

2π
logX

)
.(2)

where the sum runs over the imaginary part of the zeroes ρE = 1 + γE of the L-function L(s, E) in the
critical strip. The scaling factor (2π)−1 logX is inserted to normalise the number of zeroes counted by the
test function (then, X is about the size of the conductor of E). Since f is rapidly decreasing, Wf (E) should
be thought as counting the number of low-lying zeroes of L(s, E).

Let F(X) be the set of curves in the family indexed by the parameter X (in particular, the average of
logNE over the family is asymptotic to logX.) The one-level density over the family F(X) is then defined
as

Wf (F(X)) :=
1

#F(X)

∑
E∈F(X)

Wf (E).

Katz and Sarnak predicted that one-level density should satisfy

(3) lim
X→∞

Wf (F(X)) =

∫
R
f(t)W(t) dt,

where W(G) is the one-level scaling density of eigenvalues near 1 in the group of random matrices corre-
sponding to the symmetry type of the family F . By the scaling density of a group of random matrices, we
mean the limit of the Haar measure in the large matrix size. More precisely, for any N ×N matrix U in one
of the classical compact group G(N), we write the eigenvalues as λj(U) = eiθj with

0 ≤ θ1 ≤ θ2 · · · ≤ θN < 2π.

Let f ∈ S(R) be a test function, and let

Wf (U) =

N∑
j=1

f

(
Nθj
2π

)
.
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Let dU be the normalized Haar measure on G(N). It is shown by Katz and Sarnak [KS99a, Appendix] that

lim
N→∞

∫
G(N)

Wf (U) dU =

∫
R
f(t)WG(t) dt,(4)

where

(5) WG(t) =



1 if G = U ;

1− sin (2πt)
2πt if G = Sp;

1 + 1
2δ0(t) if G = O;

1 + sin (2πt)
2πt if G = SO(even);

1 + δ0(t)− sin (2πt)
2πt if G = SO(odd);

where δ0 is the Dirac distribution, and U,Sp, O, SO(even), SO(odd), are the groups of unitary, symplectic,
orthogonal, even orthogonal and odd orthogonal matrices respectively. The function WG(t) is called the
one-level scaling density of the group G. We refer the reader to [KS99a] for details.

Computing the one-level density for families of curves allow us to identify the symmetry type G of
the family, provided that the support of the Fourier transform can be taken large enough, as one cannot
distinguish between O, SO(odd) and SO(even) for small support. Indeed, the Fourier transforms of the
distributions above are given by

(6) ŴG(t) =


δ0(t) if G = U ;
δ0(t)− 1

2η(t) if G = Sp;
1
2 + δ0(t) if G = O;
δ0(t) + 1

2η(t) if G = SO(even);
1 + δ0(t)− 1

2η(t) if G = SO(odd);

where

(7) η(t) =

 1 if |t| < 1;
1
2 if |t| = 1;
0 if |t| > 1.

The fact that one cannot distinguish between the three orthogonal distributions for small support of test

functions f then follows from Plancherel Theorem. Suppose that the support of f̂ is contained in (−a, a).
Then, for distributions W, we have∫ ∞

−∞
f(t)W(t)dt =

∫ ∞
−∞

f̂(t)Ŵ(τ)dt =

∫ a

−a
f̂(t)Ŵ(t)dt

and for G = O,SO(even) or SO(odd), ŴG(τ) are undistinguishable for a < 1 (but are distinguishable for
a > 1).

In order to prove results about the one-level density (or other statistics on zeroes of L-functions as the
n-correlation), one uses the Explicit formulas for L-functions due to André Weil, in which sum sover the
zeroes of L(s, E) are rewritten as sums over the coefficients of L(s, E). To get the explicit formulas, one
consider the line integral of the logarithmic derivative∫

(1+ε)

h(s)
Λ′E(s)

ΛE(s)
ds,

for some appropriate test function h. By moving the countour to the line (−1− ε), we pick the residues at
the non-trivial zeroes ρE of L(s, E), and we can use the functional equation to rewrite the integral on the
line (−1− ε) as the original integral, which gives a formula of the type.∫

(1+ε)

Λ′E(s)

ΛE(s)
h(s) ds =

1

2πi

∑
ρE

h(ρE).(8)

By choosing the test function h appropriately, and computing explicitely the integral in (8), we get the
explicit formula as follows (see [ILS00] for this version of the explicit formula).
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Theorem 2.2. Let f is an even Schwartz function, and Wf (E) as defined by (2). Then,

Wf (E) = f̂(0)
logNE
logX

+
1

2
f(0)−

∑
p>3

2ap(E) log p

p logX
f̂

(
log p

logX

)
+O

(
log logNE

logX

)
,

where the Fourier transform is f̂(u) =
∫
R f(x)e−2πixu dx.

Some application of the explicit formulas for elliptic curves include the bound

rank(E)� logNE
log logNE

on the analytic rank (or the rank using the Birch and Swinnerton-Dyer conjectures) under GRH due to
Mestre [Mes86], and bounds on the average analytic rank for all elliptic curves over Q under GRH [Bru92,
HB04, You06].

For the one-level density, using the explicit formulas, one can show the following:

Theorem 2.3. [You06] Let F(X) the family of all elliptic curves given by Weierstrass equations Ea,b : y2 =

x3 + ax+ b, with a, b positive integers and such that |a| ≤ X1/3, |b| ≤ X1/2. Then, as X →∞,

Wf (F(X)) ∼ f̂(0) +
1

2
f(0),(9)

for test functions f such that supp(f̂) ⊆ (−7/9, 7/9) .

Remark: What is proven in [You06] is a weighted version of the above, where the sums are smoothed
by a smooth and compactly supported function, and we simplified the statement of his results.

It is believed that the family F(X) has orthogonal symmetries, i.e. the one-level density should be given
by the scaling density WO(t), and since∫

R
f(t)WO(t) dt =

∫
R
f(t)

(
1 +

1

2
δ0(t)

)
dt = f̂(0) +

1

2
f(0),

Theorem 2.3 agrees with the belief that the family of all elliptic curves have orthogonal symmetry type. But
the limited support of the Fourier transform would also agree with SO(even) or SO(odd) since for any of
those three groups, the integrals ∫

R
f(t)WG(t) dt =

∫
R
f̂(t)ŴG(t) dt

agree when supp(f̂) ⊆ (−1, 1) .

Theorem 2.4. [You06] Let F(X) the family of all elliptic curves given by Weierstrass equations Ea,b : y2 =

x3 + ax+ b2, with a, b positive integers and such that |a| ≤ X1/3, |b| ≤ X1/4. Then, as X →∞,

Wf (F(X)) ∼ f̂(0) +
3

2
f(0),(10)

for test functions f such that supp(f̂) ⊆ (−23/48, 23/48) .

This agrees with the belief that the scaling density should be δ0(t) +WO(t) for this family (where the
Dirac function accounts for the fact that each elliptic curve Ea,b have positive algebraic rank due to the
point of infinite order (0, b) ∈ Ea,b).

The fact that one cannot distinguish between symmetry types O, SO(odd) or SO(even) for functions with
Fourier transform of limited support can be problematic in families where it is not obvious to guess the
symmetry type a priori, as it was for the two families above. Let F be the one-parameter family of elliptic
curves with equation

(11) Et : y2 = x3 + tx2 − (t+ 3)x+ 1, t ∈ Z.

This is a family of rank 1 over Q(t), and the sign of the functional equation is −1 for all the specialisation
with t ∈ Z [Was87, Riz03].
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Theorem 2.5. [Mil04] Let F(X) be the family of curves Et ∈ F with t ∈ Z and |t| ≤ X1/6. Then, as
X →∞,

Wf (F(X)) ∼ f̂(0) +
3

2
f(0),(12)

for test functions f such that supp(f̂) ⊆ (−1/3, 1/3) .

Since the sign of the functional equation of every specialisation is -1, it would make sense to conclude that
the scaling density should be δ0(t) +WSO(odd)(t) (where the Dirac function accounts for the global point of
infinite order on E/Q(t)), and it was remarked in [Mil04] that the scaling density agrees with this. However,
recent work on the one-level density of the same family by David, Huynh and Parks [DHP] show that under
the ratios conjecture of Conrey, Farmer and Zirnbauer [CFZ08], the scaling density of this family is

W(t) = δ0(t) +WSO(even)(t),

and the global point induces a shift of the symmetry from SO(odd) to SO(even).

We now discuss the one-level density of another family of L-functions, namely Dirichlet L-functions. Let
d be a fundamental discriminant, and let χd be the Kronecker symbol

χd(n) =

(
d

n

)
which is a primitive quadratic character of conductor d. We denote the non-trivial zeroes of the Dirichlet
L-function L(s, χd) by

1

2
+ iγd,j , j = ±1,±2, . . . ,

where

0 ≤ Re γd,1 ≤ Re γd,2 ≤ Re γd,3 . . .

and such that γd,−j = −γd,j . We do not assume the GRH here, but if 1/2 + iγ is a zero, so is 1/2− iγ using
complex conjugation and the functional equation.

We want to study statistics for the low-lying zeroes of L(s, χd) where d belongs to

D(X) = {X/2 ≤ |d| ≤ X : d fundamental discriminant} .

As above, let f be an even Schwartz test function f ∈ S(R), and let

Wf (d) =
∑
j

f
(γd,j

2π
logX

)
,

where the parameter X is approximately the conductor of the family. We define the one-level density as

Wf (D(X)) = 〈Wf (d)〉D(X) =
1

#D(X)

∑
d∈D(X)

Wf (d).

The one-level density for the families of Dirichlet L-function L(s, χd) was studied by Katz and Sarnak

[KS99b] and Ozluk and Snyder [ÖS93, ÖS06] who showed when X tends to infinity

〈Wf (d)〉D(X) ∼
∫
R
f(x)

(
1− sin (2πx)

2πx

)
dx,

provided that the support of Fourier transform f̂(u) is limited to the interval |u| < 2. This coincide with the

random matrix model as 1− sin (2πx)
2πx is the scaling density for the one-level density associated to the group

of unitary symplectic matrices, which comes from taking the limit of the average with respect to the Haar
probability measure on the matrix groups USp(g) as in (4).

We now define the n-level density for this family. Let f be a Schwartz function in S(Rn) which is even in
all the variables, and let

W
(n)
f (d) =

∑
j1,...,jn=±1,±2,...

|jk| distinct

f
(γd,j1

2π
logX, . . . ,

γd,jn
2π

logX
)
.
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As for the one-level density, we want to show that

W
(n)
f (D(X)) =

〈
W

(n)
f (d)

〉
D(X)

∼
∫
R
f(x)W

(n)
USp(x) dx,

where W
(n)
USp(x) is the scaling density for the n-level density associated to the symplectic symmetries, which

comes from taking the scaling limit of the average with respect to the Haar probability measure on the
symplectic group. Let U ∈ USp(2g). Because of the symplectic pairing, it eiθ is an eigenvalue, so is e−iθ,
and we can label the eigenvalues as eiθ±j , for j = 1, . . . , g, where θ−j = −θj . We then define

W
(n)
f (U) =

∑
j1,...,jn=±1,...,±g
|jk| distinct

f(θj1 , . . . , θjn).

Then, it is shown in Katz and Sarnak [KS99a, Appendix] that

lim
g→∞

∫
USp(g)

W
(n)
f (U) dU =

∫
Rn
f(x)W

(n)
USp(x) dx,

where the scaling densities W
(n)
USp(x) are given by

W
(n)
USp(x) = det (K(xi, xj))i,j=1,...,n,

where

K(x, y) =
sinπ(x− y)

π(x− y)
− sinπ(x+ y)

π(x+ y)
.

The n-level densities of the family of L-functions of quadratic Dirichlet characters were investigated by
Rubinstein [Rub01, Theorem 3.1], who showed that for all n ≥ 2, one has

lim
X→∞

〈
W

(n)
f (d)

〉
D(X)

=

∫
Rn
f(x)W

(n)
USp(x) dx

for test functions
f(x1, . . . , xn) = f1(x1) . . . fn(xn)

where each fi is even and in S(R), and f̂(u1, . . . , un) = f̂1(u1) . . . f̂n(un) is supported in
∑n
i=1 |ui| < 1.

In his Ph.D. thesis, Gao [Gaoa, Gaob] tried to extend this support to match the support obtained for the
one-level density. Under GRH, he showed that for test functions f(x1, . . . , xn) = f1(x1) . . . fn(xn) as above

such that f̂(u1, . . . , un) supported in
∑n
i=1 |ui| < 2, then

lim
X→∞

〈
W

(n)
f (d)

〉
D(X)

= A(f) + o(1),

where A(f) is a complicated combinatorial expression. Then, to show that the n-level density has the correct
scaling density for

∑n
i=1 |ui| < 2, it remains to show that

A(f) =

∫
Rn
f(x)W

(n)
USp(x) dx,

which was done by Gao [Gaoa, Gaob] for n = 2, 3, and by Levinson and Miller [LM] for n = 4, 5, 6, 7.
Recently, this was resolved for all n.

Theorem 2.6. (Entin, Roddity-Gershon and Rudnick, 2013) Assume GRH. Then, for test functions f as

above with f̂(u1, . . . , un) supported in the region
∑n
i=1 |ui| < 2, we have for all n that

lim
X→∞

〈
W

(n)
f (d)

〉
D(X)

=

∫
Rn
f(x)W

(n)
USp(x) dx.

The authors of [ERGR13] proved their results by comparing the n-level densities of Dirichlet L-functions
by their function field analogue, namely the L-functions of hyperelliptic curves of genus g over a finite field
Fq. They can then use the powerful equidistribution theorem of Katz and Sarnak (Theorem 6.1) to pass to
the finite field limit and identify the limit with the random matrix model. We will explain this phenomenon
at the end of the lectures, after defining L-functions of curves over finite fields, and statistics at the q-limit,
or for finite q.
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3. Zeta functions and L-functions over function fields

Let q be a power of a prime, and Fq the finite field with q elements. We study in this section zeta functions
and L-functions of function fields over Fq. The main reference for this section is the fantastic book of Michael
Rosen Number theory in function fields [Ros02].

We first begin by the study of the analogue of the Riemann zeta function, which is basically the zeta
function of the function field Fq(X). For this simple case, we have the following dictionary between the
world of number fields and the world of function fields.

Number Fields Function Fields
Q ↔ Fq(X)
Z ↔ Fq[X]
p positive prime ↔ P (X) monic irreducible polynomial
|n| ↔ |F (X)| = qdegF

where Fq[X] is the ring of polynomials over Fq, and Fq(X) is the field of rational functions. Unless otherwise
mentioned, all polynomials considered (F , P , etc) are monic.

The analogue of the Riemann zeta function in this context, which we denote by ζq(s), is

ζq(s) =
∑

F∈Fq [X]

|F |−s =
∏

P irreducible

(
1− |P |−s

)−1
,(13)

where the Euler product follows from the fact that Fq[X] is a UFD, so every monic polynomial factors as a
product of monic irreducible polynomials in a unique way.

As there are qd monic polynomials of degree d, we can rewrite ζq(s) as

ζq(s) =
∑
d≥0

qdq−ds = (1− q1−s)−1.(14)

So, the Riemann Hypothesis is then trivially true for ζq(s) because it has no zeroes!
We now prove the prime number theorem for polynomials. Let ad be the number of monic irreducible

polynomials of degree d. Then, using (13) and (14), we write

ζq(s) =

∞∏
d=1

(
1− q−ds

)−ad
= (1− q1−s)−1,

or using u = q−s

1

1− qu
=

∞∏
d=1

(
1− ud

)−ad
.

Taking the logarithmic derivative on both sides and multiplying by u, we get

u
d

du
log (1− qu) = u

∞∑
d=1

ad
d

du
log (1− ud)

⇐⇒
(

qu

1− qu

)
=

∞∑
d=1

dad u
d

(1− ud)
.

Expanding both sides into power series using geometric series, and equating coefficients of un, we get∑
d|n

d ad = qn,

and applying Moebius inversion formula, we get

an =
1

n

∑
d|n

µ(d)qn/d.(15)

10



Theorem 3.1. [Ros02, Theorem 2.2](The prime number theorem for polynomials) Let an denote the number
of irreducible polynomials in Fq[X]. Then,

an =
qn

n
+O

(
qn/2

n

)
.

Proof. From (15), we have that

an =
qn

n
+O

qn/2n +
qn/3

n

∑
d|n

d6=n, n
2

|µ(d)|

 ,

and
∑
d|n |µ(d)| = 2ω(n), where ω(n) is the number of distinct prime divisors of n. Since 2ω(n) ≤ n, the

result follow. �

One can also use ζq(s) to count the number of square-free polynomials of degree d, which will be needed
later.

Lemma 3.2. Let Fd be the set of square-free monic polynomials of degree d. Then,

#Fd =

qd − qd−1 =
qd

ζq(2)
if d ≥ 2

qd if d = 0, 1.

Proof. One starts with the identity

ζq(s) = ζq(2s)
∑
d≥0

|Fd| q−ds,

and using u = q−s, this writes as

1− qu2

1− qu
=
∑
d≥0

|Fd| qd

⇐⇒ 1 + qu+

∞∑
d=2

(qd − qd−1)ud =
∑
d≥0

|Fd| qd.

This shows Lemma 3.2. �

Remark: This is analogous to the result over number fields, namely that the number of square-free
positive integers up to x is asymptotic to x/ζ(2).

In order to define general zeta functions in the function field setting, we need to extend the definition of
primes by considering all valuations, not only those associated with prime ideals of Fq(X), i.e. we need to
include “the prime at ∞”. Let K be a function field over Fq, which is a field containing Fq and an element
x transcendental over Fq such that K/Fq(x) is a finite extension. We will also denote k = Fq(X). A prime
in K is by definition a discrete valuation ring R with maximal ideal P such that Fq ⊆ R, and the quotient
field of R is K. We refer to such a prime by P , where P is the maximal ideal in R, and by ordP the discrete
valuation associated to P . Also, degP is the dimension of R/P over Fq (which can be shown to be finite).
We denote by SK the set of primes of K. We refer the reader to [Ros02, Chapter 5] for all the details.

Example: Let k = Fq(X), and denote A = Fq[X]. Then, each irreducible monic polynomial P give a
valuation ring, namely AP , the localization of A = Fq[X] at P . AP is a discrete valuation ring, and we also
use P to denote the maximal ideal in AP . This gives raise to a prime of Fq(X) as define above, of degree
degP . There is only one more prime of the function field Fq(X), associated with the ring A′ = Fq[X−1] with
prime ideal P ′ generated by X−1. The localization of A′ at P ′ is a discrete valuation ring which defines a
prime of Fq(X) called the prime at infinity, denoted ∞. We can check that deg∞ = 1.

11



Let K be a function field, and let DK be the group of divisors of K, which is the free abelian group
generated by the primes. We denote this group additively, so a typical divisor is a finite sum

D =
∑
P

a(P )P,

where P are primes of K. The degree of such a divisor is degD =
∑
P a(P ) deg(P ), and the norm of D is

|D| = qdegD. A divisor D is said to be effective if a(P ) ≥ 0 for all P . We denote this by D ≥ 0.

Definition 3.3. Let K be a function field over Fq(X). The zeta function of K, ζK(s), is defined by

ζK(s) =
∑
D∈DK
D≥0

|D|−s =
∏
P∈SK

(
1− |P |−s

)−1
,

where the sum runs over all divisors D ∈ DK , and the product over all primes P ∈ SK .

Example 1: If K = Fq(X), show that

ζK(s) =
1

(1− q−s)(1− q1−s)
.

This is the completed zeta function of ζq(s), which did not include the prime at ∞.

Example 2: Let K = Fq(X)(
√
D(X)) where D is a square-free polynomial of degree d. As in the number

field setting, let χK is the character associated with the quadratic field Fq[X](
√
D), i.e. for each prime P of

Fq(X),

χK(P ) =


1 P splits in K

−1 P is inert in K

0 P ramifies in K.

such that

ζK(s)

ζk(s)
=

∏
P∈Sk

P is inert

(
1− |P |−2s

)−1

(1− |P |−s)−1

∏
P∈Sk
P splits

(1− |P |−s)−2

(1− |P |−s)−1

∏
P∈Sk

P ramifies

(1− |P |−s)−1

(1− |P |−s)−1

=
∏
P∈Sk

P is inert

(
1 + |P |−s

)−1 ∏
P∈Sk
P splits

(
1− |P |−s

)−1 ∏
P∈Sk

P ramifies

1

=
∏
P∈Sk

(
1− χK(P )|P |−s

)−1

For the finite primes P ∈ Sk, i.e. the irreducible polynomials of Fq[X], the character χK is the quadratic
Dirichlet character to the modulus D, i.e. the quadratic residue symbol

χD(F ) =

(
D

F

)
.

For a general reference on Dirichlet characters over function fields, and in particular quadratic residue
symbols, see [Ros02, Chapter 4]. Let χ be any Dirichlet character. Then, the L-function of χ is defined by

L(s, χ) =
∑

F∈Fq [X]

F monic

χ(F )

|F |s
.

It converges absolutely for Re(s) > 1, and we have the product decomposition

L(s, χ) =
∏
P

(
1− χ(P )

|P |s

)−1

where the product is over monic irreducible polynomials of Fq[X].
12



For the prime at infinity in Sk, we have that
∞ ramifies in K degD odd

∞ splits in K degD even, sgn D = 1

∞ is inert in K degD even, sgn D = -1

(16)

where for D =
∑degD
n=0 anX

n ∈ Fq[X], we define sgnD to be 1 if adegD is a square in F∗q and −1 otherwise.

Putting everything together, we have that for D monic and square-free, and K = k(
√
D), that

ζK(s)

ζk(s)
= (1− q−s)−λDL(s, χD)

where L(s, χD) is the Dirichlet L-function associated with the quadratic residue symbol χD(F ) =
(
D
F

)
, and

λD =

{
1 degD even

0 degD odd.

Proposition 3.4. [Ros02, Proposition 4.3] Let χ be a non-trivial Dirichlet character to the modulus M .
Then, L(s, χ) is a polynomial in q−s of degree at most degM − 1.

Proof. Define

A(n, χ) =
∑

deg F=n
F monic

χ(F ).

Then,

L(s, χ) =

∞∑
n=0

A(n, χ)q−ns,

and it follows from the orthogonality relation of characters that A(n, χ) = 0 for n ≥ degM . �

So, it follows from Proposition 3.4 that for K = Fq(X)(
√
D), ζK(s)/ζk(s) is a polynomial in q−s. We will

see that this is true in general.
Example 3: Let ` be a prime, and we assume that q ≡ 1 mod `. Let D(X) ∈ Fq[X] be a monic

`th-power free polynomial, and let

χD,`(F ) =

(
D

F

)
`

be the `th-power residue symbol. It is a character of order ` to the modulus D. See [Mor91] for more details

on `th-power residue symbols. Then, for K = k(
√̀
D), we have

ζK(s)

ζk(s)
=
(
1− q−s

)−λD `−1∏
j=1

L(s, χjD,`),

where the L(s, χjD,`) are the Dirichlet L-functions with character χjD,` for j = 1, . . . , `− 1, and

λD =

{
`− 1 degD ≡ 0 mod `

0 degD 6≡ 0 mod `

(we recall that D(X) is monic). Then, ζK(s)
ζk(s) is also a polynomial in that case by Proposition 3.4. The

general case is proven in Rosen, by using the Riemann-Roch theorem [Ros02, Theorem 5.4] to get a closed
formula for the number of effective divisors of degree n, for n > 2g − 2, where g is the genus of the function
field K. The Riemann-Roch theorem also defines the genus, which is a key invariant of the function field K.

Theorem 3.5. [Ros02, Theorem 5.9] Let K be a function field over Fq of genus g. Then

ζK(s) =
PK(q−s)

(1− q−s)(1− q1−s)

where PK(u) is a polynomial of degree 2g in Z[u].
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Proof. Let bn = bn(K) be the number of effective divisors of degree n in DK . Assume that for n > 2g − 2,
we have

bn = hK
qn−g+1 − 1

q − 1

(see [Ros02, Chapter 5] for a proof of that). Using the change of variable u = q−s and defining ZK(u) = ζK(s),
we have

ZK(u) =

2g∑
n=0

bnu
n +

hK
q − 1

(
qg

1− qu
− 1

1− u

)
u2g−1,

and we deduce that

ZK(u) =
PK(u)

(1− u)(1− qu)
,

with PK(u) ∈ Z[u]. �

Then, the Riemann hypothesis for ζK(s) = ZK(q−s) translates into the statement that the inverse roots
of PK(q−s) have absolute value

√
q writing

PK(u) =

degPK∏
j=1

(1− uπj(K)).

Indeed,

ζK(s) = 0 ⇐⇒ PK(q−s) = 0 ⇐⇒ q−s = πj(K)−1, for some j = 1, . . . ,degPK .

Then, if Re(s) = 1/2, we have

πj(K)−1 = q−1/2q−iIm(s) ⇐⇒ |πj(K)| = q1/2, j = 1, . . . ,degPK .

The Riemann hypothesis for function fields was first proven by Weil. There are now several proofs of this
deep and beautiful theorem, two of them due to Weil in the 1940s and 1950s. A more elementary proof
due to Stepanov and Bombieri was developed in the 1970s. An overview of Bombieri’s proof and complete
references are given in [Ros02].

Theorem 3.6. (The Riemann Hypothesis for Function Fields) Let K be a function field over Fq. Then, all
the roots of ζK(s) lie on the line Re(s) = 1/2. Equivalently, the inverse roots of PK(u) have absolute value√
q.

Using the Riemann Hypothesis, we can prove the Prime number theorem for general function fields.

Theorem 3.7. (Prime number theorem for function fields) Let

aN (K) := # {P ∈ SK | degP = N} .

Then,

aN (K) =
qN

N
+O

(
qN/2

N

)
.

Proof. See [Ros02, Theorem 5.12]. �

We now wish to derive another expression for the zeta function of a function field K. As above, it is
convenient to work with the variable u = q−s and we define ZK(u) by

ζK(s) = ZK(u).

Then, using the Euler product, we have

ZK(u) =

∞∏
d=1

(1− ud)−ad(K),
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where ad(K) is the number of primes in SK of degree d, and taking the logarithm on both sides, and using

the power series − log(1− u) =
∑∞
m=1

um

m , we get

logZK(u) =

∞∑
m=1

Nm(K)

m
um ⇐⇒ ZK(u) = exp

( ∞∑
m=1

Nm(K)

m
um

)
,(17)

where

Nm(K) =
∑
d|m

d ad(K).

Also, it follows from Theorem 3.5 that

Nm(K) = qm + 1−
2g∑
j=1

πj(K)m,

by taking logarithms on both sides of

ZK(u) =
PK(u)

(1− u)(1− qu)
,

and writing PK(u) =
∏2g
j=1 (1− πj(K)u) .

By studying constant field extensions of Fq[X], it is shown in Rosen that

Theorem 3.8. [Ros02, Proposition 8.18] Nm(K) is the number of prime divisors of degree 1 in the function
field Km = FqmK.

We now want to change the point of view, and see ZK(u) as the zeta function of a curve over Fq. We first
recall that there is an equivalence of categories between smooth projective curves over Fq and function fields
over Fq (see for example [Sil09, Chapter 2] for details). Let C/Fq be a smooth projective curve over Fq, and to
simplify the exposition , suppose that C has an affine plane model F (X,Y ) = 0, where F (X,Y ) ∈ Fq[X,Y ] is
an irreducible polynomial. We define the coordinate ring of C as Fq[X,Y ]/(F (X,Y )) and the function field
of C, denoted K(C), as the ring of fractions of K[X,Y ]/(F (X,Y )). This creates an equivalence of categories
between the set of smooth plane curves over Fq, and functions fields over Fq. The corresponding maps are
surjective morphisms of curves defined over Fq, and function field injections preserving Fq. For example,

k = Fq(X) is the function field P1(Fq), K = Fq(X)(
√
D(X)) is the function field of the hyperelliptic curve

with plane model C : Y 2 = D(X), and K = Fq(X)(
√̀
D(X)) is the function field of the cyclic `-cover with

plane model C : Y ` = D(X).
Then, fix a curve C over Fq, and let K be its function field (which is a function field over Fq). It is not

difficult to see that primes in SK must correspond to Galois orbits of points on C. For example, for the
function field k = Fq(X), the finite primes are in one-to-one correspondence with irreducible polynomials in

Fq[X] which are in one-to-one correspondence with Gal(Fq/Fq)-orbits of points in A1(Fq) (the Galois orbit
associated to a given irreducible polynomial in P (X) ∈ Fq[X] is of course the set of roots of P (X).) The
degree of the polynomial is then the number of elements in the orbit. With this example in mind, it is
natural to think that the set of primes of degree 1 in the function field Km = FqmK must correspond to the
points of C defined over Fqm . This gives the following beautiful theorem.

Theorem 3.9. Let C be a smooth and projective curve of genus g over Fq, and define

ZC(u) = exp

( ∞∑
n=1

#C(Fqn)
un

n

)
.

Let K be the function field of C. Then,

ZK(u) = ZC(u).

Proof. This follows from the discussion above and (17). �

We can then restate the result of this section in terms of zeta functions of curves over finite fields, which is
the way they were stated (and proven) by Weil. For the generalisation to zeta functions of general varieties
over finite fields, the Riemann Hypothesis was proven by Deligne.

15



Theorem 3.10. (Weil’s Theorem) Let C be a smooth and projective curve of genus g over Fq. Let

ZC(u) = exp

( ∞∑
n=1

#C(Fqn)
un

n

)
.

Then, the zeta function ZC(u) has the following properties

Rationality:

ZC(u) =
PC(u)

(1− u)(1− qu)

where PC(u) is a polynomial of degree 2g in Z[u].
Functional Equation:

ZC(1/qu) = ±q1−gT 2−2gZC(u).

Riemann Hypothesis:

PC(u) =

2g∏
j=1

(1− uαj(C)), |αj(C)| = √q,

i.e. the roots of PC(u) which are αj(C)−1, i = 1, . . . , 2g, have absolute value 1/
√
q.

We conclude this section with the statement of the analogue of the Wiener-Ikehara Tauberian Theorem
for the case of function fields, which can be used to estimate arithmetic functions of a function field K
over k = Fq(T ). This includes classical arithmetic functions as square-free effective divisors, sum of divisors
[Ros02, Chapter 17], and counting functions and estimates for the number of points for components of moduli
spaces of curves over finite fields as cyclic `-covers [BDFL10b], ordinary Artin-Schreier curves [BDFL], or
cyclic extensions of k = Fq[X] with prescribed ramification (see Section 4.5).

Theorem 3.11. Let K be a function field over k = Fq(X), and let f : D+
K → C be a function from the

effective divisors of K to the complex numbers. Let

ζf (s) =
∑
D∈D+

K

f(D)

|D|s

be the Dirichlet series associated to f , and suppose that ζf (s) converges absolutely for Re(s) > 1 and is
holomorphic on {

s ∈ C | − πi

log q
≤ Im(s) <

πi

log q
, Re(s) = 1

}
,

except for a simple pole at s = 1 with residue α. Then, there is a δ < 1 such that∑
degD=N

f(D) = α log (q) qN +O
(
qδN

)
.

If ζf (s)− α/(s− 1) is holomorphic in Re(s) ≥ δ′, then the error term can be replaced by O
(
qδ
′N
)
.
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4. Number of points in families of curves as a sum of random variables

4.1. Introduction. As a first statistics, we study the fluctuations in the number of points in a family of
curves over Fq of genus g. For any curve of genus g, it follows from Theorem 3.10 that the number of points
is given by

#C(Fq)− (q + 1) =

2g∑
j=1

αj(C) = q1/2 tr ΘC ,

where C is the 2g × 2g matrix with eigenvalues q−1/2αj(C) = eiθj(C), j = 1, . . . , 2g.

When the genus is fixed and q tends to infinity, q−1/2 (#C(Fq)− (q + 1)) = tr ΘC is distributed as the
trace of matrices in a symmetry group M(2g) determined by the monodromy group of the family, for natural
families F(g, q) of curves of genus g over Fq where Deligne’s equidistribution theorem and its generalisations
hold. For example, F(g, q) could be a moduli space, or an irreducible component in a moduli space, or a
stratum in a natural stratification of a moduli space (as the p-rank stratification, where p is the characteristic
of q).

In general, let M(2g) ⊆ U(2g), which is a probability space under the Haar probability measure. For any
continuous function F on the set of conjugacy classes of M(2g), let

〈F (U)〉M(2g) =

∫
M(2g)

F (U) dHaar(U).

Let F = F(g, q) be a natural family of curves of genus g over Fq with symmetry type M(2g). Then, for
any function F evaluated on the zeroes (the eigenangles) of C, we expect to have as q →∞

lim
q→∞

〈F (ΘC)〉F(g,q) = lim
q→∞

∑
C∈F(g,q) F (ΘC)

#F(g, q)
= 〈F (U)〉M(2g) =

∫
M(2g)

F (U) dHaar(U).

We study in this section the other type of distribution over a family F(g, q), when q is fixed and g
tends to infinity. We will find that we can describe the distribution of #C(Fq) (or #C(Fq) − (q + 1), or

tr ΘC = q−1/2 (#C(Fq)− (q + 1))) by a natural probabilistic model, in terms of a sum of q + 1 independent
identically distributed random variables. The random variables are different for each family, as computing
the average number of points for each family leads to a different sieving depending on the geometry of each
family. We will consider in this section the following families of curves over Fq:

• Hyperelliptic curves, which amount to sieve to count square-free polynomials of degree d (taking
prescribed value);

• Cyclic trigonal curves, which amount to sieve to count cube-free polynomials F = F1F
2
2 where

degF1 = d1, degF2 = d2.
• Cyclic covers of order `: which amount to sieve to count `-power free polynomials F = F1F

2
2 . . . F

`−1
`−1

where degF1 = d1, . . . ,degF`−1 = d`−1.
• Trigonal curves, which amount to count cubic extensions of Fq(X) with prescribed ramification at

given primes of Sk.
• Smooth plane curves, which amount to sieve homogeneous polynomials of degree d to count those

whose the first order partial derivatives do not vanish simultaneously.

Finally, when both g and q tends to infinity, it can be shown that in all those families, tr ΘC has a
Gaussian value distribution with mean zero and variance unity when C varies over the curves in each family
mentioned above. This can be thought as the limiting process of both distributions (for q fixed or for g
fixed), which is a standard Gaussian in both cases.

4.2. The distribution of the number of points. We state in this section results expressing the distri-
bution of #C(Fq) as a sum of random variables, when C ∈ F(g, q) for several families F(g, q) and g →∞.
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4.2.1. Let Hg be the moduli space of hyperelliptic curves of genus g. Then

lim
g→∞

#{C ∈ Hg : #C(Fq) = m}
#Hg

= Prob

(
q+1∑
i=1

Xi = m

)
,

where the Xi are i.i.d. random variables such that

Xi =


0 with probability q

2(q+1)

1 with probability 1
q+1

2 with probability q
2(q+1)

Notice that the mean value of each random variables is 1, and then the mean value of the sum is q+ 1. The
statistics for the number of affine points on hyperelliptic curves are computed in[KR09], and the geometric
version of their theorem (counting also the points at infinity, and running over all curves in the moduli space
with the appropriate weights) are deduced from their result in [BDFL10b].

4.2.2. The generalisation of the results of Kurlberg and Rudnick to general `-covers with a model Y ` = F (X)
were considered in [BDFL10b, BDFL11]. In that case, the moduli space of cyclic covers of genus g breaks in
irreducible components H(d1,d2) according to the number of simple roots and double roots of the cube-free
polynomial F (X) (then, the genus is not determined by the degree of F (X) in this case). More details on
the moduli space of general `-covers are given in Section 4.4. The statistics for each component H(d1,d2) of
the moduli space were considered in [BDFL10b, BDFL11], and

lim
d1,d2→∞

#{C ∈ H(d1,d2) : #C(Fq) = m}
#H(d1,d2)

= Prob

(
q+1∑
i=1

Xi = m

)
,

where the Xi are i.i.d. random variables such that

Xi =


0 with probability 2q

3(q+2)

1 with probability 2
q+2

3 with probability q
3(q+2)

Notice that the mean value of each random variables is 1, and then the mean value of the sum is q+ 1. In a
similar way, for each irreducible component H(d1,...,d`−1) of the moduli space of cyclic `-covers Y ` = F (X),
it is shown in [BDFL10b, BDFL11] that

lim
d1,...,d`−1→∞

#{C ∈ H(d1,...,d`−1) : #C(Fq) = m}
#H(d1,...,d`−1)

= Prob

(
q+1∑
i=1

Xi = m

)
,

where the Xi are i.i.d. random variables such that

Xi =


0 with probability (`−1)q

`(q+`−1)

1 with probability `−1
q+`−1

` with probability q
`(q+`−1)

Notice that the mean value of each random variables is 1, and then the mean value of the sum is q + 1.

For the case of cyclic trigonal curves, and general `-covers, different limiting distributions can be obtained
when taking different invariants going to infinity, as in [Xio10a, CWZ] (where ` can be taken as any integer
co-prime to q in [CWZ], and not necessarily a prime). Let Fd denote the set of `-th power free degree d
polynomials in Fq[X]. For each such polynomial f , let Cf be the curve with affine model Cf : Y ` = f(X),
and let #Cf (Fq)aff be the number of affine points on Cf . Then, for example for ` = 3, both authors show
(with different techniques) that

lim
d→∞

#{f ∈ Fd : #Cf (Fq)aff = m}
#Fd

= Prob

(
q∑
i=1

Xi = m

)
,
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where the Xi are i.i.d. random variables such that

Xi =


0 with probability 2

3(q−2+q−1+1)

1 with probability q−2+q−1

q−2+q−1+1

3 with probability 1
3(q−2+q−1+1)

There are q random variables in that case, and not q+1, because we consider the distribution for the number
of affine points (not including the points at ∞). Notice that the mean value of each random variables is 1,
and then the mean value of the sum is q.

We will revisit `-covers from a third point of view in Section 4.5, and present another way to get statistics
for the distribution of points in this family.

4.2.3. The case of general trigonal curves, i.e. smooth curves of genus g with a map to P1 of degree 3, was
considered by [Woo12]. Let Tg be the set of those curves. We remark that the cyclic trigonal curves do not
influence those statistics, as the number of such cyclic trigonal curves of genus g is bounded o(#Tg). It is
proven in [Woo12] that

lim
g→∞

#{C ∈ Tg : #C(Fq) = m}
#Tg

= Prob

(
q+1∑
i=1

Xi = m

)
,

where the Xi are i.i.d. random variables such that

Xi =


0 with probability 2q2

6q2+6q+6)

1 with probability 3q2+6
6q2+6q+6

2 with probability 6q
6q2+6q+6

3 with probability q2

6q2+6q+6

Notice that the mean value of each random variables is 1 + 6q
6q2+6q+6 , and then the mean value of the sum

is q + 2− 1
q2+q+1 .

4.2.4. The fluctuations in the number of points on smooth projective plane curves over a finite field Fq
were considered in [BDFL10a]. Let Sd be the set of homogeneous polynomials F (X,Y, Z) of degree d
over Fq, and let Sns

d ⊆ Sd be the subset of polynomials corresponding to smooth (or nonsingular) curves
CF : F (X,Y, Z) = 0. The genus of CF is (d− 1)(d− 2)/2. Then,

lim
d→∞

# {F ∈ Sns
d : #CF (Fq) = m}

#Sns
d

= Prob
(
X1 + · · ·+Xq2+q+1 = m

)
,

where X1, . . . , Xq2+q+1 are i.i.d. random variables such that

Xi =

{
0 with probability q2

q2+q+1

1 with probability q+1
q2+q+1

Notice that the mean value of each random variables is q+1
q2+q+1 , and then the mean value of the sum is q+ 1.

The main tool to count the number of points on smooth plane curves is a sieving process due to Poonen
[Poo04] which allows to count the number of polynomials in Sd which give rise to smooth curves CF , and
the number of smooth curves CF which pass through a fixed set of points of P2(Fq). For more details, we
refer the reader to [Poo04, BDFL10a].

The distribution of points in other families of smooth curves was studied in [EW12, BK12].

In the rest of this section, we explain how to prove such results, stressing how the geometry and sieving
give raise to the independent random variables in each the different cases.
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4.3. Hyperelliptic curves. We first concentrate on the case of hyperelliptic curves. Let F̂d be the set of
square-free polynomails of degree d (not necessarily monic), and consider the hyperelliptic curve with affine
model

CF : Y 2 = F (X), F (X) ∈ F̂d.
Such models give a curve of genus d if and only if d = 2g+ 1 or d = 2g+ 2. Also, we remark that by running

over all F ∈ F̂2g+1 ∪ F̂2g+2, one counts every point in the moduli space Hg exactly q(q2− 1) times (as usual,
points in the moduli space are counted with weight 1/|Aut(C)|.)

For any x ∈ Fq, let

χ2(x) =


1 x ∈ F2

q, x 6= 0

−1 x 6∈ F2
q

0 x = 0.

Then,

#CF (Fq) =
∑

x∈P1(Fq)

1 + χ2(F (x)) = q + 1 +
∑

x∈P1(Fq)

χ2(F (x)),

where the value of F at infinity is given by the value of X2g+1F (1/X) at zero according to (16). We then
have to consider the average of

Ŝ2(F ) =
∑

x∈P1(Fq)

χ2(F (x))

as F varies over the polynomials in F̂2g+1 ∪ F̂2g+2.
Fix x1, . . . , xq+1 an enumeration of the points on P1(Fq) such that xq+1 denotes the point at infinity.

Then

χ2(F (xq+1)) =


0 if F ∈ F̂2g+1,

1 if F ∈ F̂2g+2, and the leading coefficient is a square in Fq,
−1 if F ∈ F̂2g+2, and the leading coefficient is not a square in Fq.

Pick (ε1, . . . , εq+1) ∈ {0,±1}q+1. Denote m the number of zeros in this (q + 1)-tuple. We evaluate the

probability that the character χ2 takes exactly these values as F ranges over F̂2g+1 ∪ F̂2g+2.

Proposition 4.1. Let (ε1, . . . , εq+1) ∈ {0,±1}q+1, and let m denote the number of zeros in this (q+1)-tuple.
Then, as g →∞,

|{F ∈ F̂2g+1 ∪ F̂2g+2 : χ2(F (xi)) = εi, 1 ≤ i ≤ q + 1}|
|F̂2g+1|+ |F̂2g+2|

∼ 2m−q−1q−m

(1 + q−1)q+1
.

This follows from the results of Kurlberg and Rudnick [KR09] who considered the variation of the number
of affine points on hyperelliptic curves. Then distribution in this case is given by a sum of q random variables,
and Proposition 4.1 is a geometric restatement of the results of [KR09] when we show that the point at ∞
gives raise to an additional independent random variable with the same distribution. Then, the probability
of hitting a certain (q + 1)-tuple does not depend on the entry at the point we designated as the point at
infinity, and that point behaves the same as the affine points, which is exactly what one would expect from
a geometric standpoint.

Proposition 4.2. [KR09, Proposition 6] Let Fd be the number of monic square-free polynomials of degree
d. Let x1, . . . , x`+m ∈ Fq be distinct elements, let a1, . . . , a` ∈ F∗q , and let a`+1 = · · · = a`+m = 0. Then

|{F ∈ Fd : F (xi) = ai, 1 ≤ i ≤ m+ `}| = (1− q−1)mqd−(m+`)

ζq(2)(1− q−2)m+`

(
1 +O

(
q(3m+2`−d)/2

))
.

and
|{F ∈ Fd : F (xi) = ai, 1 ≤ i ≤ m+ `}|

|Fd|
=

(1− q−1)mq−(m+`)

(1− q−2)m+`

(
1 +O

(
q(3m+2`−d)/2

))
.

Proof. For d > ` + m, the number of polynomials of degree d taking prescribed values at ` + m points is
exactly qd−`−m. We then have to sieve to get the count for the number of square-free polynomials of degree
d. �
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We now evaluate the probability that the character χ2 takes the values prescribed by (ε1, . . . , εq+1) as F

ranges over F̂2g+1 ∪ F̂2g+2, i.e. we show that Proposition 4.2 imply Proposition 4.1. We first suppose that

εq+1 = 0. The numbers of zeros among ε1, . . . , εq is now m − 1. Since there are no polynomials in F̂2g+2

with χ2(F (xq+1)) = 0, only F̂2g+1 contributes. There are q−1 possibilities for the leading coefficient of such
a polynomial and thus

|{F ∈ F̂2g+1 ∪ F̂2g+2 : χ2(F (xi)) = εi, 1 ≤ i ≤ q + 1}|

=
∑
α∈F∗q

|{F ∈ F2g+1 : χ2(F (xi)) = εiχ2(α), 1 ≤ i ≤ q}|.

Taking into account that there are q−1
2 squares in F∗q and the same number of non-squares, and using

Proposition 4.2, the above expression is

∼ (q − 1)

(
q − 1

2

)q−m+1
(1− q−1)mq2g+1−q

(1− q−2)q
=

2m−1−q(1− q−1)q+2q2g+3−m

(1− q−2)q
.(18)

With Lemma 3.2, we compute

|F̂2g+1|+ |F̂2g+2| = q2g+3(1− q−1)(1− q−2),(19)

and dividing (18) by (19) we get Proposition 4.1. The cases where εq+1 = ±1 are similar. The result then
follows by summing over all (q+ 1)-tuples (ε1, . . . , εq+1) such that ε1 + · · ·+ εq+1 = t (see section 4.4 for this
part of the argument). For all the details, we refer the readers to [BDFL10b, Section 6].

4.4. Cyclic trigonal curves, and general `-covers. We first look at the case of cyclic trigonal curves.
We assume that q ≡ 1(mod 3). Let C be a cyclic trigonal curve over Fq, i.e. a cyclic cover of order 3 of P1

defined over Fq. Then, C has an affine model Y 3 = F (X), where F (X) is a cube-free polynomial in Fq[X].
We write F (X) = F1(X)F2(X)2, with F1 and F2 relatively prime, square-free, degF1 = d1, degF2 = d2 and
d = degF = d1+2d2. Then, the curve CF has genus g if and only if d1+2d2 ≡ 0 (mod 3) and g = d1+d2−2,
or d1 + 2d2 ≡ 1 or 2 (mod 3) and g = d1 + d2 − 1. Over Fq, one can reparametrize and choose an affine
model for any cyclic trigonal curve with d1 + 2d2 ≡ 0 (mod 3). Furthermore, the moduli space Hg,3 of cyclic
trigonal curves of fixed genus g splits into irreducible subspaces indexed by pairs of nonnegative integers
d1, d2 with the property that d1 + 2d2 ≡ 0 (mod 3), and the moduli space can be written as a disjoint union
over its connected components

Hg,3 =
⋃

d1+2d2≡0 (mod 3),
g=d1+d2−2

H(d1,d2),(20)

where each component H(d1,d2) is irreducible. The components can also be described by their signature
(r, s). We refer the reader to [AP07] for the details.

Let F(d1,d2) be the set of polynomials F = F1F
2
2 such that F1, F2 are monic, square-free and co-prime,

with degF1 = d1,degF2 = d2. One can prove that

Theorem 4.3. [BDFL10b, Theorem 3.1]. Let ρ ∈ C be a primitive third root of unity. Let x1, . . . , xq be the
elements of Fq and let ε1, . . . , εq ∈

{
0, 1, ρ, ρ2

}
. Let m be the number of values of εi which are 0. Then∣∣F(d1,d2)

∣∣ =
Kqd1+d2

ζq(2)2
,

∣∣{F ∈ F(d1,d2) : χ3(F (xi)) = εi, 1 ≤ i ≤ q
}∣∣ =

Kqd1+d2

ζq(2)2

(
2

q + 2

)m(
q

3(q + 2)

)q−m
and ∣∣{F ∈ F(d1,d2) : χ3(F (xi)) = εi, 1 ≤ i ≤ q

}∣∣∣∣F(d1,d2)

∣∣ =

(
2

q + 2

)m(
q

3(q + 2)

)q−m
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where K is the constant

K =
∏
P

(
1− 1

(|P |+ 1)2

)
.

Then, Theorem 4.3 is the analogue of Proposition 4.2 for the cyclic trigonal curves. It is also obtained by
sieving to count the polynomials in F(d1,d2) taking prescribed values. This involves the use of the Tauberian
Theorem for function fields [Ros02, Theorem 17.1]. The distribution for the number of affine points can then
be deduced from Theorem 4.3, and again we can include the point at infinity. We have that

#CF (Fq)− (q + 1) =
∑

x∈P1(Fq)

χ3(F (x)) + χ3(F (x)) = Ŝ3(F ) + Ŝ3(F ),

where

Ŝ3(F ) =
∑

x∈P1(Fq)

χ3(F (x)).

Let F̂(d1,d2) to be the set of polynomials F = αF1F
2
2 where α ∈ F∗q , and F1F

2
2 ∈ F(d1,d2), and F̂[d1,d2] =

F̂(d1,d2) ∪ F̂(d1−1,d2) ∪ F̂(d1,d2−1). Then, running over the curves C is the irreducible component H(d1,d2) of

the moduli space is that same as running over the models CF : Y 3 = F (X) where F (X) ∈ F̂[d1,d2], and it
follows from Theorem 4.3 that

|{F ∈ F̂[d1,d2] : Ŝ3(F ) = t}|
|F̂[d1,d2]|

=
∑

(ε1,...,εq+1)

ε1+···+εq+1=t

|{F ∈ F̂[d1,d2] : χ3(F (xi)) = εi, 1 ≤ i ≤ q + 1}|
|F̂[d1,d2]|

∼
∑

(ε1,...,εq+1)

ε1+···+εq+1=t

(
2

q + 2

)m(
q

3(q + 2)

)q+1−m

= Prob

(
q+1∑
i=1

Xi = t

)

where X1, . . . , Xq+1 q + 1 are i.i.d. random variables that take the value 0 with probability 2/(q + 2) and
1, ρ, ρ2 each with probability q/(3(q + 2)). We then get the result stated in Section 4.2 for the distribution
of #C(Fq)− (q + 1) using the q + 1 i.i.d. random variables 1 +Xi +Xi.

4.5. Cyclic `-covers revisited. There is another approach that can be used to study the distribution of
the number of points over Fq on cyclic `-covers C : Y ` = f(X): we can count the number of function fields
K = k(C) of those curves with prescribed ramification at the primes of degree 1. This idea was previously
used by [Woo12] to study the distribution of the number of points on the family of all trigonal curves as
explained in the next subsection. In the case of the cyclic trigonal curves, the function fields k(C) are abelian
extensions of k = Fq(X) with cyclic Galois group of order ` (we always assume that ` divides q − 1), and
the number of such extensions of a given genus can be counted using class field theory transferring the work
of Wood [Woo12] from number fields to function fields.

The relation between the point counting on the curves C and the extensions k(C) ramifying at given
primes follows easily from the equality of the zeta functions ZC(u) and ζk(C)(u) (Theorem 3.9). For each
prime P ∈ Sk (including the prime at ∞), let e(P ) be the ramification degree, f(P ) the inertial degree and
r(P ) the number of primes above P in the extension K = k(C). Then,

ZC(u) = exp

( ∞∑
n=0

#C(Fqn)
un

n

)
= Zk(C)(u) =

∏
P∈Sk

(
1− udegPf(P )

)−r(p)
,

and taking logarithm on both sides, we get
∞∑
n=0

#C(Fqn)
un

n
=
∑
P∈Sk

∞∑
m=1

r(P )
umf(P ) degP

m
.

Equating the coefficients of un on both sides gives

#C(Fqn) =
∑

f(P ) degP |n

r(P )f(P ) degP.(21)
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In particular, for C` : Y ` = F (X), K = k(C`) and n = 1, we have

#C`(Fq) = ` # {P ∈ Sk : degP = 1 and P splits in k(C)}
+# {P ∈ Sk : degP = 1 and P ramifies in k(C)} .(22)

Let E`(k, g) be the number of cyclic extensions of degree ` over k = Fq(X) with genus g, and for any set of
primes of degree one P = {P1, . . . , Pm} ⊆ Sk, and a choice of εi ∈ {0, 1, `} for 1 ≤ i ≤ m, let E`(k, g,P, E)
be the number of fields K in E`(k, g) such that Pi ramifies in K if εi = 1, Pi splits in K if εi = ` and Pi is
inert in K if εi = 0. If one can show that for g →∞ the densities are

#E`(k, g,P, E)

#E(k, g)
∼

m∏
i=1

f0(q)m0f1(q)m1f2(q)m2 ,(23)

where m0 is the number of εi = 0 (and similarly for m1,m2), then we have by taking the average of (22)
over Hg,` on both side, and using P = {P1, . . . , Pq+1} to be the set of all primes of degree 1, that

lim
g→∞

# {C ∈ Hg,` : #C(Fq) = m}
#Hg,`

=
∑

ε1+···+εq+1=m

m∏
i=1

f0(q)m0f1(q)m1f3(q)m3 ,

and the number of points on cyclic `-covers C ∈ Hg,` is distributed as a sum of q+ 1 i.i..d. random variables
taking the value i with probability fi(q) for i = 0, 1, 3. In some work in progress generalising the work of
[Woo12] to functions fields, we computed the densities (23) for ` = 3 and P any finite set of primes of Sk
with prescribed splitting conditions at each prime. It follows that

lim
g→∞

# {C ∈ Hg,3 : #C(Fq) = m}
#Hg,3

=
∑

ε1+···+εq+1=m

m∏
i=1

(
2q

3(q + 2)

)m0
(

2

q + 2

)m1
(

q

3(q + 2)

)m3

.

Then, the number of points on the whole moduli space Hg,3 is distributed as a sum of q + 1 i.i.d., which

are the same i.i.d. occurring for the number of points on the components H(d1,d2) when d1, d2 → ∞. This
seems to indicate that the estimates for the components H(d1,d2) could hold under the weaker condition
d1 + d2 → ∞. Indeed, replacing the main term of the estimates for

∣∣H(d1,d2)
∣∣ from [BDFL10b], and the

estimate for |Hg,3| following by counting all cyclic cubic extensions of genus g in (20), we get that the count
agree, and

|Hg,3| =
∑

d1+d2=g+2
d1+2d2≡0mod 3

|H(d1,d2)|.

4.6. Trigonal curves. The distribution for the number of points on general trigonal curve (i.e. when k(C)
is not a Galois extension) was studied by Wood [Woo12] by relating the number of points with the densities
of general cubic extensions of k = Fq(X) with prescribed ramification. The number of such extensions was
counted by Datskovsky and Wright [DW86, DW88] who generalized the results of Davenport and Heilbronn
[DH69, DH71] on densities of discriminants of cubic extensions with certain splitting conditions to the case
where the base field k is any global field of characteristic not 2 or 3, not necessarily the field of rationals.
There densities were computed by Datskovsky and Wright using properties of Shintani zeta functions, but the
authors did not provide estimates for the error terms. Recently, Zhao [Zha] has shown that the densities of
cubic function fields with prescribed splitting conditions can be determined with a novel geometric approach.
Zhao obtained a negative secondary term in this setting (as in the number field setting), and also provided
bounds for the error terms. The error terms are not needed to relate the distribution of the number of points
to a sum of q + 1 random variables as done in [Woo12], but are necessary to show that the fluctuations of
the number of points around the mean give raise to a standard Gaussian as shown recently by [TX14].

Let C be a smooth curve of genus g with π : C → P1 of degree 3, and let K be the function field of C.
Then, K/k is a cubic extension, and by the equivalence of categories explained in Section 3, every geometric
cubic extension of k corresponds to such a curve C. By the Hurwitz formula [Ros02, Chapter 7],

deg Disc(K/k) = 2g + 4.
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It is known by [DW88, Theorem I.1] that the number of all such cubic extensions of k = Fq(X) is asymptotic
to q2g+4, and that the number of cyclic extensions is O

(
gqg+2

)
[Wri89, Theorem I.3]. Then, the cyclic

extensions do not influence the statistics, and it suffices to consider the set

E(k, g) := {K : K/k is a non-cyclic cubic extension and deg Disc(K/k) = 2g + 4} .
It follows from the explicit formulas of Proposition 5.5 with n = 1 that

#C(Fq)− (q + 1) = 2 # {P ∈ Sk : degP = 1 and P splits completely in K}(24)

− #
{
P ∈ Sk : degP = 1 and P = P1P

2
2 in K

}
+ # {P ∈ Sk : degP = 1 and P = P1 in K} .

Then, reversing the order of summation

〈#C(Fq)− (q + 1)〉E(k,g) =
∑

degP=1

2
#E111(k, g, P )

#E(k, g)
+

#E112(k, g, P )

#E(k, g)
− #E3(k, g, P )

#E(k, g)
,(25)

where E111(k, g, P ) (respectively E112(k, g, P ) and E3(k, g, P )) is the number of non-cyclic cubic extensions
K with deg Disc(K/k) = 2g + 4 and such that P is totally split in K (respectively P = P1P

2
2 , and P is

inert).
We now state the result of Zhao about the densities of cubic fields with certain splitting conditions.The

work of Zhao is still in preparation, and he should had more specific values for the error term in the final
preprint.

Theorem 4.4. [Zha] For any finite set of primes Sk, and any set of splitting conditions at the primes of
Sk, define E(k, g,S) to be the subset of E(k, g) consisting of the cubic extensions satisfying those splitting
conditions. Then, as g →∞

#E(k, g,S)

#E(k, g)
=
∏
P∈S

cP +O

(
q−δg

∏
P∈S
|P |A

)
,

where δ, A > 0 are fixed constants, and where

cP
(
1 + |P |−1 + |P |−2

)
=



1/6 for P totally split in K

1/2 for P partially split in K

1/3 for P inert K

|P |−1 for P partially ramified in K

|P |−2 for P totally ramified in K.

Using the results of Theorem 4.4 in (25), we get that

〈#C(Fq)− (q + 1)〉E(k,g) =
q2(q + 1)

q2 + q + 1

(
2

6
− 1

3
+

1

q

)
= q + 2− 1

q2 + q + 1
.

It also follows from (25) that

lim
g→∞

# {C ∈ Tg : #C(Fq)− (q + 1) = m}
#Tg

=
∑

(ε1,...,εq+1)∈{0,±1,2}q+1∑q+1
j=1

εj=m

#E(k, g,S(ε1, . . . , εq+1))

#E(K, g)

where S(ε1, . . . , εq+1) is the set of primes P1, . . . , Pq+1 of degree 1 with the splitting conditions
Pi totally split in K if εi = 2

Pi partially ramified in K if εi = 1

Pi inert K if εi = −1

Pi partially split, or totally ramified if εi = 0

Let m111 (respectively m112 ,m3) be the number of j such that εj = 2 (respectively εj = −1, εj = 1), and
m = (q+ 1)−m111−m112 −m3. This gives the result quoted in Section 4.2 for the distribution of #C(Fq)
(the random variables are 1 +Xi, j = 1, . . . , q+ 1, where Xi are the random variables for #C(Fq)− (q+ 1)).
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5. Explicit formulas for curves over finite fields

We give in this section some instances of the explicit formulas relating sum over the zeroes of L-functions
to the coefficients of the L-functions. For the case of curves over finite fields, the L-functions are polynomials
with finitely many zeroes, and the explicit formulas are much simpler than in the number field case.

5.1. Hyperelliptic curves. Let CD be the hyperelliptic curves

CD : Y 2 = D(X)

where D(X) is a square-free monic polynomial of positive degree d. Then, CD is a smooth curve of genus
gD = b(degD − 1)/2c with zeta function

ZCD (u) =
PCD (u)

(1− u)(1− qu)
.

As showed in Section 3, we have that

PCD (u) =

2gD∏
j=1

(1− αj(D)u) = (1− u)−λDL(u, χD),(26)

where

λD =

{
1 if degD is even

0 if degD is odd.

and L(s, χD) is the Dirichlet L-function associated with the quadratic residue symbol

χD(F ) =

(
D

F

)
.

We write αj(D) =
√
qeiθj(D), and we denote by ΘD the 2gD × 2gD diagonal matrix with eigenvalues

eiθj(D), j = 1, . . . , 2gD.

Proposition 5.1. [Rud10, Section 2.5] Let n be an integer. For F ∈ Fq[X], we define

Λ(F ) =

{
degP if F = P k;

0 otherwise
.(27)

Then

tr Θn
D =

2gD∑
j=1

einθj(D) = −q−|n|/2
λD +

∑
degF=|n|

Λ(F )χD(F )


Proof. Let n be a positive integer. Then, by logarithmic derivative on both sides of (26), we get

−u d

du

∑
P

log (1− χD(P )udegP ) = u
d

du

λD log (1− u) +

2gD∑
j=1

log(1− αj(D)u)


⇐⇒

∑
P

degPχD(P )udegP

1− χD(P )udegP
=
−uλD
1− u

+

2gD∑
j=1

−αj(D)u

1− αj(D)u

⇐⇒
∑
P

degP

∞∑
n=1

χD(P )nun degP = −λD
∞∑
n=1

un −
2gD∑
j=1

αj(D)nun,

and equating the coefficients of un, we get that

−qn/2 tr Θn
D = −

2gD∑
j=1

αj(D)n =
∑

degP |n

degP χD(P )n/ degP + λD,

where we can rewrite ∑
degP |n

degP χD(P )n/ degP =
∑

degF=n

Λ(F )χD(F ).
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Taking the complex conjugate, we also get the result for negative integers, since χD is a real character. �

5.2. Cyclic `-covers. Let ` be a prime (including ` = 2 unless mentioned) such that ` | q − 1. Let Q(x) be
a `th-power free polynomial of degree d. Then,

CQ : Y ` = Q(X)

is a smooth projective curve of genus g (the formula for the genus of CQ is given in Section 4). As we showed
in Section 3, the zeta function of CQ writes as

ZCQ(u) =
PCQ(u)

(1− u)(1− qu)
,

where

PCQ(u) =

2gQ∏
j=1

(
1− q1/2eiθj(Q)

)
= (1− u)−λQ

`−1∏
i=1

L(s, χjQ),(28)

where χQ is the `th-power residue symbol

χQ(F ) =

(
Q

F

)
`

,

and

λQ =

{
`− 1 degD ≡ 0 mod `

0 degQ 6≡ 0 mod `

Proposition 5.2. [Xio10b] Let n be an integer. Then

tr Θn
Q =

2gQ∑
j=1

einθj(Q) = −q−|n|/2
λQ +

∑
degP |n

degP

`−1∑
j=1

(
Q

P

)jn/ degP

`

 .

Proof. The proof is exactly the same as the proof for hyperelliptic curves. Also, using the notation defined
in Proposition 5.1, we can rewrite the above as

tr Θn
Q =

2gQ∑
j=1

einθj(Q) = −q−|n|/2
λQ +

∑
degF=|n|

Λ(F )

`−1∑
j=1

(
Q

F

)±j
`

 ,

where the power of the `-residue symbol is j if n > 0, and −j is n < 0. �

5.3. Artin-Schreier curves. We now consider the family of Artin-Schreier curves. Artin-Schreier curves
represent a special family because they have no analogue over number fields, and their zeta function writes
in a natural way with additive characters of Fp, not multiplicative characters. Fix a finite field Fq of odd
characteristic p. An Artin-Schreier curve over Fq is a smooth curve with an affine model

Y p − Y = f(X),

where f(X) ∈ Fq(X) is a rational function. A formula for the genus of C, and details about the geometry
of Artin-Schreier curves, are given in Section 6.3.

Let NC(Fqk) be the number of points on C over Fqk and NC(Fqk , α) be the number of points on C over
Fqk in the fiber above α ∈ Fqk . Then, if follows from Hilbert’s Theorem 90 that

NC(Fqk , α) =


1 f(α) =∞
p f(α) ∈ Fqk , trk f(α) = 0

0 f(α) ∈ Fqk , trk f(α) 6= 0

where trk : Fqk → Fp is the trace down to Fp.
Then, writing the number of points of C(Fqk) with the additive characters of Fp, we get that

NC(Fqk) =
∑

α∈P1(F
qk

)

f(α)6=∞

∑
ψ

ψ(trk f(α)) +
∑

α∈P1(F
qk

)

f(α)=∞

1.
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For each fixed non-trivial additive character of Fp, we define

Sk(f, ψ) =
∑

α∈P1(F
qk

)

f(α)6=∞

ψ(trk f(α))

and

L(f, u, ψ) = exp

( ∞∑
k=1

Sk(f, ψ)
uk

k

)
.

We first show that the zeta function ZC(u) can be written in terms of the L-functions L(f, u, ψ).

Proposition 5.3. Let C be the Artin-Schreier curve with affine equation C : Y p − Y = f(X), for some
rational function f(X) ∈ Fq(X), with zeta function

ZC(u) =
PC(u)

(1− u)(1− qu)
=

∏2g
j=1(1− uαj(C))

(1− u)(1− qu)
.

Then,

PC(u) =
∏
ψ 6=1

L(f, u, ψ).

Proof. We have that

ZC(u) = exp

 ∞∑
k=1

∑
α∈P1(F

qk
)

f(α)6=∞

∑
ψ

ψ(trk f(α))
uk

k
+

∑
α∈P1(F

qk
)

f(α)=∞

uk

k



=
∏
ψ 6=1

exp

 ∞∑
k=1

∑
α∈P1(F

qk
)

f(α)6=∞

ψ(trk f(α))
uk

k

× exp

 ∞∑
k=1

∑
α∈P1(F

qk
)

f(α)6=∞

uk

k
+

∑
α∈P1(F

qk
)

f(α)=∞

uk

k


=

∏
ψ 6=1

L(f, u, ψ)× exp

( ∞∑
k=1

(qk + 1)
uk

k

)
=

∏
ψ 6=1 L(f, u, ψ)

(1− u)(1− qu)
,

and

PC(u) =

2g∏
j=1

(1− uαj(C)) =
∏
ψ 6=1

L(f, u, ψ).

�

Writing

L(u, f, ψ) =

2g/(p−1)∏
j=1

(1− αj(f, ψ)) ,

where αj(f, ψ) =
√
qeiθj(f,ψ), we now write an explicit formula for

tr Θn
f,ψ =

2g/(p−1)∑
j=1

einθj(f,ψ).

Lemma 5.4. Let C : Y p − Y = f(X) be an Artin-Schreier curve and ψ be a non-trivial additive character
of Fp. Then,

(29) tr Θn
f,ψ =

2g/(p−1)∑
j=1

einθj(f,ψ) =


−Sn(f, ψ)

qn/2
for n > 0;

−
S|n|(f, ψ

−1)

q|n|/2
for n < 0;
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Proof. Recall from above that

L(u, f, ψ) = exp

( ∞∑
n=1

Sn(f, ψ)
un

n

)
=

2g/(p−1)∏
j=1

(1− αj(f, ψ)u).(30)

Taking logarithmic derivatives, we have

d

du

2g/(p−1)∑
j=1

log(1− αj(f, ψ)u) =
d

du

∞∑
n=1

Sn(f, ψ)
un

n
.

Multiplying both sides by u, we get

2g/(p−1)∑
j=1

−αj(f, ψ)u

1− αj(f, ψ)u
=

∞∑
n=1

Sn(f, ψ)un,

that is,

−
2g/(p−1)∑
j=1

∞∑
n=1

(αj(f, ψ)u)n =

∞∑
n=1

Sn(f, ψ)un.

Comparing coefficients,

−
2g/(p−1)∑
j=1

(αj(f, ψ))n = Sn(f, ψ).

Thus, for n > 0, we get

(31) −
2g/(p−1)∑
j=1

einθj(f,ψ) =
Sn(f, ψ)

qn/2
.

For n < 0, taking complex conjugates, we have by (30) and (31)

−
2g/(p−1)∑
j=1

einθj(f,ψ) = −
2g/(p−1)∑
j=1

ei|n|θj(f,ψ) = −
2g/(p−1)∑
j=1

αj(f, ψ)|n|

q|n|/2

=
S|n|(f, ψ)

q|n|/2
=
S|n|(f, ψ)

q|n|/2
=
S|n|(f, ψ

−1)

q|n|/2
.

�

5.4. Trigonal curves. Let K/k be a cubic extension, i.e. K is a function field over Fq of degree 3. By
definition, the zeta function of K writes as

ζK(s) =
∏
v∈SK

(1− |v|−s)−1,

where SK is the set of primes of K. We can rewrite ζK(s) a a product over the primes P ∈ Sk by considering
their splitting behavior in K. Since K/k is a cubic extension, there are 5 cases, namely: P = v1v2v3 (i.e.
P is totally split), or P = v1v2 (i.e. P is partially split), or P = v1v

2
2 (i.e. P is partially ramified), or

P = v3
1 (i.e. P is totally ramified), or P = v1 (i.e. P is inert). We write Sk as the disjoint union of the

sets S111,S12,S112 ,S13 and S3 according to the 5 cases above. Then, by definition of ζK(s), we have for
Re(s) > 1, that

ζK(s)

ζk(s)
=

∏
P∈S111

(
1− |P |−s

)−2 ∏
P∈S12

(
1− |P |−2s

)−1 ∏
P∈S112

(
1− |P |−s

)−1 ∏
P∈S3

(
1− |P |−3s

)−1
(1− |P |−s).

Then, it follows from Theorem 3.9 that for u = q−s,

ζK(s)

ζk(s)
= PC(u) =

2g∏
j=1

(
1−√q u eiθj(C)

)
,(32)
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where C is the smooth curve of genus g with function field K. We can then use the zeta function of K to
write the sum of powers of the roots of PC(u) (and then the number of points of C over extensions of Fq).

Proposition 5.5. [TX14, Proposition 3] For each integer n ≥ 1, we have

−qn/2
2g∑
j=1

einθj(C) =
∑

P∈S111
deg P |n

2 degP +
∑
P∈S12

deg P |n/2

2 degP +
∑

P∈S
112

deg P |n

degP +
∑
P∈S3

deg P |n/3

degP −
∑
P∈S3

deg P |n

degP.

Proof. The result follows by taking the logarithmic derivative on both sides of (32) with respect to s, and
the expression for ζK(s)/ζk(s) as an Euler product. �
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6. Average number of points over Fqn

We now consider the average number of points of curves C over Fqn when C varies over various families
of curves defined over Fq. If C is a curve over Fq with zeta function

ZC(u) =
PC(u)

(1− u)(1− qu)
=

∏2g
j=1

(
1−√qeiθj(C)

)
1− u)(1− qu)

,

and ΘC is the diagonal matrix with entries eiθj(C), then

#C(Fqn)− (qn + 1) = −qn/2 tr ΘC .

6.1. Hyperelliptic curves in the q-limit for fixed g. Let Hg be the moduli space of hyperelliptic curves

of genus g. For each C ∈ Hg, let ΘC be the diagonal matrix with entries eiθj(C). Then, ΘC is a 2g × 2g
unitary symplectic matrix in USp(2g). When g is fixed and q →∞, Katz and Sarnak [KS99a] showed that
the Frobenius classes ΘC become equidistributed in in the unitary symplectic group USp(2g).

Theorem 6.1. (Equidistribution Theorem for hyperelliptic curves) Let Hg(Fq) be the set of Fq-isomorphism
classes of hyperelliptic curves of genus g over Fq, and let f be any continuous class function on USp(2g).
Then

lim
q→∞

〈f(ΘC)〉 := lim
q→∞

∑′
C∈Hg(Fq) f(ΘC)∑′

C∈Hg(Fq) 1
=

∫
USp(2g)

f(A)dA,

where
∑′

means that every curve should be weighted by 1

#Aut(C/Fq)
.

Then, this gives the distribution of the average number of points of C over Fqn since

#C(Fqn)− (qn + 1) = −qn/2 tr Θn
C .

Corollary 6.2. When g is fixed and q tends to infinity, the normalised power of traces tr Θn
C =

∑2g
j=1 e

2πiθj(C)

are distributed over the family of hyperelliptic curves C as the power of trace trUn of a random matrix U
in the group USp(2g) of 2g × 2g unitary symplectic matrices, i.e.

lim
q→∞

〈tr Θn
C〉 =

∫
USp(2g)

tr(Un) dU.

We can then identify the limiting distribution which depends only on random matrix theory. In particular,
it is shown in [DS94] that the average of the traces of powers averaged over USp(2g) is given by∫

USp(2g)

tr(Un) dU =


2g n = 0

−ηn 1 ≤ |n| ≤ 2g

0 |n| > 2g

,(33)

where

ηn =

{
1 n even

0 n odd.
(34)

We remark that for g = 1 (i.e. the case of elliptic curves), the distribution at the q-limit given by Theorem
6.1 was proven by Birch [Bir68] for q prime, and by Deligne [Del80] for all q. For the context of elliptic
curves, the Haar measure on USp(2) is also called the Sato-Tate measure. Let p be a prime and let E be an
elliptic curve over Fp. Then, ΘE is the matrix with diagonal entries eiθp(E), e−iθp(E) for some unique angle
θp(E) ∈ [0, π], and Birch showed that

lim
p→∞

Prob (a ≤ θp(E) ≤ b) =
1

π

∫ b

a

sin2 θ dθ,

using the Eichler-Selberg’s trace formula.
We follow here Birch’s proof to give a formula for the average number of points #E(Fpn), when E varies

over all elliptic curves defined over Fp, at the limit when p → ∞, as outlined in [BG01]. For any function

F on USp(2) invariant by conjugation, we let
∑′

Ẽ/Fp F (ΘE) denote the sum is over representatives Ẽ of
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the Fp-isomorphism classes of elliptic curves over Fp weighted by 2/#Aut(E). Then,
∑′

Ẽ/Fp 1 = 2p, and we

define the average over elliptic curve over Fp as

〈F (ΘE)〉p :=
1

2p

′∑
Ẽ/Fp

F (ΘE).

We write αp(E) =
√
p eiθp(E). Then,

pn/2 tr Θn
E = αp(E)n + αp(E)

n
, and #E(Fpn) = pn + 1− (αp(E)n + αp(E)

n
).

Selberg’s trace formula [Sel65] implies that for all even integers n ≥ 0

σn(Tp) + 1 = −1

2

′∑
Ẽ/Fp

αp(E)n−1 − αp(E)
n−1

αp(E)− αp(E)

where σn(Tp) is the trace of the Hecke operator Tp acting on the cusp forms of weight n in SL2(Z) for n ≥ 4.

We also have that σ0(Tp) = 0 and σ2(Tp) = −p− 1 which follows from
∑′

Ẽ/Fp 1 = 2p. Since

αp(E)n+1 − αp(E)
n+1

αp(E)− αp(E)
− pαp(E)n−1 − αp(E)

n−1

αp(E)− αp(E)
= αp(E)k + αp(E)

n
,

we deduce that for even n ≥ 2〈
tr pn/2 Θn

E

〉
p

:=

∑′

Ẽ/Fp αp(E)n + αp(E)
n∑′

Ẽ/Fp 1
= σn(Tp) + 1− 1

p
(σn+2(Tp) + 1) .(35)

Since σn(Tp) = 0 for n = 4, 6, 8, 10, 14 and σ12(Tp) = τ(p), the Ramanujan’s τ -function, we have that the
first few values of

〈#E(Fpn)− (pn + 1)〉p =
〈
pn/2 tr Θn

E

〉
p

are given by 〈
#E(Fp2)− (p2 + 1)

〉
p

= p+ 1/p

〈#E(Fpn)− (pn + 1)〉p = −1 + 1/p for n = 4, 6, 8〈
#E(Fp10)− (p10 + 1)

〉
p

= −1 +
τ(p) + 1

p〈
#E(Fp12)− (p12 + 1)

〉
p

= −1− τ(p) +
1

p
.

For general n, using Deligne’s bound [Del71, Del74]

σn(Tp) = O
(
p(n−1)/2+ε

)
,

we have from (35) that

〈#E(Fpn)− (pn + 1)〉p = O
(
p(n−1)/2+ε

)
.

Working similarly, Birch proved that the matrices ΘE , as E varies over elliptic curves over Fp, are
distributed according to the Sato-Tate measure by computing all the moments〈(

αp(E) + αp(E)

2
√
p

)2n〉
p

,

and comparing with the analogous moments for the Sato-Tate distribution, i.e. checking that〈(
αp(E) + αp(E)

2
√
p

)2n〉
p

∼

{
2R!

R!(R+1)!p
R n = 2R

0 k = 2R+ 1,
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as p→∞ [Bir68, Theorem 1]. We remark that the fact that the odd moments are zero follows from symmetry.
Indeed, suppose that p > 5, so every curve has a model y2 = x3 + ax + b over Fp. If E : y2 = x3 + ax + b

has p+ 1− ap(E) points over Fp, then Ed : dy2 = x3 + ax+ b has p+ 1−
(
d
p

)
aE(p) points over Fp, and the

distribution of

tr Θp(E) =
ap(E)

2
√
p

is symmetric, so the odd moments are 0.

6.2. Hyperelliptic curves in the g-limit for q fixed. This section describes the results of [Rud10] where
the author computes the distribution of tr Θn

C where C varies over hyperelliptic curves of genus g, for q fixed
and g →∞.

Consider the space H2g+1 of hyperelliptic curves over Fq given by

CD : Y 2 = D(X)

where D(X) is a square-free, monic polynomial of degree 2g+ 1. The curve CD is then non-singular and has
genus g. For any function f on H2g+1, we define

〈F 〉 :=
1

#H2g+1

∑
D∈H2g+1

f(D).

We saw in the precedent section the distribution of 〈tr Θn
D〉 at the q-limit. Without taking the q-limit, it

can be proven that

Theorem 6.3. [Rud10, Theorem 1] For all n > 0, we have

〈tr Θn
D〉 =


−ηn 1 ≤ n < 2g

−1− 1
q−1 n = 2g

0 n > 2g

+ ηn
1

qn/2

∑
degP |n2

degP

|P |+ 1
+Oq

(
nqn/2−2g + gq−g

)
,

where the sum is over all irreducible polynomials P , and where |P | := qdegP , and ηn is defined by (34).

Corollary 6.4. If 3 logq g < n < 4g − 5 logq g, but n 6= 2g, then

〈tr Θn
D〉 =

∫
USp(2g)

trUn dU + o

(
1

g

)
.

This fits the random matrix model for n large enough (with respect to g), but we get deviations for small
values of n, for instance 〈

tr Θ2
D

〉
∼
∫

USp(2g)

trU2 du+
1

q + 1
.

Also, for n = 2g, when q is fixed and g →∞, we have〈
tr Θ2g

D

〉
∼
∫

USp(2g)

trU2g du− 1

q − 1
.

We remark that there is a “bias” in the number of points over Fqn for n even when C varies over
hyperelliptic curves defined over Fq, as it follows from Corollary 6.4 that the average number of point is

〈#C(Fqn)〉 =
〈
qn + 1− qn/2 tr Θn

C

〉
∼

{
qn + o(qn/2) n odd

qn + qn/2 + o(qn/2) n even,

when g → ∞, and 3 logq g < n < 4g − 5 logq g. This was observed by Brock and Granville [BG01], and
the bias is because the family of hyperelliptic curves has unitary symplectic symmetries, and the average of
traces of powers averaged over USp(2g) has a “bias” as it can be seen in (33). This bias is then a feature of
the statistics at the q-limit, but it also shows without taking the q-limit when n is large enough with respect
to the genus of the family, as proven by Theorem 6.3. See also [BG01, Corollary 6.1].
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We now outline some details of the proof of Theorem 6.3 as given in [Rud10]. Using the explicit formula
of Proposition 5.1, one has to compute the average〈 ∑

degF=n

Λ(F )χD(F )

〉
over the family of hyperelliptic curves CD : Y 2 = D(X) of genus g. One treats separately the contributions
coming from F prime, F a square, and F an odd power greater than 1 of a prime. The contribution from
the squares on average over the family can be shown to be

−1 +O

(
n

qn/2

)
+O(q−2g) = −ηn

(
1 + o

1

g

)
,

when n� logq(g). This explains the bias (as there is no contribution from the squares if n = degF is odd).
To analyze the contribution of the primes, we are led to consider the double character sums

S(β;n) :=
∑

deg P=n
P prime

∑
degB=β
B monic

(
B

P

)
,

and we write the contribution coming from the primes as

−n
(q − 1)q2g+n/2

∑
β+2α=2g+1
α,β≥0

σn(α)S(β;n).

For n ≤ g, the contribution is bounded by gq−g which goes to 0 as g →∞. For g < n < 2g, S(g± 1;n) = 0,
and there is no contribution. For n = 2g, we get a contribution of

1

q − 1
+O

(
gq−g

)
.

For 2g < n, we get a contribution of

ηn
(
1 +O

(
gq−g

))
+O

(
nqn/2−2g

)
,

and we get an estimate when 2g < n < 4g− 4 logq g. Finally, we show that the contribution from the higher
prime powers is bounded, and we get the result.

6.3. Artin-Schreier curves. We compute in this section the average number of points over Fqn for the
ordinary strata of Artin-Scheier curves, as done in [BDFL].

Given a Artin-Schreier curve C : Y p − Y = f(X) where f(X) ∈ Fq(X) is a rational function over a finite
field of characteristic p ≥ 3 which has poles at the projective points P1, . . . , Pr+1 of order d1, . . . , dr+1 with
p - d1 . . . dr+1, the genus of C is given by

g =

−2 +

r+1∑
j=1

ej

 p− 1

2
.

Note that we can always make a change a variables to get to the case when p - d1 . . . dr+1, so this condition
does not impose any restriction on the family of curves. Furthermore, the moduli space of Artin-Schreier
curves of genus g breaks into strata according to the p-rank of the Jacobian of C. 1 We have that

Jac(C)[p](Fq) = ps, where s = r(p− 1) for some nonnegative integer r.

1In the case of an E is an elliptic curve defined over a finite field Fq of characteristic p, since the genus of E is 1, the p-rank

is either 0 or 1, and it can be read from the Newton polygon of PE(u) = u2 − ap(E)u + p. There are only 2 cases here, either
one of the slope is 0 and the other one is 1, and E has p-rank 1 (and E is ordinary), or there are two slopes of 1/2 and E has

p-rank 0 (and E is supersingular). For an arbitrary curve C defined over a finite field Fq of characteristic p, the Newton polygon

of PC(u) has length 2g(C) and gets up to height g(C), and the p-rank is the length of the edge of slope 0. Then, C is ordinary
if the p-rank is equal to the genus, and C is supersingular if the Newton polygon consists only of the slope 1/2 that appears

with multiplicity 2g(C) (i.e. the polygon is a straight line). Both the Newton polygon and the p-rank are isogeny invariants.
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If r = s = 0, then f(X) has one pole of degree d that can be moved at∞, and g = (d−1)(p−1)
2 . The p-rank

0 strata then consists of exactly the curves with affine model Y p − Y = f(X) with

f(X) ∈ F0
d = {f(X) ∈ Fq[X], deg f = d, akp = 0} .

Note that our goal is count Artin-Schreier covers up to isomorphism. If akp 6= 0 one can employ a simple
change of variables to obtain a model with f ∈ Fd. Furthermore, this is the only restriction we have to
impose in order to make sure we counting each isomorphism class exactly once.

We remark that the p-rank 0 strata contains the supersingular locus (they are usually not equal), but
“most of the curves” are in the maximal p-rank stratum. (That is, this stratum is dense in every irreducible
component of the moduli space that it meets. Note that usually ASg is not irreducible, and the ordinary
locus is not usually dense in the whole space.) The maximal p-rank is the same as the ordinary locus, if this
locus is nonempty. For the ordinary locus, we must have

r(p− 1) = g =

r+1∑
j=1

ej − 2

 p− 1

2
⇐⇒ ej = 2, j = 1, . . . , r + 1,

and g = r(p− 1). In particular, the ordinary locus exists only when the genus g happens to be even. (If g is
odd the maximal p-rank is g − p−1

2 .) For g even, the ordinary locus consists of the curves Y p − Y = f(X),
where f(X) has r + 1 simple poles with r = g/(p− 1).

Let F be a family of Artin-Schreier covers defined over Fq (for example, F is a stratum of the p-rank
stratification). For any α, β ∈ P1(Fqk), let

F(α, β) = {f ∈ F : f(α) = β} .

Then, it follows from Hilbert’s Theorem 90 (see Section 5.3) that the average number of points over the
family, which was defined as 〈

NC(Fqk)
〉
F :=

1

#F
∑
C∈F

NC(Fqk),

is given by 〈
NC(Fqk)

〉
F =

∑
α∈P1(Fq)

#F(α,∞)

#F
+

∑
α∈P1(F

qk
)

∑
β∈F

qk

trk β=0

p
#F(α, β)

#F

The number of points over Fpk will behave differently if p | k as trk will be zero on the whole subfield
Fqk/p . We want to study that over various families defined in terms of some geometrical invariants. In each

case, we need to compute #F(α, β). and in for α, β ∈ P1(Fqk). If F is the stratum of p-rank 0, then the

family is indexed by f ∈ F0
d defined above. The size of the family is qd+1−bd/pc. In this case, for any α ∈ Fqk

of degree u and β ∈ Fqu , we have

#F0
d (α, β) = qd+1−bd/pc−u.

If F is the ordinary locus, the family is indexed by the set Ford
d of rational functions defined over Fq with

exactly d simple poles. The size of the family is already more complicated, namely

#Ford
d =

H(1)q2d+2

ζq(2)2
+O

(
q(3/2+ε)d

)
,

where

H(1) =
∏
P

(
1 +

1

(|P |+ 1)(|P |2 − 1)

)
,

where the product is over monic irreducible polynomials of Fq[X]. This involves the use of the Tauberian
Theorem for function fields [Ros02, Theorem 17.1].

As for the size of the fibers, for α ∈ P1(Fqk) of degree u and β ∈ P1(Fqu), we have [BDFL, Corollary 3.9].
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(36) #Ford
d (α, β) =


H(1)q2d+2−u(1−q−u)
ζq(2)2(1+q−u−q−2u) +O

(
q(3/2+ε)d+u

)
β =∞,

H(1)q2d+2−u

ζq(2)2(1+q−u−q−2u) +O
(
q(3/2+ε)d

)
β ∈ Fqu .

It then follows that

Theorem 6.5. The expected number of Fqk -points on an Artin-Schreier cover defined over Fq with p-rank
equal to 0 is {

qk + 1 p - k
qk + 1 + (p− 1)qk/p p | k

.

The expected number of Fqk -points on an ordinary Artin-Schreier cover defined over Fq is{
qk + 1 +O

(
q(−1/2+ε)d+2k

)
p - k

qk + 1 + p−1
1+q−1−q−2 +

∑
u| kp

p−1
1+q−u−q−2u

∑
v|u µ(v)qu/v +O

(
q(−1/2+ε)d+2k

)
p | k .

In particular, the average number of Fqp-points on an ordinary cover is

qp + 1 +
(p− 1)(q + 1)

1 + q−1 − q−2
+O

(
q(−1/2+ε)d+2p

)
.
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7. Zeros in intervals

Let C be a curve over Fq with zeros αj(C) =
√
qe2πiθj(C), and eigenangles θ1(C), . . . , θ2g(C). For any an

interval I ⊂ [−1/2, 1/2), we define

NI(C) := #{1 ≤ j ≤ 2g : θj(C) ∈ I},

and we want to study the distribution of NI(C) when C varies over the curves in a family F = F(g, q).
For q large, the distribution is given by distribution of random matrices as usual. Let M(2g) ⊆ U(2g) be a
probability space under the Haar measure, U ∈ M(2g) with eigenangles θ1(U), . . . , θ2g(U), and set

NI(U) = # {j : θj(U) ∈ I} .

If the family F(g, q) has symmetry type M(2g), then it follows from the work of Katz and Sarnak that (for
example)

lim
q→∞

# {C ∈ F(g, q) : NI(C) = k}
#F(g, q)

= ProbM(2g) (NI(U) = k) .

It follows from classical results on random matrix theory that the statistics for NI(U) for U ∈ M(2g)
have Gaussian distribution at the limit for large g in various ensemble of random matrices. In particular,
as g →∞

E [NI(U)] ∼ 2g|I|

E
[
(NI(U)− 2g|I|)2

]
∼ 2

π2
log (2g|I|)

and the random variable
NI(U)− 2g|I|√

2
π2 log (2g|I|)

has a normal distribution as g → ∞. (The variance might differ slightly for different ensembles of random
matrices).

Then, if the family F(g, q) has symmetry type M(2g), it follows from the work of Katz and Sarnak that

lim
g→∞

 lim
q→∞

ProbF(g,q)

a < NI(C)− 2g|I|√
2
π2 log (2g|I|)

< b

 =
1√
2π

∫ b

a

e−x
2/2 dx.

We now study this question in the limit when the genus goes to infinity, but without taking the limit when
q →∞ first. It turns out that one can show that the fluctuations of NI(C) (minus the mean and divided by
the standard deviation) are also Gaussian. This holds for intervals of fixed length, and also intervals of size
going to 0 as long as |I|g → ∞ as g → ∞. This question was first addressed by Faifman and Rudnick for
hyperelliptic curves [FR10], and then generalised to other families as cyclic `-covers [Xio10b], Artin-Schreier
curves of p-rank 0 [Ent12, BDF+12], ordinary Artin-Schreier curves [BDFL] and trigonal curves [TX14]. In
all those proofs, the starting point is to use the the Beurling-Selberg polynomials of level K to approximate
the characteristic function of the interval I, and the appropriate version of the explicit formulas to relate
the sum over zeros to a sum over the coefficients of the zeta function of the curve.

We first review the Beurling-Selberg polynomials. For all details, we refer the reader to [Mon94]. Let
I = [−β/2, β/2] be a symmetric interval, and for each K, let

I±K(x) =
∑
|k|≤K

c(k)e(kx)

be the Berling-Selberg polynomials of degree K. Those are even trigonometric polynomials (i.e. c(−k) =
c(k)) which approximate very well χI , the characteristic function of the interval I. In particular, they
approximate χI(x) in a monotone manner

I−K(x) ≤ χI(x) ≤ I+
K(x),
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and the integral of I±K is close to the length of the interval I∣∣∣∣∫ 1

0

I±1
K (x)−

∫ 1

0

χI(x) dx

∣∣∣∣ ≤ 1

K + 1
.(37)

We record some useful properties of the Beurling-Selberg polynomials.

Proposition 7.1. Let I = [−β/2, β/2], and let K ≥ 1 be an integer such that Kβ > 1. Let

I±K(x) =
∑
k≤K

c(k)e(kx)

be the Berling-Selberg polynomials of degree K. Then,

|c±(k)| ≤ 1

K + 1
+ min

(
β,

π

|k|

)
, 0 < |k| < K∑

k≥1

c±K(2k) = O(1)

∑
k≥1

kc±K(k)2 =
1

2π2
log (Kβ).

Proof. Those follows by looking comparing the Fourier of χI(x) =
∑
k∈Z a(k)e(kx), where

a(k) =

{
sin 2πkβ

2πk k 6= 0

1 k = 0,

and I±K(x) and using (37). �

Let F(g, q) be a family of curves of genus g over Fq. Using the explicit formulas for this family and the
Beurling-Selberg polynomials, we show that the normalised moments of NI(C)− 2g|I| match the moments
of a Gaussian, i.e. 〈 NI(C)− 2g|I|√

1
π2 log (2g|I|)

n〉
Fg

∼


(2`)!

`!2`
n = 2`,

0 n = 2`+ 1,

We give some outline of the proofs in the case of Artin-Schreier curves. We fix an additive character ψ,
and we study the distribution of the zeros of the L-functions L(u, f, ψ) attached to the Artin-Schreier curves
Y p − Y = f(X) when f runs into some family Fd of indexed by the degree d, as Ford

d ,F full
d or any of the

family with precribed ramification type as described in Section 6.3. Then, each L(u, f, ψ) has 2g/(p − 1)
zeros, and we denote the angles by θj(f, ψ).

It follows from using the explicit formula of Proposition 5.4 that

2g/(p−1)∑
j=1

I±K(θj(f, ψ))− 2g

p− 1
c±K(0) =

∑
1≤k≤K

c±K(k)SK(f, ψ) + c±K(−k)Sk(f, ψ̄)

qk/2

where
Sk(f, ψ) =

∑
α∈P1(F

qk
)

f(α)6=∞

ψ(trk f(α)),

and from the properties of the Beurling-Selberg polynomials, this gives

NI(f, ψ)− 2g

p− 1
|I| ≈

∑
1≤k≤K

c±K(k)SK(f, ψ) + c±K(−k)Sk(f, ψ̄)

qk/2

Then, to get the mean of NI(f, ψ) over each family Fd, we need to compute for each 1 ≤ k ≤ K

〈Sk(f, ψ)〉Fd =
1

#Fd

∑
f∈Fd

∑
α∈P1(F

qk
)

f(α) 6=∞

ψ(trk f(α)).
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Reversing the sums, this becomes

1

#Fd

∑
α∈F

qk

∑
f∈Fd
f(α) 6=∞

ψ(trk f(α)) =
∑
β∈Fqu

ψ(trk β)
#Fd(α, β)

#Fd

where Fd(α, β) is the number of f ∈ Fd such that f(α) = β.
By (36), for any β, β′ ∈ Fqu , we have that #Fd(α, β) ∼ #Fd(α, β′), and we expect that the sum above

will be 0, because when β runs over the elements of Fqu , trk β takes every value in Fp the same number of
times, and then

ψ(trk β) = e2πi trk β/p

takes each pth root of 1 the same number of times. Unless p | k, and α ∈ Fqk/p : in that case, β = f(α) ∈ Fqk/p ,
and

trk β = p trk/p β = 0,

and ψ(trk β) = e
(

2πi trk β
p

)
= 1. The bound for 〈Sk(f, ψ)〉Fd can be deduced by summing over all α ∈ Fqk

which give a contribution, and we get

〈Sk(f, ψ)〉Fd � qk/p

(dealing appropriately with all the error terms). Then, using the explicit formulas and summing over all
1 ≤ k ≤ K, we get 〈

NI(f, ψ)− 2g

p− 1
|I|
〉
Fd
� 1.

Similarly, for the second moments, we have that〈(
NI(f, ψ)− 2g

p− 1
|I|
)2
〉
Fd

≈

〈 ∑
1≤k≤K

c±K(k)Sk(f, ψ) + c±K(−k)Sk(f, ψ̄)

qk/2

2〉
Fd

,

and we are led to consider averages of the type〈
Sk1(f, ψ)Sk2(f, ψ̄)

〉
Fd
,

for fixed 1 ≤ k1, k2 ≤ K. We first reverse the sum over f ∈ Fd and the sum over α1, α2 ∈ Fqk .
Then, for each fixed α1, α2 ∈ Fqk1 ,Fqk2 of degree u1, u2, we have the sum∑

f∈Fd
f(α1)6=∞,f(α2)6=∞

ψ (trk1 f(α1)− trk2 f(α2)) =
∑

β1∈Fqu1 ,β2∈Fqu1

ψ (trk1 β1 − trk2 β2)
#Fd(α1, α2, β1, β2)

#Fd

where

Fd(α1, α2, β1, β2) = {f ∈ Fd : f(α1) = β1 and f(α2) = β2} .
Again, by Theorem 36, for any β1, β

′
1 ∈ Fqu1 , β2, β

′
2 ∈ Fqu2 , we have that

#Fd(α1, α2, β1, β2) ∼ #Fd(α1, α2, β
′
1, β
′
2).

Then, we expect that ∑
β1∈Fqu1 ,β2∈Fqu1

ψ (trk1 β1 − trk2 β2)
#Fd(α1, α2, β1, β2)

#Fd

will be 0, because when βi runs over Fqui , trk1 β1 − trk2 β takes every value in Fp the same number of
times, and then ψ (trk1 β1 − trk2 β2) takes each pth root of 1 the same number of times. Unless p | ki, and
αi ∈ Fqki/p , or α1 and α2 are conjugate. In the first case, Then, βi = f(αi) ∈ Fqki/p , and

trk1 β1 − trk2 β2 = p trk1/p β1 + p trk2/p β2 = 0,

and ψ (trk1 β1 − trk2 β2) = e0 = 1. In the second case, β1, β2 are conjugate, trk1 β1 = trk2 β2 ⇐⇒ trk1 β1 −
trk2 β2 = 0, and ψ (trk1 β1 − trk2 β2). We then have to count the contributions of the pairs (α1, α2) such
that p | (k1, k2), α1 ∈ Fqk1 , α2 ∈ Fqk2 and α1, α2 conjugate of degree m | (k1, k2). It turns out that the only
contributions to the main term of the second moments are those coming from α1, α2 conjugate of degree
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k1 = k2, and those can be counted by counting the number of irreducible polynomials of degree k in Fq[X].
By Theorem 3.1 (the prime number theorem for polynomials), there are

π(k)k2 = kqk +O
(
k2qk/2

)
such pairs, and the contribution from α1, α2 conjugate of degree k1 = k2 is

K∑
k=1

ÎK(k)2k ∼ 1

2π2
log (K|I|),

by properties of the Beurling-Selberg polynomials.
For the general moments, we had some combinatorics, and we have to count the number of ways to pick

pairs of conjugate roots among n elements of Fq. We then get that the nth moment〈(
NI(f, ψ)− 2g

p− 1
|I|
)n〉

Fd

is asymptotic when d→∞ to 
(2`)!

`!(2π2)`
log`(K|I|) n = 2`,

C
(2`+ 1)!

`!(2π2)`
log`(K|I|) n = 2`+ 1,

,

and the (properly normalized) number of zeros with angles in a prescribed intervals has Gaussian distribution.
Dealing appropriately with the error terms, we can show that this also holds when |I| tends to 0 as long as
g|I| → ∞ when g →∞.
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8. One-level density in the function field setting

For a general family of curves F(g, q), the traces of powers tr Θn
C determine all linear statistics, such

as the number of angles θj(C) lying in an interval I ⊆ [−π, π] as we studied in the preceding section, or
the one-level density which is a smooth linear statistic. More suprinsingly, they also determine the n-level
density, see for example [Hug05].

To define the one-level density in the function field setting, let f be an even test function on the Schwartz
space S(R), and for any N ≥ 1, we set

F (θ) :=
∑
k∈Z

f

(
N

(
θ

2π
− k
))

which is periodic with period 2π localized in an interval of size approximatively 1/N (we recall that the
one-level density is the study of the low-lying zeros).

Exercise: The Fourier expansion of F is

F (θ) =
1

N

∫ ∞
−∞

f(x)dx+
1

N

∑
n 6=0

f̂
( n
N

)
einθ(38)

(using for example the Poisson summation formula).
For a unitary N ×N matrix U with eigenvalues eiθj , j = 1, . . . , N , we define

Wf (U) :=

N∑
j=1

F (θj).

Replacing (38) in the definition of Wf , we get

Wf (U) =

∫ ∞
−∞

f(x) dx+
1

N

∑
n6=0

f̂
( n
N

)
trUn,(39)

so we have expressed the one-level density in terms of traces.
Now, suppose that F(g, q) be a family of curves of genus g with symmetry type G(N), and as usual let

〈Wf 〉F(g,q) =
1

#F(g, q)

∑
C∈F(g,q)

Wf (θC).

Then, Katz and Sarnak conjectured that

lim
g→∞

〈Wf 〉F(g,q) = lim
g→∞

∫
G(2g)

Wf (U) dU(40)

as g → ∞. Of course, taking the q-limit, it follows from the equidistribution theorem for the given family
F(g, q) that

lim
q→∞

〈Wf 〉F(g,q) =

∫
G(2g)

Wf (U) dU.(41)

Then, in view of (39), to prove (40), we have to compute the average

〈tr(Θn
C)〉F(g,q)

and compare with ∫
G(2g)

tr(Un) dU.

Then, using the results of Section 6.2, it follows that

Theorem 8.1. [Rud10, Corollay 3] Let H2g+1 be the family of all hyperelliptic curves with affine equation
Y 2 = Q(X), where Q(X) is square-free, monic of degree 2g + 1, and let

〈Wf 〉 :=
1

#H2g+1

∑
Q∈H2g+1

Wf (ΘC).
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If f ∈ S(R) is even, with Fourier transform f̂ supported in (−2, 2), then

〈Wf 〉 =

∫
USp(2g)

Wf (U)dU +
dev(f)

g
+ o

(
1

g

)
,

where

dev(f) = f̂(0)
∑
P

degP

|P |2 − 1
− f̂(1)

1

q − 1
.

Proof. Using the Fourier expansion (39) and (33), we compute that∫
USp(2g)

Wf (U) du =

∫ ∞
−∞

f(x) dx− 1

g

∑
1≤m≤g

f̂

(
m

g

)
.

Similarly, using the Fourier expansion (39) and Theorem 6.3, we get that

〈Wf 〉 =

∫ ∞
−∞

f(x) dx− 1

g

∑
1≤m≤g

f̂

(
m

g

)
− 1

q − 1
f̂(1)− f̂(0)

∑
P

degP

|P |2 − 1
+ o

(
1

g

)
,(42)

provided that the error term of Theorem 6.3 does not contribute: we need n/2− 2g < 0 ⇐⇒ n < 4g, which

is guaranteed since f̂
(
n
2g

)
= 0 when n/2g ≥ 2. �

Then, for functions f with limited support of the Fourier transform, one has that

lim
g→∞

〈Wf 〉H2g+1
= lim
g→∞

∫
USp(2g)

Zf (U) dU =

∫
R
f(x)

(
1− sin (2πx)

2πx

)
dx,

as conjectured by Katz and Sarnak for all functions f . The one-level density (42) for hyperelliptic curves for
q fixed is analogous to the number field result, i.e. the one-level density for the non-trivial zeros of L(s, χd)
where χd varies over the primitive Dirichlet characters as described in Section 2.1, except for the presence

of the lower order term −f̂(1)/(q − 1) coming from the extra contribution of the moment for n = 2g. One
believes that this lower term will not appear in the number field setting, but this cannot be proven, as the

lower order terms are known only for test functions f with Fourier transform such that supp(f̂) ⊆ (−1, 1)
in this case [Mil08].

For the n-level density, one needs to consider averages of product of traces, as is done in [ERGR13] (see
next section). We also refer the reader to [Hug05]. The general expression relating the n-level density to
products of traces involves some non-trivial combinatorics, but one can write closed formulas for (small)
fixed n.

In order to define the n-level density in the function field setting, let f be a function of n variables in the

Schwartz space S(Rn). For ~θ = (θ1, . . . , θn), let

~F (~θ) =
∑
k∈Zn

f

(
N

(
~θ

2π
− ~k

))
=

1

Nn

∑
~m∈Zn

f̂(
~m

N
)ei~m·

~θ.

The n-level density of a unitary N by N matrix U with eigenvalues eiθj is then defined as

W
(n)
f (U) =

∑
j1,...,jn
distinct

F (θj1 , . . . , θjn),

and this can also be expressed in terms of powers of traces.
Taking for example n = 2, using the relation∑

j 6=k

ei(m1θj+m2θk) =

∑
j

eim1θj

∑
j

eim2θk

−∑
j

ei(m1+m2)θj

= trUm1 trUm2 − trUm1+m2 ,

we obtain

W
(2)
f (U) =

1

N2

∑
~m

f̂

(
~m

N

)
trUm1 trUm2 − 1

N

∑
m

1

N

∑
m′

f̂

(
m′,m−m′

N

)
trUm.(43)

41



In the case of hyperelliptic curves, the averages

〈trUm1 trUm2〉H2g+1

are computed in [Rud10], and one can see that they fit the averages∫
USp(2g)

trUm1 trUm2 dU,

for some range of m1,m2, and this can be used to give closed formulas for the two-level density. As for the
case n = 1, the average of traces do not agree completely with the random matrix model for q small for
exceptional values of m1 and m2 (m1 +m2 = 2g, M1 = 2g and m1 −m2 = 2g). See also [RG12].
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9. n-level density over number fields and function fields

We survey in this section the recent work of Entin, Roditty-Gershon and Rudnick [ERGR13], where the
authors show how the equidistribution theorem for hyperelliptic curves can be used to deduce statistics
about the corresponding family over number fields, namely the family of quadratic Dirichlet L-functions.
The number field situation was explained in Section 2.1, and to prove Theorem 2.6, it remains to show that
for all n

A(f) =

∫
Rn
f(x)W

(n)
USp(x) dx,

where A(f) is the expression computed by Gao [Gaoa, Gaob] for the family of quadratic Dirichlet L-functions.
Let F(2g + 1, q) be the family of hyperelliptic curves

CD : Y 2 = D(X),

where D(X) ∈ Fq[X] is a square-free polynomial with degD = 2g+ 1. Then, the zeta functions of the curves
CD correspond to the L-function of the Dirichlet characters χD, i.e.

ZCD (u) =
PCD (u)

(1− u)(1− qu)
=

L(u, χD)

(1− u)(1− qu)
,

where

L(u, χD) =
∏
P

(
1− χD(P )udegP

)−1
,

and the product is over monic irreducible polynomials P (X) ∈ Fq[X]. To define the n-level density for the
family F(2g + 1, q), let f1, . . . , fn be even test functions on the Schwartz space S(R), and assume that the

Fourier transforms f̂j are supported in the interval (−sj , sj) for
∑n
j=1 |sj | < 2. For CD ∈ F(2g + 1, q), let

eiθj(D), j = ±1, . . . ,±g with θ−j(D) = −θj(D) be the zeros of ZCD (u). Let

Fk(t) =
∑
`∈Z

fk

(
2g

(
t

2π
+ `

))
be the associated test function with period 2π, and we denote

W (n)(f1, . . . , fn;D) =
∑

θj1
,...,θjn

1≤|jk|≤g,jk 6=±j`

F1(θj1(D)) . . . Fn(θjn(D)).

Then, the n-level density over the family F(2g + 1, q) is〈
W (n)(f1, . . . , fn;D)

〉
F(2g+1,q)

:=
1

#CF (2g + 1, q)

∑
CD∈CF (2g+1,q)

W (n)(f1, . . . , fn;D).

We know that

1. By Theorem 6.1, the statistics on the zeros of the L-functions L(u, χD) as CD varies over all the
hyperelliptic curves in the family F(2g+1, q) are given by the corresponding statistics on the matrix
group USp(2g), and in particular taking the statistic to be the n-level density, we have

lim
q→∞

〈
W (n)(f1, . . . , fn;D)

〉
F(2g+1,q)

=

∫
USp(2g)

f(x)W
(n)
f (U) dU.(44)

2. If we further take the limit as g →∞ in (44), we get the scaling density W
(n)
USp, i.e.

lim
g→∞

(
lim
q→∞

〈
W (n)(f1, . . . , fn;D)

〉
F(2g+1,q)

)
=

∫
Rn
f(x)W

(n)
USp(x) dx.(45)

To be able to use (44) and (45) above, we first need to compute the n-level density on average over the
family of hyperelliptic curves, for q any g finite.
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Theorem 9.1. [ERGR13, Theorem 1.2] Assume that f(x1, . . . , xn) =
∏n
j=1 f(xj) and that each f̂j(uj) is

supported on the range |uj | < sj with
∑
j sj < 2. Then,〈

W (n)(f1, . . . , fn;D)
〉
F(2g+1,q)

= A(f) +Of

(
g

log g

)
,(46)

where the implied constant in independent of q and where A(f) = A(f1, . . . , fn) is the combinatorial expres-
sion computed in [Gaoa, Gaob].

Then, taking the q-limit on both sides of (46), we get from (44)

A(f) +Of

(
g

log g

)
=

∫
USp(2g)

f(x)W
(n)
f (U) dU

since the remainder term of (46) is independent of q. Now, by taking the g-limit on both sides, we get by
(45) that

A(f) =

∫
Rn
f(x)W

(n)
USp(x) dx.

9.1. n-level density for Artin-Scheier curves. For Artin-Schreier curves, the n-level density follows from
the work of Entin in [Ent13] where he studied the n-correlation for the p-rank 0 strata of Artin-Schreier
curves (and both the n-level density and the n-correlation can be determined from the power of traces).

Let F(g, q) be a family of Artin-Schreier curves, for example a stratum of the moduli space (see Section
6.3) It was proven by Katz and Sarnak that at the q-limit, the statistics on F(g, q) will be given by the
corresponding statistics on the space of unitary matrices U(2g).

Theorem 9.2. [Kat05, Theorem 3.9.2] Let g be fixed. Then, as q →∞, the matrices {ΘC}C∈F(g,q) become

equidistributed in U(2g) with respect to the Haar measure.

In particular, for g fixed, we have that

lim
q→∞

〈tr Θn
C〉 =

∫
U(2g)

trUn dU = 0, n ∈ Z, n 6= 0.(47)

More generally, we have the following result for the average product of powers of traces for eigenvalues of
random matrices in U(N).

Theorem 9.3. [DS94] Let r1, . . . , rn be non-zero integers
∑n
i=1 |ri| ≤ 2N. Let s1, . . . , sm be the distinct

values appearing in the list |ri|, i = 1, . . . , n, and let aj (respectively bj) be the number of times each value
sj (respectively −sj) occurs. Then,

M(r1, . . . , rn;N) :=

∫
U(N)

n∏
i=1

trUri dU =

{∏m
j=1 aj !s

aj
j , if aj = bj , j = 1, . . . ,m

0 otherwise.

This was originally proven by Diaconis and Shahshahani [DS94] using representation theory of unitary
matrices. A new proof was given recently by [Ent13] by computing the averages

∏n
i=1 tr Θri

C over the family
of Artin-Schreier curves of p-rank 0, and using the equidistribution theorem of Katz and Sarnak to relate
this to the average M(r1, . . . , rn;N) over unitary matrices, i.e. using an approach similar to [ERGR13].

Let Fd be the family of polynomials of degree d, and assume that (d, p) = 1. Fix a non-trivial additive
character ψ of Fp. Let L(u, f, ψ) be the L-functions associated to an Artin-Shreier curve Cf : Y p−Y = f(X)
for some f ∈ Fd and to the character ψ (as defined in Section 5.3). Let e = (d− 1)/(p− 1), and let Θf,ψ be
the e by e matrix with eigenvalues

q−1/2αj(f, ψ) = eiθj(f,ψ), j = 1, . . . , e.

Theorem 9.4. [Ent13] Let r1, . . . , rk, t1, . . . , t` be natural numbers satisfying
∑
ri =

∑
tj < d. Let

s1, . . . , sm be the distinct values appearing in the list r1, . . . , rk, each appearing ai times. Then,〈
k∏
i=1

tr Θri
f,ψ

∏̀
i=1

tr Θ
tj
f,ψ

〉
Fd

=

{∏m
j=1 aj !

∏k
i=1 ti +O

(
q−1/2

)
if k = ` and the ri and the ti coincide

O(q−1/2) otherwise
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Then, using Katz and Sarnak equidistribution theorem, it follows from Theorem 9.4 that when q →∞〈
k∏
i=1

∣∣∣tr Θri
f,ψ

∣∣∣2〉
Fd

∼
∫
U(e)

|trUri |2 dU = M(r1, . . . , rk,−r1, . . . ,−rk; e),

and the other cases (other choices of ri) are treated similarly. Finally, deriving the n-correlation (or the
n-level density) from the arbitrary moments of traces can be done with Fourier series as explained in Section
8.
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