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1. Introduction

These lectures1 concern the arithmetic of modular curves, and in
particular the geometry of integral models of modular curves in the
neighborhood of their singular points. These singularities only appear
modulo p. If X is a modular curve and x is a singular point, then the
nature of the singularity is measured by the completed local ring ÔX,x.

Let us first review the basics of integral models of modular curves.
Let Γ be one of the congruence subgroups Γ0(N), Γ1(N), or Γ(N).
Then the modular curve X(Γ), a priori defined over Q, admits a smooth
model over Z[1/N ]. That is, modular curves have good reduction mod-
ulo primes which do not divide the level. If p - N , and if x ∈ X(Γ)(Fp)
is a geometric point of the special fiber, then we have

ÔX(Γ),x
∼= W JtK,

where W = W (Fp).
When a prime p does divide the level, care must be taken to construct

an integral model of X(Γ) over Zp, and singularities begin to appear in
the special fiber. The first investigation of the bad reduction of modular
curves was carried out by Deligne-Rapoport [DR73], who constructed
a model of X0(Np) over W whose reduction is the union of two copies
of X0(N)Fp which meet transversely at the supersingular points.

This has the consequence that if x ∈ X0(Np)(Fp) is a supersingular
point, then the completed local ring of X0(Np) at x is

ÔX0(Np),x
∼= W Jt, uK/(ut− p)

(note that this is a regular local ring).
The book of Katz-Mazur [KM85] constructs integral models of the

modular curves X(Γ) (for the familiar congruence subgroups Γ) by
carefully defining moduli problems of elliptic curves with level struc-
ture. Note that the usual notion of level structure on an elliptic curve

1Apr. 30, 2013. Many thanks to Rebecca Bellovin, Kestutis Cesnavicius, and
Chao Li for pointing out numerous errors.
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E (that is, a subgroup, point, or basis of E[N ]) is problematic over
schemes in characteristic p which divide N . Katz and Mazur resolved
this issue by using the notion of Drinfeld level structure.

Let N ≥ 5 be prime to p, and let Xn = X(Γ1(N)∩Γ(pn)). Then the
Katz-Mazur model of Xn over W has special fiber equal to the union
of smooth curves (called Igusa curves) which meet, once again, at the
supersingular points.

But for large n, the singularities at the supersingular points are far
from being ordinary double points. Which is to say that the completed
local rings ÔXn,x (x supersingular) are more complicated than before,
and don’t seem to have any obvious presentation.

Goal. Give a description of the complete local ring

ÔX∞,x := completion of

(
lim−→
n

OXn,x

)
.

Here the completion is taken with respect to the maximal ideal of OX0,x

(or the maximal ideal of any particular OXn,n, it doesn’t matter).
This is a rather ad hoc definition, because we haven’t defined the

infinite-level modular curve X∞. But whatever X∞ is, the above seems
like a reasonable definition for its completed local ring at x. As it
turns out, despite being non-noetherian, ÔX∞,x has a rather simple
description which makes it easier to work with than the finite level
rings ÔXn,x.

2. Moduli of elliptic curves

2.1. Basic definitions. Modular curves are usually introduced as Rie-
mann surfaces of the form Γ\H, where H is the upper half-plane and
Γ ⊂ SL2(Z) is a congruence subgroup (meaning it contains a princi-
pal congruence subgroup Γ(N) for some integer N). This definition
produces a perfectly good algebraic curve Y (Γ) over C whose points
correspond to elliptic curves with some extra structure. Then one adds
a finite set of points to Y (Γ) to produce a complete algebraic curve
X(Γ).

Since we are interested in the fine arithmetic of modular curves,
the above definition isn’t quite good enough. We need a model for
Y (Γ) over Z, not C (or even Q). Furthermore, this model ought to
solve a moduli problem over general base schemes S, in the sense that
morphisms from S into Y (Γ) should correspond to elliptic curves over S
with some additional structure. The construction of these models is the
primary accomplishment of [KM85]. For many congruence subgroups
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Γ, Katz and Mazur pose a moduli problem for elliptic curves and level
structures which turns out to be representable much of the time.

Since elliptic curves are front and center of this story, it is appropriate
to begin with the following definition:

Definition 2.1.1. Let S be a scheme, and let f : E → S be a morphism
of schemes. Then E/S is an elliptic curve over S if f is proper and
smooth of relative dimension 1, such that the geometric fibers of f are
connected of genus 1. There must also be a special point 0 ∈ E(S),
called the zero section.

As expected, elliptic curves carry an abelian scheme structure. That
is, for every scheme T/S, E(T ) can be given the structure of an (abelian)
group in a way which is compatible with S-morphisms T → T ′. This
is because E(T ) can be naturally identified with the relative Picard
group Pic0(ET/T ) (see Thm. 2.1.2 of [KM85]).

If E/S is an elliptic curve, and N ≥ 1 is an integer, we write E[N ]
for the kernel (meaning the primage of the zero section) of the multi-
plication by N map E → E. This is a finite locally free group scheme
of rank N2 over S, which is étale if N is invertible on S (Thm. 2.3.1).

2.2. A short aside on group schemes. If you haven’t dealt with
finite group schemes before, here is a little informal perspective. A
group scheme over a scheme S is a scheme G/S equipped with S-
morphisms G ×S G → G, e : S → G, and i : G → G which mimic the
multiplication, identity, and inverse operations in a group.

This definition is a little dry, but it comes to life when we consider
that whenever T → S is an S-scheme, the set G(T ) (this is the set of S-
morphisms T → G) becomes an honest group. Furthermore, whenever
T ′ → T is an S-morphisms, we get a homomorphism of groups G(T )→
G(T ′). Thus a group scheme gives us a contravariant functor T 7→
G(T ) from the category of S-schemes to the category of groups. In
fact, an equivalent definition of a group scheme is a functor from S-
schemes to groups which happens to be representable (in which case
the representing object G is a group scheme as originally defined). The
equivalence of these definitions is an exercise using Yoneda’s lemma,
which once mastered allows us to simultanously view G as a functor
and as a scheme in its own right. This sort of schizophrenia will be
enormously useful when we consider other sorts of group-like objects
(elliptic curves, p-divisible groups, formal groups, and so on).

Standard examples of groups schemes include the additive group
Ga = SpecZ[T ], and the multiplicative group Gm = SpecZ[T, T−1]
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(both considered as schemes over SpecZ). Whenever R is a commu-
tative ring, we have Ga(R) = R (as an abelian group, forgetting the
ring structure) and Gm(R) = R×. (Note that we have abbreviated
G(SpecR) as G(R) in these examples.) Also note that any (abstract)
group G can be considered as a constant group scheme G over a scheme
S, by defining G to be the disjoint union of copies of S, one for each
element of G. Finally, if G is a group scheme over S, and T → S is an
S-scheme, we write GT for the base change of G to T . If T = SpecA
is affine, we will abbreviate GSpecA as GA.

Example 2.2.1 (The group scheme µN). Another important example
of a group scheme is the kernel of the “Nth power map” on (Gm)A,
which is denoted µN (with the tacit understanding that the base scheme
is SpecA). As a scheme, we have µN = SpecA[X]/(XN − 1). Thus for
an A-algebra R we have µN(R) =

{
x ∈ R|xN = 1

}
, with its obvious

structure as an abelian group. Since µN is finite over SpecA, this
makes µN a finite group scheme. Note that if A is a Z[1/N ]-algebra
which contains a primitive Nth root of unity ζ, then G is isomorphic
to the constant group scheme Z/NZ. (Check that A[X]/(XN − 1) is

isomorphic to the direct product AN !) If A is a Z[1/N ]-algebra which
doesn’t necessarily contain a primitiveNth root of unity, then µN might
not be constant, but after passing to an étale (unramified) extension
B/A, µN does become constant. Thus over schemes on which N is
invertible, µN is étale, meaning that it becomes constant after passing
to an étale extension of the base. One consequence of this is that µN
seems to have the right number of “physical points”: if k is an A-
algebra which is a field, then µN(k) has at most N elements, and if k
is enlarged it will have exactly N elements.

The behavior of µN over schemes on which N is not invertible is
quite different. As an extreme example, let p be prime and consider
µp as a group scheme over SpecFp. Then if K is a field containing
Fp, then µp(k) = 0 no matter how large k is. Thus µp/Fp seems to
suffer from a lack of physical points. (But please don’t think that µp
is simply the trivial group: over an Fp-algebra with lots of nilpotents,
like R = Fp[x]/xp, the group µp(R) will be nontrivial.) Over Fp, µp is
connected, meaning that its underlying topological space is connected.

For more on finite group schemes, consult the excellent article by
Tate, [Tat97].

2.3. The group schemes E[N ], and the Weil pairing. Let S be
a scheme, and let E/S be an elliptic curve. Then the kernel of multi-
plication by N is a finite group scheme over S denoted by E[N ]. The
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first thing to note is that, as with µN , the nature of E[N ] is quite dif-
ferent depending on whether N is invertible on S. If N is invertible on
S, then E[N ] is étale. This fact manifests in the property that E[N ]
has the “right” number of points over an algebraically closed field. If
S = SpecK is the spectrum of an algebraically closed field in which
N 6= 0, then E[N ](K) ≈ (Z/NZ)2.

On the other hand, if N = p is prime, and S = SpecK is the
spectrum of a field of characteristic p, then E[p] is never étale. Those
familiar with the behavior of elliptic curves over such fields know that
there are two possibilities:

E[p](K) ≈

{
Z/pZ, E is ordinary

0, E is supersingular

In the supersingular case, E[p] is a connected finite group scheme. In
the ordinary case, E[p] is neither étale nor connected, but is rather a
hybrid of the two cases.

Returning to the general case of an elliptic curve over an arbitrary
base scheme S, an important property of the finite group scheme E[N ]
is that it is autodual. This means that there is a Z/NZ-bilinear and
alternating morphism

eN : E[N ]× E[N ]→ µN ,

known as the Weil pairing, which identifies E[N ] with the group scheme
of S-group homomorphisms E[N ]→ Gm (see §2.8 of [KM85]).

2.4. The moduli problems Γ(N) and Γ1(N). Informally, a Γ(N)-
structure (or “full level N structure”) on an elliptic curve E/S is a
pair of N -torsion points P,Q ∈ E[N ](S) which constitute a basis for
the (Z/NZ)-module E[N ](S). This definition suffices as long as N is
invertible on S, but is woefully inadequate otherwise. For instance if
p is prime and E is an elliptic curve over a field k of characteristic p,
then E[p](k) is an Fp vector space of dimension at most 1, so any pair
(P,Q) as above would have to be linearly dependent.

The correct definition is slightly more subtle, and involves the group
of Cartier divisors on a scheme. Recall that a Cartier divisor on a
scheme X is a collection of rational functions fi on open affine sets Ui
which cover X, such that fi/fj is regular on Ui ∩ Uj for all pairs (i, j).
(This is up to the obvious equivalence relation involving refinements
of the open cover {Ui}.) A Cartier divisor is effective if the fi may all
be taken to be regular. In this case the ideal sheaf generated by the
fi cuts out a subscheme Y of X of codimension 1, and we write this
divisor as [Y ].
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Definition 2.4.1. Let E be an elliptic curve over a scheme S. A
Γ(N)-structure on E/S is a group homomorphism

φ : (Z/NZ)2 → E[N ](S)

such that we have an equality of effective Cartier divisors in E:

E[N ] =
∑

a,b∈Z/NZ

[φ(a, b)].

A Γ1(N)-structure on E/S is a group homomorphism

φ : Z/NZ→ E[N ](S)

such that the effective Cartier divisor∑
a∈Z/NZ

[φ(a)]

is a subgroup scheme of E[N ].

In the case that N is invertible on S, so that E[N ] is an étale group
scheme, one can show that a Γ(N)-structure on E/S is simply a pair of
linearly independent elements of E[N ], and that a Γ1(N)-structure on
E/S is a point of E[N ] of exact order N . But when N is not invertible,
this simply cannot be the case. For instance, if E is a supersingular
elliptic curve over an algebraically closed field k of characteristic p,
then the map φ : (Z/pZ)2 → E[p](k) which sends everything to 0 is a
perfectly good (and in fact is the only) Γ(p)-structure on E/k. If E
is ordinary, then a Γ(p)-structure φ : (Z/pZ)2 → E[p](k) will have to
surject onto E[p](k) (which has order p), but then there will necessarily
be a kernel of order p.

We are now ready to define the moduli problems relevant to these
lectures.

Definition 2.4.2. Let [Γ(N)] (resp, [Γ1(N)]) denote the functor2 which
assigns to a scheme S the set of elliptic curves E/S together with a
Γ(N)-structure (resp., Γ1(N)) structure) on E/S.

We are interested in the representability of these functors. For [Γ]
to be representable (Γ = Γ(N) or Γ1(N)), it would mean that there
is a scheme Y (Γ), an elliptic curve E/Y (Γ), and a Γ-structure φ on
E/Y (Γ), such that for any scheme S, the function

{Morphisms S → Y (Γ)} → {Elliptic curves/S with Γ-structure}
f 7→ f ∗(E),with Γ-structure induced by φ

2This is not quite how [Γ(N)] and [Γ1(N)] are defined in [KM85]; there, these
symbols are used to represent functors on the moduli stack of elliptic curves.
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is bijective.
It is not the case that these moduli problems are always repre-

sentable. In fact [Γ(1)] isn’t even representable. The trouble is that
elliptic curves always have automorphisms: every elliptic curve has an
involution [−1], and some elliptic curves have more automorphisms
still. But it turns out that if the level structure is big enough, the
situation becomes rigidified, and these moduli problems become rep-
resentable. For instance, let S be a connected scheme, let E/S be an
elliptic curve, and let φ be a Γ1(N)-level structure on E/S. As long
as N ≥ 5, any automorphism of E/S which preserves φ must be the
identity ([KM85], Cor. 2.7.3).

In our study of modular curves over Zp, then, it will be useful to fix an
auxiliary integer N ≥ 5 which is prime to p, simply for the reason that
it ensures that certain moduli problems are representable. Primarily
we will be interested in the moduli problems [Γ(pn)] for n ≥ 0, but we
will run into a representability issue if pn ≤ 2. Therefore we define the
moduli problem [Γ1(N)∩Γ(pn)] to be the functor which assigns to a Zp-
scheme S the set of elliptic curves E/S together with a Γ1(N)-structure
and a Γ(pn)-structure.

Theorem 2.4.3. The moduli problem [Γ1(N)∩ Γ(pn)] is representable
by a regular scheme Yn of dimension 2 which is flat over SpecZp. The
generic fiber (Yn)Qp is a smooth curve.

Proof. Let us briefly indicate where to look in [KM85]. There is a no-
tion of “relatively representable” which we have not defined here, see
(4.2). Roughly this means that the functor is representable modulo
the problem with automorphisms of elliptic curves. It is shown (Thm.
5.1.1) that the moduli problems [Γ1(N)] and [Γ(N)] are relatively rep-
resentable and finite (hence affine) no matter what the value of N . Fur-
thermore, it is shown (4.7) that relatively representable plus rigid plus
affine means representable. It is also shown that (4.3.4) if P and P ′ are
moduli problems, with P representable and P ′ relatively representable,
then the simultaneous problem P ×P ′ is representable. Applying this
to P = [Γ1(N)] and P ′ = [Γ(pn)] shows that [Γ1(N) ∩ Γ(pn)] is repre-
sentable. The regularity claim follows the same strategy as in the proof
of Thm. 5.1.1. The claim about (Yn)Qp follows from Cor. 4.7.2, which
says that modular curves become smooth as soon as you invert every
prime dividing the level. �

The scheme Yn admits automorphisms by the finite group GL2(Z/pnZ),
since it acts on the moduli problem [Γ(pn)]: an element a ∈ GL2(Z/pnZ)
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acts on a pair (E/S, φ) as (E/S, φ ◦ a). (Please note the difference be-
tween automorphisms of elliptic curves, which get in the way of repre-
sentability, and automorphisms of the moduli problem, which certainly
do not.)

2.5. Geometrically connected components. Suppose an S-point
of Yn = Y (Γ1(N) ∩ Γ(pn)) represents an elliptic curve E/S, a point
P ∈ E[N ](S), and a Γ(pn)-structure φ : (Z/pnZ)2 → E[pn](S). We
have the Weil pairing

epn : E[pn]× E[pn]→ µpn ,

and so our S-point gives us an element

ζ = epn(φ(1, 0), φ(0, 1)) ∈ µpn(S).

We have therefore defined a morphism of schemes e : Yn → µpn (recall
that µpn was the group scheme defined in Example 2.2.1)). This indi-
cates that Yn is not geometrically connected; once we extend scalars to
the field K = Qp(µpn), Yn will break up into a disjoint union of fibers
of e over the pnth roots of unity in µpn(K).

We’d rather work with geometrically connected schemes, so we’ll do
the following. Let ζ = ζpn be a primitive pnth root of unity in OK ,
and let Y ζ

n be the preimage of ζ under the map (Yn)OK → (µpn)OK .
Thus as a moduli problem, an S-point of Y ζ

n (where S is a scheme over
OL = Zp[µpn ] corresponds to an elliptic curve E/S, a Γ1(N)-structure
on E/S, and a Γpn-structure φ on E/S for which epn(φ(1, 0), φ(0, 1)) =
ζ.

It might be a good time to mention that if Γ = Γ1(N) ∩ Γ(pn) (as a
subgroup of SL2(Z), then Γ\H isn’t actually Yn(C), because the former
is connected and the latter is disconnected. In fact Γ\H is Y ζ

n (C), where
ζ = e2πi/pn (exercise!).

2.6. The special fiber of Y ζ
n . This section summarizes Chapter 13

of [KM85] concern the reductions modulo p of various modular curves,
applied to the case of our curve Y ζ

n .
There is a unique ring homomorphism Zp[ζpn ]→ Fp, given by ζpn 7→

1. Let us consider the special fiber of Y ζ
n , which is the base change of

Y ζ
n through Zp[ζpn ] → Fp. For an Fp-scheme S, a point of (Y ζ

n )Fp over
S is an elliptic curve E/S together with a point P ∈ E[N ](S) of order
N and a level structure

φ : (Z/pnZ)2 → E[pn](S),

such that epn(φ(1, 0), φ(0, 1)) = 1. But since we are now in characterstic
p, φ cannot be injective. It turns out that kerφ must contain a line
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` ⊂ (Z/pnZ)2, by which I mean a free Z/pnZ-submodule. This suggests
that we can break up (Y ζ

n )Fp according to which line (or lines!) are
contained in kerφ. The set of such lines ` is denoted P1(Z/pnZ).

For each line ` ∈ P1(Z/pnZ) we can define a moduli problem Y` (in
characteristic p) which associates to S the set of triples (E/S, P, φ) as
above which satisfy ` ⊂ kerφ. It turns out that this moduli problem is
representable by a smooth affine curve over Fp which does not depend
on the choice of `. This curve is called an Igusa curve and will be
denoted Ig(pn, N). (Actually, what we get here is something called an
exotic Igusa curve, but the distinction will not concern us.) In brief,
Ig(pn, N) classifies elliptic curves E in characteristic P together with a
point of order N and a generator (in the sense of Cartier divisors) for
the kernel of the Vershiebung map V : Epn → E.

When E/S is ordinary, kerφ is exactly a line `, so that the point
represented by (E/S, P, φ) lies on Y` and no other Y`′ . However, if
E/S is supersingular, then φ is necessarily the zero map. Therefore
(E/S, P, φ) lies on all the Y`! The following theorem summarizes the
situation.

Theorem 2.6.1 (adaptation of Thm. 13.7.6 of [KM85]). The reduc-
tion mod p of Y ζ

n is a union of pn−1(p + 1) smooth irreducible closed
subvarieties Y`, one for each line ` ∈ P1(Z/pnZ). Each Y` is isomor-
phic to the Igusa curve Ig(pn, N). The Y` all meet simultaneously at
the supersingular points of Y ζ

n (Fp).

This theorem tells us quite a bit about the geometry of Y ζ
n . The

Igusa curves are fairly well-understood: their genera, and indeed their
zeta functions, are amenable to computation. But then the neighbor-
hoods of Y ζ

n surrounding the singular points (which in this case are the
supersingular points) are still rather mysterious. To study them, the
standard thing to do is to choose a point x ∈ Y ζ

n (Fp) and form the

completed local ring ÔY ζn ,x. Since Y ζ
n was regular of dimension 2 to be-

gin with, and regularity is preserved under localization and completion,
ÔY ζn ,x is a 2-dimensional regular local ring. But it is quite difficult to

give a presentation of ÔY ζn ,x directly. For this we shall need some un-
derstanding of p-divisible groups, especially those arising from elliptic
curves over p-adic rings. That is the topic of the next section.

3. p-divisible groups

It is possible to write endlessly on elliptic curves. (This
is not a threat.)

–Serge Lang
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I don’t mean to threaten you, dear reader, but it is possible to
write endlessly on p-divisible groups as well. Many of the inter-
esting features of elliptic curves (and abelian varieties) have analogues
in the p-divisible world. Some examples:

Elliptic curve phenomenon p-divisible analogue
Elliptic curve E p-divisible group G, height 2
Tate module Tp(E) Tate module T (G)
CM by K/Q quadratic CM by K/Qp quadratic
E supersingular G connected
Modular curves Rapoport-Zink spaces
Modular forms admissible reps. of GL2(Qp)

Abelian varieties are schemes with the structure of a Z-module (abelian
group), whereas p-divisible groups are schemes (actually ind-schemes)
with the structure of a Zp-module. As we study the geometry of mod-
ular curves in a neighborhood of a point modulo p, p-divisible groups
will start to move to the center of the discussion.

3.1. Some motivation. Let E be an elliptic curve over a field K, and
let ` be a prime unequal to the characteristic of K. Anyone who studies
the arithmetic of elliptic curves eventually encounters the Tate module

T`(E) = lim←−E[`n](K).

This is a free Z`-module of rank 2, and it comes equipped with an
action of Galois:

ρ` : Gal(K/K)→ AutT`(E) ≈ GL2(Z`).
If K happens to be a local field (such as Qp) of residue characteristic
p 6= `, then ρ` seems to “know” quite a bit about E. For instance, ρ` is
unramified if and only if E has good reduction, and the other types of
reduction of E are detected by ρ` as well. In the case of good reduction,
ρ` factors through a representation of the Galois group of the residue
field k of K, and it determines the zeta function of the reduction of E.
Futhermore, ρ` determines the isogeny class of the reduction of E (by
the Tate conjecture over finite fields).

But let’s say we don’t want two primes floating around. That is, we
want to attach an object to E which is p-adic rather than `-adic. Over
a p-adic field, the Tate module Tp(E) is going to be very ramified re-
gardless of the reduction type of E (although it is still quite interesting
nonetheless). Over a finite field of characteristic p, Tp(E) is going to
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be quite inadequate, because it might be 0 if E is supersingular. So
instead, we use a stand-in for the p-adic Tate module: the sequence of
finite group schemes E[p], E[p2], etc. This sequence is the p-divisible
group attached to E.

3.2. Definitions. We start with the definition of a p-divisible group
over a ring.

Definition 3.2.1. Let p a prime and h an integer, and let R be a
ring. A p-divisible group G over R (also called Barsotti-Tate group)
of height h is a directed system

G = lim−→Gn = (G1 → G2 → . . . )

of commutative finite flat group schemes Gn over R, such that Gn is
a p-torsion group which is locally free of rank pnh and such that the
inclusion Gn → Gn+1 induces an isomorphism of Gn onto Gn+1[pn].

The most basic example of a p-divisible group is Qp/Zp = lim−→
1
pn
Z/Z,

which has height 1 over whatever base. If A is an abelian scheme of
constant dimension g over R, then A[p∞] = lim−→A[pn] is a p-divisible
group of height 2g.

We say G is étale if each Gn is étale. This means that after passing to
some finite étale extension of R, Gn becomes constant, but it may well
be that no finite étale extension suffices to make all the Gn constant.
In contrast, G is connected if each Gn is.

One can also define the dimension of G, at least in the case that R is
a complete local noetherian ring whose residue field has characteristic
p. In that case, we let G◦n be the connected component of Gn containing
the origin; then G◦n is a locally free group scheme, and G◦ = lim−→G◦n
is a p-divisible group. It turns out that G◦ arises from the p-power
torsion in a formal group G , and we set dimG = dim G . This will be
discussed in detail in §4.3. For now we just mention that dimG ≤ h,
and dimG = dimG◦.

If G is a p-divisible group over a ring A and R is an A-algebra, we
let G(R) = lim−→Gn(R). In this way G is a functor from the category of
A-algebras to the category of torsion Zp-modules. (It is not the case
that G(R) has to be p-divisible as an abstract abelian group.)

Example 3.2.2. Let µp∞ = lim−→µpn over a ring A. This is a p-divisible
group of height 1. For any ring R, µp∞(R) is the group of roots of unity
of p-power order in R. If p is invertible in R, then µp∞ is étale. But if
R = Fp, then µp∞ is connected.
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3.3. p-divisible groups over a perfect field of characteristic p.
Over a perfect field k of characteristic p, the category of p-divisible
groups is very well understood in terms of semilinear algebra objects
known as Dieudonné modules. Somewhat surprisingly, these objects
live in characteristic 0. Let W (k) be the ring of Witt vectors of k. If
you aren’t terribly familiar with these, it’s best to keep these examples
in mind: W (Fp) = Zp, while W (Fp) is the ring of integers in the
completion of the maximal unramified extension of Qp. In any case,
W (k) is always a complete discrete valuation ring with W (k)/pW (k) =
k. The association k 7→ W (k) is functorial in k. In particular, the
pth power Frobenius automorphism k → k induces an automorphism
σ : W (k)→ W (k).

Definition 3.3.1. The category of finite free Dieudonné modules over
W (k) has objects which are free W (k)-modules M of finite rank equipped
with a σ-linear endomorphism F and a σ−1-linear endomorphism V
satisfying FV = p in EndM . (Here σ-linear means that F (ax) =
σ(a)F (x) for a ∈ W (k), x ∈ M .) Morphisms between objects are
W (k)-linear maps preserving F and V . If M is such a Dieudonné
module, its dual is M∨ = HomW (k)(M,W (k)); the action of F is by
(F`)(v) = σ(`(V v)), where v ∈M , ` ∈M∨.

Theorem 3.3.2 (Dieudonné). Let k be a perfect field of characteristic
p.

(1) G 7→M(G) is an exact anti-equivalence between the category of
p-divisible groups over k and the category of finite free Dieudonné
modules.

(2) If G has height h, then M(G) is free of rank h.
(3) The dimension of G equals the dimension of M(G)/FM(G) as

a k-vector space.
(4) G is connected if and only if F is topologically nilpotent on

M(G) (equivalently, that F nM(G) ⊂ pM(G) for n large enough).
G is étale if and only if F is bijective.

(5) G 7→M(G) commutes with base change in k.

The following examples are important to keep in mind: For the con-
stant p-divisible group Qp/Zp over Fp, we have M(Qp/Zp) = Zp with
F = 1 and V = p. For the multiplicative p-divisible group µp∞ , we
have M(µp∞) = Zp with F = p and V = 1. These two modules are
dual to one another; this manifests the fact that Qp/Zp and µp∞ are
Cartier dual to one another.
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Exercise 3.3.3. Let k be an algebraically closed field of characteristic
p. For each h ≥ 1, show there is a unique connected 1-dimensional
p-divisible group G over k of height h.

Example 3.3.4. Let E/k be an elliptic curve over a perfect field k
of characteristic p, and let E[p∞] be the associated p-divisible group.
Then E[p∞] has height 2 and dimension 1. E[p∞] is connected if and
only if E is supersingular. Let us further assume that k is algerbaically
clsoed. If E is supersingular, then E[p∞] is the unique connected
1-dimensional p-divisible group of height 2. Its Diedonné module is
W (k)e1 ⊕W (k)e2, where Fe1 = e2 and Fe2 = pe1. On the other hand
if E is ordinary, then one can use Dieudonné modules to show that

E[p∞] = Qp/Zp ⊕ µp∞ .

3.4. The Serre-Tate theorem. Let N ≥ 5, so that the moduli prob-
lem [Γ1(N)] is representable by a scheme Y1(N) which is smooth over
SpecZ[1/N ]. Let the point x ∈ Y1(N)(Fp) correspond to the pair

(E0/Fp, P0). We will be considering the moduli problem of deforma-

tions of (E0, P0) to W -algebras, where W = W (Fp). The Serre-Tate
theorem says that deforming E0 is tantamount to deforming the p-
divisible group E[p∞].

Theorem 3.4.1 (see Thm. 2.9.1 in [KM85]). Let R be a ring, I an
ideal of R, p a prime number. Assume that the ideal (I, p) is nilpotent.
Let R0 = R/I. Let EllR denote the category of elliptic curves over R.
Let AR denote the category of triples (E0/R0, G, ι), where E0/R0 is an
elliptic curve, G/R is a p-divisible group, and

ι : E0[p∞]−̃→G⊗R R0

is an isomorphism of p-divisible groups over R0. A morphism between
objects (E0/R0, G, ι) and (E ′0/R0, G

′, ι′) in AR are pairs (f0, f), where
f0 : E0 → E ′0 is a morphism of elliptic curves over R0, and f : G →
G′ is a morphism of p-divisible groups over R such that the obvious
diagrams commute.

The functor EllR → AR which sends E/R to (E⊗RR0, E[p∞], identity)
is an equivalence of categories.

The Serre-Tate theorem allows us to give a moduli interpretation
for the completed local ring ÔY1(N),x: it is the deformation ring of the
p-divisible group E0[p∞].

Proposition 3.4.2. Let x correspond to the pair (E0, P ) over Fp. Let
C be the category of complete local noetherian W -algebras whose residue
field is Fp. Let F : C → Sets be the functor which assigns to R the set of
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isomorphism classes of pairs (G, ι), where G is a p-divisible group over
R and ι : E0[p∞] → G ⊗R Fp is an isomorphism of p-divisible groups

over Fp. Then F is representable by the completed local ring ÔY1(N),x.

Remark 3.4.3. This interpretation of ÔY1(N),x shows that it does not
depend on the N -torsion point P , nor does it even depend on the value
of N ! Really, then, the function of the auxiliary integer N ≥ 5 is
to ensure that the moduli problem [Γ1(N)] is representable. With a
careful study of stacks, it would be possible to remove N from the
discussion.

Remark 3.4.4. Since Y1(N) is smooth over W , its completed local
rings at points modulo p are not very complicated:

ÔY1(N),x ≈ W JtK.

Thus by Prop. 3.4.2, the deformation ring of p-divisible group E0[p∞]
is a formal power series ring in one variable over W . We will recover
this result independently; see Thm. 4.6.1

Proof. Let R be an object of C, with maximal ideal M . Let us first
assume that M is nilpotent. For every pair (G, ι) in F(R), we have that
the triple (E0, G, ι) is an object in the category AR of Thm. 3.4.1. By
that theorem, there exists an elliptic curve E/R such that ι : E0[p∞]→
G⊗R Fp extends to an isomorphism E[p∞]→ G.

Because E[N ] is étale over R, the point P0 ∈ E[N ](Fp) lifts uniquely
to a point P ∈ E[N ](R) (this is essentially Hensel’s lemma). We get a
pair (E,P ) over R, where E is a lift of E0 to R. This data corresponds
to a morphism SpecR→ Y1(N) for which the diagram

SpecR // Y1(N)

SpecFp //

OO

{x}

OO

commutes. The morphism SpecR → Y1(N) localizes to a homomor-
phism of local W -algebras OY1(N),x → R (note that OSpecR,M = R
because R is already local). Thus as long as M is nilpotent, pairs
(G, ι) over R give rise to homomorphisms OY1(N),x → R. It is not hard
to go in the other direction: If a homomorphism OY1(N),x → R is given,
let E/R be the push-forward of the universal elliptic curve, and use it
to form the pair (E[p∞], identity).

For general objects R of C, we have R = lim←−R/M
n. A pair (G, ι)

over R corresponds to compatible family of such pairs over the R/Mn,
which by the previous paragraph corresponds to a compatible family
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of homomorphism of local W -algebras OY1(N),x → R/Mn, which corre-

sponds to a homomorphism ÔY1(N),x → R in C. �

What if we introduce p-power level structures into the picture? Let
Yn be the scheme which represents the moduli problem [Γ1(N)∩Γ(pn)],
and let x ∈ Yn(Fp) be a supersingular point. Consider the completed

local ring ÔYn,x. If x is an ordinary point, then Yn is nonsingular at

x, and once again we have ÔYn,x = W JtK. But if x is supersingular,
then Yn is singular at x (possibly very badly so). Nonetheless we can

give a moduli interpretation for the completed local ring ÔYn,x as the
deformation of the connected p-divisible group E[p∞] together with
some sort of level structure. To make precise what such a level structure
could mean, and to form the correct generalization of Prop. 3.4.2, we
need to take a rather serious detour into the world of formal groups.

4. Formal groups and their deformation spaces

4.1. Definitions. A one-dimensional commutative formal group law3

G over a commutative ring A is a power series G (X, Y ) ∈ AJX, Y K
satisfying the properties

• G (X, Y ) = X + Y + higher order terms
• G (X, Y ) = G (Y,X)
• G (G (X, Y ), Z) = G (X,G (Y, Z))
• There exists i(X) ∈ AJXK with G (X, ι(X)) = 0

That is, G behaves like the addition law on an abelian group. (The
existence of the inverse actually follows from the other axioms. Also,
there is a notion of formal group laws of dimension n; for these, the G is
n power series in two sets of n variables.) To stress the analogy we write

X+G Y for G (X, Y ). The additive formal group law Ĝa is simply X+Y ,

while the multiplicative formal group law Ĝm is X + Y + XY . (This
expression is (1+X)(1+Y )−1, and therefore represents multiplication
for a parameter centered around 0 rather than 1.) Other formal group
laws are much harder to make explicit. There is an evident notion
of homomorphism f : G → G ′ between formal groups; this is a power
series without constant term satisfying f(X +G Y ) = f(X) +G ′ f(Y ).
Then End G is a (not necessarily commutative) ring. For n ∈ Z we
write [n]G (X) for the n-fold addition of X with itself.

We can generalize slightly from formal groups to formal modules. Let
O be a commutative ring, and let A be anO-algebra with structure map
ι : O → A, not presumed injective. A formal O-module law over A is a

3Also called: one-parameter formal Lie group. All the formal groups we consider
will be commutative, so we will be dropping the “commutative” from now on.
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formal group law G over A together with a family of endomorphisms
[a]G ∈ End G for a ∈ O which together represent a homomorphism
O → End G . It is required that [a]G (X) = ι(a)X +O(X2); that is, the
derivative of the action of O on G is just ι.

Example 4.1.1. For example, Ĝa is a formal A-module over any A.
Less trivially, the multiplicative formal group Ĝm becomes a formal
Zp-module over Zp, because for a ∈ Zp we have the endomorphism

[a]Ĝm
(X) = (1 +X)a − 1 =

∞∑
n=1

(
a
n

)
Xn ∈ ZpJXK.

(Here

(
a
n

)
is defined as a(a − 1) · · · (a − (n − 1))/n!; this always lies

in Zp.) Multiplication by p is the polynomial [p]Ĝm
(X) = (1 +X)p− 1,

which has the property that [p]Ĝm
(X) ≡ Xp (mod p).

Example 4.1.2. Let E be an elliptic curve over A. The formal com-
pletion Ê of E at its origin carries the structure of a formal group over
A. In fact, given a Weierstrass equation for E, one can give an algo-
rithm for determining the addition law in Ê. This process is described
in Chapter IV of Silverman’s book on elliptic curves, [Sil09].

4.2. Lubin-Tate formal modules and local class field theory. In
[LT65], Lubin and Tate give the first spectacular application of formal
groups and formal modules – they use them to give a proof of (the hard
part of) local class field theory. Along the way, they give an algorithmic
means of constructing nontrivial formal groups. We won’t really need
Lubin-Tate theory to get across the main point of these lectures, but
they do provide the simplest nontrivial examples of formal groups and
formal O-modules.

Let K be a nonarchimedean local field, so that K is either a finite
extension of Qp or else it is isomorphic to Fq((π)). Let q = pf be the
cardinality of the residue field of OK . Lubin and Tate [LT65] construct
formal OK-modules over OK by starting with a choice of [π]G and
constructing G in the only consistent way possible. Let f(X) ∈ OKJXK
be any power series satisfying the properties

• f(X) = πX +O(X2)

• f(X) ≡ Xq (mod π).

The following theorem isn’t terribly hard, and is in fact a straight-
forward application of induction:



AWS LECTURE NOTES: MODULAR CURVES AT INFINITE LEVEL 17

Theorem 4.2.1. There exists a unique formal OK-module law Gf over
OK for which [π]Gf (X) = f(X). Furthermore, if g is another power
series satisfying the two criteria above, then Gf and Gg are isomorphic.

In particular, up to isomorphism is there is exactly one formal OK-
module law for which multiplication by π reduces to Xq over the residue
field.

Example 4.2.2. The easiest example is when K = Qp, and f(X) =
(1 + X)p − 1. Then Gf is nothing but the formal multiplicative group

Ĝm. An example in positive characteristic is given in Project A.

The formalOK-module Gf provided by the theorem is the Lubin-Tate
formal module. It doesn’t depend on f , so let us call it G (however note
that it does depend on the choice of uniformizer π). For each n ≥ 1,
let Kn denote the field obtained by adjoining the roots of the power
series [π]nG (T ). (By Weierstrass preparation for OKJT K, [π]nG (T ) equals
a unit power series times a monic polynomial of degree qn. So Kn is the
splitting field of this polynomial.) Lubin and Tate prove that Kn/K is
totally ramified and Galois with group (OK/πn)×, which operates on
Kn by means of the OK/πn-module structure of G [πn]. Furthermore,
there is a connection to local class field theory. Let K∞ =

⋃
nKn,

and let Knr be the maximal unramified extension of K. Then Knr and
K∞ are linearly disjoint, and Kab = KnrK∞ is the maximal abelian
extension of K.

To summarize, torsion in a Lubin-Tate formal module gives an ex-
plicit construction of abelian extensions of K. This is the local analogue
of an elliptic curve with complex multiplication by a quadratic imagi-
nary field K, in which the torsion also produces abelian extensions of
K.

4.3. p-divisible formal groups. Let F be a formal group (of what-
ever dimension) over a ring A. Let A = AJX1, . . . , XdK be the coordi-
nate ring of F . Multiplication by p in F corresponds to a homomor-
phism ψ : A → A. Similarly, there are homomorphisms ψn : A → A
corresponding to multiplication by pn for n = 1, 2, . . . .

Definition 4.3.1. The formal group F is p-divisible if ψ makes A
into a locally free module over itself.

Example 4.3.2. The formal multiplicative group Ĝm is p-divisible
(exercise!). On the other hand, if p is not a unit in A, then the formal

additive group Ĝa is not p-divisible.
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If F is p-divisible, then let F [pn] denote the kernel of multiplication
by pn in F . That is,

F [pn] = Spec
AJX1, . . . , XdK

(ψn(X1), . . . , ψn(Xd))

together with the group operations induced from F . It can be shown
that F [pn] is a locally free groups scheme over A. Passing to the
injective limit, we get a p-divisible group F [p∞] = lim−→F [pm].

Example 4.3.3. The p-divisible group associated to Ĝm is µp∞ .

Theorem 4.3.4 (Thm. 1 of [Tat67]). Let A be a complete noetherian
local ring of residue characteristic p. Then F 7→ F [p∞] is an equiva-
lence between the category of p-divisible formal groups over A and the
category of connected p-divisible groups over A.

Over a ring A satisfying the hypotheses of Thm. 4.3.4, we may now
define the dimension of a p-divisible group G as follows: let G◦ be its
connected component, and let F be the formal group with F [p∞] =
G◦. Then dimG = dim F .

The hard part of Thm. 4.3.4 is the essential surjectivity of F 7→
F [p∞]. If G is a connected p-divisible group, let An be the coordinate
ring of G[pn]. The gist of the proof is that An is a Hopf algebra of the
form

A[X1, . . . , Xd]/In

for some ideal In. Taking the inverse limit as n ≥ ∞ produces an
“unobstructed” power series ring AJX1, . . . , XdK, which then inherits
the structure of a topological Hopf algebra, which amounts to saying
that we have a formal group (of dimension d).

We remark that the dimension of a p-divisible group G is a rather
mysterious invariant–it certainly isn’t as transparent as the height. One
convenient fact is that if A is an abelian variety, then A[p∞] is a p-
divisible group of the same dimension as A. Also, if G is a p-divisible
group over a perfect field, with Dieudonné module M(G), then we have
the formula

dimG = M(G)/FM(G).

In particular

dimQp/Zp = 0

dimµp∞ = 1
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4.4. Invariant differential forms, logarithms, and p-typical for-
mal groups. Let G be a 1-dimensional formal group law over a com-
mutative ring A. The space of differential forms on G is the A-module
Ω1

G /A of formal differentials P (T )dT , where P (T ) ∈ AJT K.
Let Σ: AJT K → AJX, Y K be the unique homomorphism of topolog-

ical A-algebras which sends T to X +G Y . Also let pr1, pr2 : AJT K →
AJX, Y K be the maps which send T to X and Y , respectively. The
maps Σ, pr1, and pr2 all induce A-linear maps Ω1

G → Ω1
G×G .

Definition 4.4.1. A differential form ω ∈ Ω1
G /A is translation invariant

if Σ(ω) = pr1(ω)+pr2(ω). Invariant differentials form an A-submodule
of Ω1

G /A.

Lemma 4.4.2. The module of invariant differentials is a free A-module
of rank 1, spanned by

ω =

[
∂

∂X
G (X, Y )|(X,Y )=(0,T )

]−1

dT

Proof. See [Sil09], Prop. 4.2. We remark that there is a version of this
lemma for higher-dimensional formal groups as well. �

Examples 4.4.3. For the additive formal group this works out to ω =
dT . For the multiplicative formal group, this is ω = dT/(1 + T ).

If A is flat over Z, so that A injects into A ⊗ Q, we can construct
the formal logarithm of G by

logG (T ) =

∫
ω ∈ (A⊗Q)JT K,

where we choose the antiderivative in such a way that logG (0) = 0. For
instance, logĜm

(T ) =
∫

(1+T )−1dT ∈ QJT K is the series that represents
log(1 + T ).

The logarithm logG is an isomorphism between GA⊗Q and Ĝa. Thus
whenever A is a Q-algebra, all one-dimensional commutative formal
groups over A are isomorphic to the additive formal group.

Let expG (T ) ∈ (A⊗Q)JT K be the power series which inverts logG (T ),
so that logG expG (T ) = T . We have

(4.4.1) X +G Y = expG (logG (X) + logG (Y ))

as an identity of power series in (A⊗Q)JX, Y K. This shows that logG (T )
actually determines G .

This suggests constructing (and classifying) formal groups by the
form of their logarithms. Of course, not every power series in (A ⊗
Q)JT K is the logarithm of a formal group. But there is a special class
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of formal groups (in fact they are formal Zp-modules) whose logarithms
can be made explicit (or at least can be defined through a simple re-
cursion). These are known as the p-typical formal groups; the theory
is due to Hazewinkel, [Haz78].

Let A = Zp[v] be the polynomial ring in an infinite number of
variables v1, v2, . . . over Zp. Let f(T ) be the unique power series in
(A⊗Qp)JT K which satisfies

f(T ) = T +
∞∑
k=1

vi
p
fp

i

(T p
i

)

where fp
j

is the power series obtained from f(T ) by replacing each vi
with vp

j

i . The expansion of f(T ) is

f(T ) =
∞∑
i=0

biT
pi = T +

v1

p
T p +

(
v2

p
+
vp+1

1

p2

)
T p

2

+ . . . .

The coefficients bi are determined recursively by the rules

b0 = 1

pbi = b0vi + b1v
p
i−1 + b2v

p2

i−2 + · · ·+ bi−1v
pi−1

1 .

Theorem 4.4.4 ([Haz78], 21.5). (1) There exists a unique formal
Zp-module G p-univ over Zp[v] for which logG p-univ(T ) = f(T ).

(2) Let G be a formal Zp-module over some Zp-algebra R. Then
there exists a homomorphism Zp[v] → R such that G is iso-
morphic to G p-univ ⊗Zp[v] R.

Any formal Zp-module over a ring R which arises from G p-univ via
base change is called p-typical. For its part, G p-univ is the universal p-
typical formal Zp-module. If R is Zp-flat, then G being p-typical means
exactly that its logarithm takes the form

logG (T ) = T +
∞∑
i=1

aiT
pi , ai ∈ R⊗Qp.

The second part of the theorem states that every formal Zp-module is
isomorphic to a p-typical one.

Example 4.4.5. Let h ≥ 1, and let G = F⊗Zp[v]Zp, where Zp[v]→ Zp
is the homomorphism

vi 7→

{
1, i = h

0, i 6= h
.
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Then G is the unique formal Zp-module over Zp with logarithm

logG (T ) = T +
T p

h

p
+
T p

2h

p2
+ . . . .

Note that if K/Qp is the unramified extension of degree h, so that

K is the splitting field for Xph − X, then G ⊗ OK becomes a formal
OK-module in such a way that [α]G (T ) = αT whenever α is a root of

Xph −X. In fact, G is a Lubin-Tate formal OK-module (exercise!).

4.5. Formal groups: functorial definition. Recall our “schizophrenic”
approach to group schemes: If G/S is a group scheme, then G can be
viewed in two ways at once:

(1) G is a group object in the category of S-schemes.
(2) G is a representable functor from the category of S-schemes to

the category of groups.

We will need to take a similar approach to formal groups. This will
require viewing formal groups as geometric objects. Unsurprisingly,
formal groups are group objects in the category of formal schemes. Let
us give a brief review of formal schemes.

Definition 4.5.1. A topological ring R is adic if there exists an ideal
I ⊂ R such that R is separated and complete for the I-adic topology.
This means that {In}n≥1 is a system of open neighborhoods of 0 in R,
and that we have an isomorphism of rings R ∼= lim←−R/I

n. Such an I
is an ideal of definition for R. If R is an adic ring, an adic R-algebra
S is an adic ring together with a continuous homomorphism R → S.
Let AdicR denote the category of adic R-algebras (with continuous R-
homomorphisms as morphisms).

Examples include:

• Any ring A, when given the discrete topology, becomes an adic
ring with ideal of definition 0 (or any nilpotent ideal).
• Zp is an adic ring with ideal of definition pZp, but pnZp is also

an ideal of definition for any n ≥ 1.
• For any adic ring A with ideal of definition I, the power series

ring AJX1, . . . , XnK is an adic A-algebra. An ideal of definition
is given by (I,X1, . . . , Xn). Please note that there are many
other possible ideals of definition (for instance (Ia0 , Xa1

1 , . . . , X
an
n )

for any positive integers a0, a1, . . . , an). The set of ideals of def-
inition is not necessarily the set of powers of a particular ideal.
(Nor does an adic ring have to be a local ring.)
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If A is an adic ring, the formal spectrum of A is the set Spf A of open
prime ideals of A. If I is an ideal of definition, then Spf A may be iden-
tified with SpecA/I (exercise!). Spf A is endowed with the structure
of a topologically ringed space in a straightforward way. Topologically
ringed spaces isomorphic to some Spf A are affine formal schemes, and
formal schemes are topologically ringed spaces which are locally iso-
morphic to affine formal schemes. This is perhaps a hasty introduction
to formal schemes, but all we really need for the moment is that the cat-
egory of affine formal schemes is opposite to the category of adic rings.
Similarly, if A is an adic ring, the category of affine formal schemes
over Spf A is opposite to the category of adic A-algebras.

For an adic A-algebra R, let Nil(R) be the set of elements of R which
are topologically nilpotent. If J is an ideal of definition of R, then the
set of topologically nilpotent elements is the radical

√
J of J . The

map R 7→ Nil(R) is a functor AdicA → Sets, which is representable
(exercise!) by AJT K.

Now let A be an adic ring, and let G be a formal group over A,
which we take to be 1-dimensional (keeping in mind that everything
that follows generalizes to arbitrary dimension). Let A = AJT K. The
addition law on G turns A into a topological Hopf A-algebra: there is
a continuous homomorphism of topological A-algebras A → A⊗̂A ∼=
AJX, Y K which sends T to X +G Y . Let G also denote the formal
scheme SpfA. Then G is a group object in the category of affine
formal schemes: we have an addition law G × G → G which satisfies
the appropriate axioms.

It is also important to be able to view G as a functor. If R is an adic
A-algebra, then let G (R) be (as one would expect) the set of morphisms
Spf R → Spf G over Spf A. This is the same as the set of continuous
A-linear homomorphisms A → R, and therefore it gets identified with
Nil(R). The group operation on G turns Nil(R) into an abelian group.
Indeed, if f, g ∈ Nil(R) then the sum f +G g converges in R (since R
is complete), and this is precisely the group operation we mean.

Thus G is a functor from AdicA to the category Ab of abelian groups.
It just so happens that the composition AdicA → Ab → Sets (where
the second arrow is the forgetful functor) is isomorphic to Nil

In summary, there are (at least) three ways of looking at a 1-dimensional
formal group G over an adic ring A:

• G is a power series in two variables over A which mimics the
behavior of an abelian group.
• G is a group object in the category of affine formal schemes over

Spf A, which is isomorphic to Spf AJT K,
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• G is a functor AdicA → Ab, such that the composition AdicA →
Ab→ Sets is isomorphic to Nil.

I feel obliged to mention that the latter two definitions can be made
slightly more general by adding the phrase “locally on Spf A”.

If G is p-divisible, then the functor G : AdicA → Ab can be recovered
from the p-divisible group G = G [p∞] as follows. Whenever R is an
adic A-algebra with ideal of definition J containing p, we have

G (R) = lim←−
n

lim−→
m

Gm(R/Jn).

To get your head around this, it might be good to work through the
example of G = Ĝm and G = µp∞ .

4.6. Deformation rings for formal groups. Let x be a supersin-
gular point of the modular curve Y1(N)(Fp) corresponding to the pair

(E0, P ). By Prop. 3.4.2, the completed local ring ÔY1(N),x may be in-
terpreted as a deformation ring for the p-divisible group G = E0[p∞].
This fact motivates the study of deformation problems for p-divisible
groups in general, which turns out to be a very exciting and active
subject.

In the case at hand, the p-divisible group is connected (because
E0 is supersingular); recall from 4.3.4 that the category of connected
p-divisible groups is isomorphic to the category of p-divisible formal
groups. Thus to deform G is to deform the formal group Ê0. Lubin
and Tate [LT66] showed that if G0 is a one-dimensional formal group

over Fp (such as Ê0), then the deformation ring of G0 is a formal power

series ring over W = W (Fp) in h − 1 variables, where h is the height
of G0. This theorem is reviewed below. Geometrically speaking, the
deformation space of G is an open ball M of dimension h− 1.

Fix an integer h ≥ 1. Let G0/Fp be a 1-dimensional p-divisible formal
group of height h. (In fact G0 is unique up to isomorphism, by Exercise
3.3.3.) Let W = W (Fp). Let C be the category of complete local

noetherian W -algebras with residue field Fp. Let M0 be the functor
C → Sets which assigns to A the set of isomorphism classes of pairs
(G , ι), where G is a one-dimensional formal group over A and ι : G0 →
G ⊗A Fp is an isomorphism.

The role of ι in this deformation problem is quite important. If
instead we had defined M0 to parametrize isomorphism classes of 1-
dimensional formal groups G whose reduction has height h, then M0

would act very stacky, because such G have many automorphisms (by
Z×p at least). The isomorphism ι rigidifies the situation, because any
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automorphism of G which reduces to the identity on G ⊗ Fp must be
the identity.

Theorem 4.6.1 ([LT66]). M0 is representable by an W -algebra A0

which is (non-canonically) isomorphic to a power series ring in h − 1
variables:

A ≈ W Ju1, . . . , uh−1K.

Remark 4.6.2. The theorem can be generalized to the case of formal
OK-modules, where K is any nonarchimdean local field.

Remark 4.6.3. When h = 1 the theorem is interpreted to mean that
M0 is a single point in characteristic 0. That is, there is a unique lift
of G0 (none other than the Lubin-Tate formal module).

The theorem implies that there is a universal formal group G univ

over W Ju1, . . . , uh−1K, together with an isomorphism ιuniv from G0 onto
G univ ⊗ k. Since A0 is a Zp-algebra, G univ naturally becomes a formal
Zp-module. We have seen that every formal group is isomorphic to a
p-typical formal group, and so (up to a change of variable) G univ must
arise via base change from the universal p-typical formal group G p-univ

from §4.4.4 through a ring homomorphism Zp[v] → W Ju1, . . . , uh−1K.
This homomorphism is defined by

v1 7→ u1

v2 7→ u2

...

vh−1 7→ uh−1

vh 7→ 1

vh+1 7→ 0

vh+2 7→ 0
...

(see [GH94], (12.3).)
By the formulas given in §4.4, we can compute (at least recursively)

the formal logarithm of G univ, which then allows us to compute the
addition law in G univ via Eq. (4.4.1). But the result would be quite
complicated, even in the case h = 2, and I don’t recommend carrying
it out!

4.7. Drinfeld level structures on formal groups, and Drinfeld’s
deformation rings. Suppose A is an adic Zp-algebra, and let G be
a p-divisible formal group of height h over A. Drinfeld introduced the
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following notion in [Dri74], which was then adapted by Katz-Mazur in
the context of elliptic curves.

Definition 4.7.1. Let R be an adic A-algebra. A Drinfeld level pn

structure on G (R) is a homomorphism

φ : (Z/pnZ)⊕h → G (R)

for which the relation

[p]G (T )

∣∣∣∣ ∏
x∈(pn−1Z/pnZ)⊕h

(T − φ(x))

holds in RJT K. If φ is a Drinfeld level pn structure, the images under
φ of the standard basis vectors in (Z/pnZ)⊕h form a Drinfeld basis of
G [pn](R).

Let Mn be the functor C → Sets which assigns to R the set of triples
(G , ι, φ), where (G , ι) ∈ M0(R) and φ is a Drinfeld level pn structure
on G /R. Drinfeld shows that Mn is representable by a local ring An.

G univ[pn](An) has a universal Drinfeld basis X
(n)
1 , . . . , X

(n)
h . Drinfeld

shows that An is a regular local ring with parameters X
(n)
1 , . . . , X

(n)
h .

The case of height 1 is particularly important.

Lemma 4.7.2. Suppose that G0 has height 1 (so that it is isomorphic

to Ĝm). Then Mn is representable by W [µpn ].

Proof. By Lubin-Tate theory, G0 admits a unique lift to any object in
C (namely the multiplicative group). Let R ∈ C. The set Mn(R) is

the set of Drinfeld bases for Ĝm[pn](R) = µpn(R). The condition for

x ∈ µpn(R) to be a Drinfeld basis is the condition that
∏p−1

a=0(T−xpn−1a)
be divisible by T p− 1 in RJT K. This condition is equivalent (exercise!)
to the condition that x be a primitive pnth root of unity; that is, x needs
to be a root of the pnth cyclotomic polynomial. The set of such x may
be identified with the set of W -homomoprhisms W [µpn ]→ R. �

Remark 4.7.3. The example of height 1 shows the core idea of a
Drinfeld level structure: it is in a sense the right way to generalize the
notion of a primitive root of unity. Over a base ring R over which p is
not invertible, it’s not a good idea to define a “primitive pnth root of
unity” as an element ζ of exact order pn in R×, since this property isn’t
stable under homomorphisms R → S. Rather, ζ should be considered
a primitive pnth root of unity when it is a root of the pnth cyclotomic
polynomial Φpn(T ); it is this condition that is generalized by the notion
of a Drinfeld level structure.
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Now we turn to the case of formal groups of height 2. Recall that
Yn is the scheme which represents the moduli problem [Γ1(N)∩Γ(pn)];
let us consider Yn as a scheme over SpecW .

Proposition 4.7.4. Let n ≥ 0, and let x be a supersingular point in
Yn(Fp). Let An be the deformation ring of a formal group of dimen-

sion 1 and height 2 over Fp. Then the completed local ring ÔYn,x is
isomorphic to An.

Proof. Let x represent the pair (E0, P ). Let G be the formal group

attached to E0. The completed local ring ÔYn,x classifies deformations
of E0 together with level pn structure. By Prop. 3.4.1, deforming
E0 is equivalent to deforming G0. It just remains to show that level
structures on E[pn] are the same as Drinfeld level structures on G [pn],
and this turns out to be formal. �

Remaining in the height 2 case, letMn be the formal scheme Spf An =
Spf ÔYn,x. For an adic W -algebra R, Mn(R) is the set of deformations
of E to R together with a Drinfeld basis P,Q of E[pn]. Then the
Weil pairing epn(P,Q) is a primitive pnth root of unity in R (exercise!).
Thus to every R-point of Mn, we get an R-point of Spf W [µpn ]. In
other words, the Weil pairing induces a morphism

epn : Mn → Spf W [µpn ],

or equivalently, a W -linear homomorphism W [µpn ]→ An.

5. The universal cover, and formal vector spaces

In this discussion, we fix a prime p. For any abelian group G what-
soever, one can form another group G̃ by

G̃ = lim←−
p

G,

where the inverse limit is taken with respect to multiplication by p.
Then G̃ is a module over Z[1/p]; indeed, multiplication by 1/p sends
(x0, x1, . . . ) to (x1, x2, . . . ). In particular if G is a Zp-module, then G̃
is a Qp-vector space. Note also that

Q̃p/Zp = Qp.

Let A be an adic Zp-algebra, and let G be a p-divisible formal group

over A. We define the universal cover G̃ as the functor from AdicA to
Qp-vector spaces, defined by

G̃ (R) = lim←−G (R),

where the inverse limit is taken with respect to multiplication by p.
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Example 5.0.5 (The multiplicative group). Consider the case of Ĝm,
considered as a formal group over some base ring A in AdicZp . Then

for objects R in AdicA, Ĝm(R) equals Nil(R) under the group law

(x, y) 7→ x+y+xy. Let (x0, x1, . . . ) ∈ lim←−p Ĝm(R), so that xi ∈ Nil(R)

and (1 + xn+1)p = 1 + xn. Observe that the limit

y0 = lim
n→∞

xp
n

n

converges in Nil(R). Indeed, the relation (1+xn+1)p = 1+xn shows that
xpn+1 ≡ xn (mod pR), from which it follows from the binomial theorem

(check this!) that xp
n+1

n+1 ≡ xp
n

n (mod pnR). Since p is topologically
nilpotent in R, the sequence xp

n

n converges.
We can also form the limit

yi = lim
n→∞

xp
n−i

n ,

and a little thought shows that ypi = yi−1 for all i ≥ 1. We thus have a
function

lim←−
p

Ĝm(R) → lim←−
y 7→yp

Nil(R)

(x0, x1, . . . ) 7→ (y0, y1, . . . ).

This is even a bijection, with inverse given by

xi = lim
n→∞

(1 + yn)p
n−i − 1.

What’s more, this function is functorial in R. In summary, if we let
Nil[A be the functor

Nil[A : AdicA → Sets

R 7→ lim←−
y 7→yp

Nil(R),

then we have an isomorphism of functors between
˜̂Gm and Nil[A. This

isn’t precisely accurate, because the target category of
˜̂Gm is Qp-vector

spaces and the target category of Nil[A is Sets. What we really mean is

that the composition of
˜̂Gm with the forgetful functor from Qp-vector

spaces to sets is isomorphic to Nil[A.

Remark 5.0.6. The universal cover appears in a paper of Faltings,
[Fal10], where it is linked with p-adic Hodge theory. The idea is fur-
ther developed in the preprint of Fontaine-Fargues, Courbes et fibrés
vectoriels en théorie de Hodge p-adique (avaiable on Fargues’ website),
which establishes many of the main properties of the universal cover.
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The Nil[ functor may already look familiar to readers familiar with
Fontaine’s period ring BdR. A stepping stone in that construction is a
curious ring R, defined as a set by

R = lim←−
x 7→xp

OCp ,

so that elements are sequences x• = {xn}n≥0. Multiplication is defined
componentwise, and addition is defined via

(x• + y•)n = lim
m→∞

(xm+n + ym+n)p
m

.

The reader must be warned that the following definition is somewhat
provisional.

Definition 5.0.7. Let A ∈ AdicZp. A formal Qp-vector space of dimen-
sion d over A is a functor V from AdicA to the category of Qp-vector
spaces. It is required that when V is composed with the forgetful functor
from Qp-vector spaces to Sets, the result is isomorphic to (Nil[A)d.

Remark 5.0.8. The functor (Nil[A)d is representable by the ring

AJX1/p∞

1 , . . . , X
1/p∞

d K.

This ring is defined as the completion of A[X
1/p∞

1 , . . . , X
1/p∞

d ] under
the (I,X1, . . . , Xd)-adic topology, where I is an ideal of definition for
A. A little care must be taken with this sort of ring. For instance,
an element of the ring ZpJT 1/p∞K is a certain kind of fractional power
series of the form ∑

α∈Z[1/p]≥0

cαT
α,

with cα ∈ Zp It is required that for all positive integers N , only finitely
many terms in the above series are allowed to lie outside of the ideal
(pN , TN). Thus

T + pT 1/p + p2T 1/p2 + . . .

and

T + T 2 + T 3 + . . .

are valid expressions for elements of ZpJT 1/p∞K, whereas

T + T 1+ 1
p + T

1+ 1
p

+ 1
p2 + . . .

is not. Finally, one really has to check (though it is not difficult) that

AJX1/p∞

1 , . . . , X
1/p∞
n K is an object of AdicA; that is, one must check

that it is complete with respect to the (I,X1, . . . , Xd)-adic topology.
(While it is true that the completion of a noetherian ring at one of its
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ideals is complete, this is not true without the noetherian assumption,

and A[X
1/p∞

1 , . . . , X
1/p∞
n ] is not noetherian!)

The universal cover of Ĝm is a 1-dimensional formal vector space. In
fact this is true in rather broad generality. First let us study the case
of p-divisible formal groups over perfect fields in characteristic p:

Lemma 5.0.9 (cf. [SW12], Prop. 3.1.3). Assume that k is a perfect
field in characteristic p, and that G is a p-divisible formal group of
dimension d over k. Then G̃ is a d-dimensional formal Qp-vector space
over k.

Proof. We’ll assume G has dimension 1, the general case being simi-
lar. Let Φ: k → k be the pth power map, which is an automorphism
because k is perfect. For n ∈ Z, let G (pn) = G ⊗k,Φn k. In other words,
G (pn) is the formal group over A obtained by applying Φn to all coeffi-
cients of the power series G (X, Y ). The substitution T 7→ T p defines a
morphism F : G → G (p), called the Frobenius isogeny. We use the same
letter F to denote the Frobenius isogeny G (p−n) → G (p−n+1). We have
a factorization [p]G = FV , where V : G (p) → G is the Verschiebung
morphism.

Let us observe that the functor lim←−F G (p−n) (once its Zp-module struc-

ture is forgotten) is isomorphic to Nil[k. Indeed, for an adic k-algebra R,

G (p−n)(R) ∼= Nil(R), and the Frobenius isogeny F : G (p−n) → G (p−n+1)

corresponds to x 7→ xp, so that lim←−F G (p−n)(R) ∼= lim←−x 7→xp Nil(R) as
required.

Thus it suffices to find an isomorphism

V : lim←−
p

G → lim←−
F

G (p−n).

We define V by the diagram

G

=

��

G

V
��

poo G

V 2

��

poo · · ·oo

G G (p−1)
F

oo G (p−2)
F

oo · · ·oo

We claim that V is an isomorphism. Since G is formal, its p-divisible
group G = G [p∞] is connected. This shows that the Frobenius map
F : M(G) → M(G) is topologically nilpotent. We can therefore let h

be large enough so that F h = pu for a morphism u : G(p−h) → G. We
get a natural transformation U = lim←−Fh G

(p−hn) → lim←−pG induced by

(1, u, u2, . . . ). Then U is the double-sided inverse to V . �
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The following proposition, though easy to prove, is somewhat mirac-
ulous.

Proposition 5.0.10 (The crystalline nature of G̃ .). Let A ∈ AdicZp.
Let I be an ideal of definition of A. For a p-divisible formal group G
over A, the reduction-mod-I map

G̃ (A)→ G̃ (A/I)

is an isomorphism.

Remark 5.0.11. The proposition shows that G̃ doesn’t depend on
G so much as it depends on G ⊗ A/I. Switching perspective a bit,
we can start with the ring A0 = A/I, and consider the formal vector

space G̃0 over A0. The proposition says that G̃0 lifts to A in a unique
way, namely by lifting G0 to a formal group G /A arbitrarily, and then

forming G̃ , which will not depend on the choice of lift.
This is what we mean when we say talk about the “crystalline na-

ture” of G̃ : it is an object that always lifts uniquely from A to A0

whenever we have a surjection A→ A0. From Grothendieck’s letter to
Tate: “A crystal posssess two characteristic properties: rigidity, and
the ability to grow in an appropriate neighborhood. There are crys-
tals of all kinds of substances: sodium, sulfur, modules, rings, relative
schemes, etc.” Our G̃ is a crystal of sheaves of Qp-vector spaces on the
infinitesimal site of A0.

Proof. The following proof assumes that G is 1-dimensional, but this
is only for ease of notation.

Without loss of generality we may enlarge I so that it contains p. If
(x1, x2, . . . ) ∈ G̃ (A) lies in the kernel of G̃ (A) → G̃ (A/I), then each
xi lies in I. By the power series giving multiplication by p in G has p
as its linear term, so it carries I onto I2. It follows that each xi lies in⋂
n≥1 I

n = 0. Thus the reduction map is injective.

To show surjectivity, suppose (x0, x1, . . . ) ∈ G̃ (A/I). Since I is
topologically nilpotent, we may lift each xi to a topologically nilpotent
element yi of A. The sequence yi, [p]G (yi+1), . . . converges in Nil(A)
(exercise!). Let

zi = lim
n→∞

[pn]G (yn+i).

Then (z0, z1, . . . ) is a lift of (x0, x1, . . . ) to G̃ (A). �

With this result, we can now extend Lemma 5.0.9 to base rings in
characteristic 0.

Corollary 5.0.12. Let A ∈ AdicZp. Assume that A admits an ideal
of definition I for which A/I is a perfect ring in characteristic p. Let
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G be a p-divisible formal group over A. Then G̃ is a formal Qp-vector
space over A.

Proof. For an object R of AdicA, we have a functorial isomorphism
G̃ (R) → G̃ (R/I), by Prop. 5.0.10. By Prop. 5.0.9, the base change

G̃A/I is a formal Qp-vector space, so there is an isomorphism of functors

between G̃A/I and (Nil[A/I)
d. But then also Nil[(R) → Nil[(R/I) is

a bijection (same argument as the proof of Prop.5.0.10). Thus G̃ is

isomorphic to (Nil[R)d. �

5.1. The Weil pairing at infinite level. In this section we use the
Weil pairing on a supersingular elliptic curve E0 in characteristic p to
cook up a Weil pairing on the universal cover of the formal group Ê0.
Since universal covers are crystals, this also gives us a Weil pairing on
the universal cover of any lift of Ê0 to characteristic 0.

First we need a lemma concerning the Tate module of a p-divisible
formal group over a discrete ring.

Lemma 5.1.1. Let A ∈ AdicZp be discrete, so that any ideal of defini-
tion is nilpotent. Let G be a 1-dimensional p-divisible formal group over
A. Then for all R ∈ AdicA, the inclusion lim←−p G [pn](R)→ lim←−p G (R) =

G̃ (R) induces an isomorphism(
lim←−G [pn](R)

)
⊗Qp−̃→G̃ (R)

Remark 5.1.2. The inverse limit lim←−G [pn](R) is the Tate module of G
(over R). Note that lim←−p G [pn](R) is the set of sequences (x0, x1, . . . ) ∈
G̃ (R) such that x0 = 0. For base rings (such as Zp) which are not

discrete, the Tate module is much, much smaller than G̃ (R) (finite
rank vs. uncountable rank). But for discrete rings (such as Fp), the

Tate module is essentially a lattice inside of G̃ (R).

Proof. Since lim←−p G [pn](R)→ G̃ (R) is an injection, and G̃ (R) is a Qp-

vector space, so injectivity is automatic. For surjectivity, we must show
that every element of G (R) is p-power torsion. This follows from the
facts that p ∈ A is nilpotent, and that [p]G (T ) = pT + . . . . �

Let E be a supersingular elliptic curve over a perfect field k of charac-
teristic p. Recall that we have the Weil pairing on the torsion subgroup
scheme E[pn]:

epn : E[pn]× E[pn]→ µpn .

The pairings epn coalesce into an alternating form on Tate modules:

ep∞ : lim←−E[pn]× lim←−E[pn]→ lim←−µpn .
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Let G0 be the formal group attached to E, so that G0 is a p-divisible
formal group of dimension 1 and height 2. Tensoring the pairing above
with Qp and applying Lemma 5.1.1 yields

ep∞ : G̃0 × G̃0 → ˜̂Gm,

which can be seen as a Weil pairing on the formal vector space G̃0 in
characteristic p.

Now let A be an adic Zp-algebra admitting an ideal of definition I
such that A/I = k. Let G be any lift of G0 to A. By Prop. 5.0.10, the

universal cover G̃ only depends on G0 and not on the choice of lift G .
The pairing eG0 lifts uniquely to a pairing on G :

ep∞ : G̃ × G̃ → ˜̂Gm.

The crystalline nature of formal vector spaces can be used to show that
ep∞ does not depend on the choice of lift of G0 to A. That is, suppose
G ′ is another lift of G0, and let e′p∞ be the corresponding Weil pairing

on G ′. By Prop. 5.0.10 we have an isomorphism G̃ → G̃ ′. Then the
diagram

G̃ × G̃
ep∞

""EE
EE

EE
EE

EE

��

˜̂G

G̃ ′ × G̃ ′
e′p∞

<<yyyyyyyyyy

commutes.

6. Drinfeld’s ring at infinite level

Let us review some important notation.

• W , the ring of Witt vectors of Fq
• K, the fraction field of W
• N , an auxiliary integer ≥ 5 which will momentarily be forgotten

forever
• Xn, the Katz-Mazur model of X(Γ1(N) ∩ Γ(pn)) over Zp (n =

0, 1, . . . )
• x, a supersingular point of X0(Fp)
• E0, a supersingular elliptic curve over Fp corresponding to x
• G0, the formal completion of E0 at its origin
• An, the deformation ring of G0 with Drinfeld pn level structure
• Mn = Spf An, an affine formal scheme over Spf W .
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• G univ, the universal deformation of G0 to A0

Since G0 is a formal group over Fq of height 2, there is a (non-
canonical) isomorphism A0

∼= W JuK. We have also seen (Prop. 4.7.4)

that An ∼= ÔXn,x. Define

A∞ = completion of lim−→An,

Here completion is taken with respect to the topology on lim−→An induced
by the maximal ideal I of A0 (or any of the An, it doesn’t matter).
It is unclear at this moment whether A∞ represents any interesting
functors. (For one thing A∞ isn’t noetherian, and so cannot represent
any functor C → Sets.) But we will find a surprising description of the
affine formal scheme Spf A∞ in terms of the Weil pairing on a formal
vector space.

It will be helpful to work with the category of affine formal schemes
over Spf W , rather than the category of adic W -algebras (recall that
these are opposite to one another). Recall from Eq. (4.7.1) that the
Weil pairing induces a morphism epn : Mn → Spf W [µpn ]. Let M∞ =
Spf A∞. These morphisms induce a morphism

(6.0.1) ep∞ : M∞ → Spf Ŵ [µp∞ ].

Over the ringAn, we obtain a Drinfeld basisXuniv
n , Y univ

n for G univ(An).
Assembling these together, we get sequences Xuniv = (Xuniv

1 , Xuniv
2 , . . . )

and Y univ = (Y univ
1 , Y univ

2 , . . . ) which lie in G̃ univ(A∞).
It is at this point that we do the following strange thing: let G be a

completely arbitrary lift of G0 to W . We now make use of the crystalline
nature of formal vector spaces (Prop. 5.0.10): Since G univ and G ⊗WA0

are both lifts of G0 from Fp to A0, their universal covers are isomorphic
(by the crystalline nature of universal covers). Let

ψ : G̃ univ → G̃ ⊗W A0

be the unique isomorphism which lifts the identity map on G0. Let
X = ψ(Xuniv) and Y = ψ(Y univ), so that X, Y ∈ G̃ (A∞). The data of

X and Y give us a morphism M∞ = Spf A∞ → G̃ × G̃ .
Putting this together with the morphism of Eq. (6.0.1), we have a

commutative diagram of formal schemes over Spf W :

(6.0.2) M∞
ep∞//

��

Spf Ŵ [µp∞ ]

��

G̃ × G̃ ep∞
// ˜̂
Gm
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Theorem 6.0.3 ([Wei12], Thm. 2.8.1). The above diagram is Carte-

sian. That is, M∞ is isomorphic to the fiber product of G̃ × G̃ and

Spf Ŵ [µp∞ ] over
˜̂
Gm.

The theorem is a little suprising for this reason: M∞ was built out
of formal schemes Mn which parametrize deformations of the formal
group G0. But Thm. 6.0.3 gives an alternative description of M∞
which has nothing to do with deformations of anything. Or rather,
there was a particular choice of deformation G over W involved in this
description of Mn, but the choice of G makes no difference (nor should

it, since G̃ doesn’t depend on G ).
Informally speaking, Thm. 6.0.3 says that M∞ owes all its complex-

ity to the Weil pairing ep∞ : G̃×G̃ → ˜̂
Gm. This pairing corresponds to a

continuous W -linear homomorphism W JT 1/p∞K → W JX1/p∞ , Y 1/p∞K.
Thm. 6.0.3 can then be interpreted as a formula for A∞, namely

A∞ ∼= W JX1/p∞ , Y 1/p∞K⊗̂W JT 1/p∞KŴ [µp∞ ],

where W JT 1/p∞K→ Ŵ [µp∞ ] carries T onto limn→∞(1− ζpn)p
n
.

This gives a rather satisfying description of M∞, modulo the caveat
that the morphism ep∞ is rather mysterious. We can also give a de-
scription of the “geometrically connected components” of M∞. Let us
recall some notation from §2.5. The Weil pairing induces a morphism
epn : Yn → µpn of schemes over SpecW . After extending scalars to

SpecW [µpn ], Yn breaks up into a disjoint union of fibers Y
ζpn
n , one for

each primitive pnth root of unity.
Let ζ = (ζp, ζp2 , . . . ) be a compatible family of pth power roots of

unity. We are now concerned with the rings

A
ζpn
n = Ô

Y
ζpn
n ,x

and

Aζ∞ = ÔY ζ∞,x = completion of lim−→A
ζpn
n .

Finally, let M ζ
∞ = Spf Aζ∞. Adapting Thm. 6.0.3 to this situation, we

get a cartesian diagram of formal schemes over Spf Ŵ [µp∞ ]:

M ζ
∞

ep∞//

��

Spf Ŵ [µp∞ ]

��

G̃ × G̃ ep∞
// ˜̂Gm
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Once again we can use the diagram to give a formula for the ring Aζ∞.

For the remainder of this discussion, the base ring is Ŵ [µp∞ ]. The

formal scheme G̃ × G̃ is isomorphic to Spf W JX1/p∞ , Y 1/p∞K. There-

fore the morphism ep∞ : G̃ × G̃ → ˜̂Gm corresponds to an element of
˜̂Gm(W JX1/p∞ , Y 1/p∞K), which is to say, a sequence ∆(X, Y ),∆(X, Y )1/p, . . .
of elements of W JX1/p∞ , Y 1/p∞K with ∆(0, 0) = 1.

The punchline of the course is this:

Corollary 6.0.4. We have an isomorphism

Aζ∞
∼=

Ŵ [µp∞ ]JX1/p∞ , Y 1/p∞K
(∆(X, Y )1/pm − ζpm)m≥0

.

Project B is dedicated to deriving a convenient expression for the
fractional power series ∆(X, Y ).
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7. Project A: Exercises in positive characteristic

Let K = Fq((π)) be the field of Laurent series in one variable over the
finite field Fq. Let f(T ) = πT+T q ∈ OK [T ]. It is quite easy to find the
Lubin-Tate formal OK-module F = Ff . Namely, F is characterized
by

• X +F Y = X + Y
• [a]F (T ) = aT, a ∈ Fq
• [π]F (T ) = f(T )

Let t1 be a nonzero root of f(T ), and for n ≥ 2 define tn inductively as a
root of f(T )−tn−1. Let Kn = K(tn), and let K∞ =

⋃
n≥1Kn. Let Hn =

Gal(Kn/K) and H = Gal(K∞/K) = lim←−Hn. The formalism of Lubin-

Tate theory shows that there are isomorphisms ρn : (OK/πnOK)× →
Hn and ρ : O×K → H. These satisfy ρ(α)(tn) = [α]F (tn) for all α ∈ O×K .

Let L be the completion of K∞.

Exercise A1. Show that the sequence tq1, t
q2

2 , . . . converges to an ele-

ment t ∈ OL. Also show that t1/q
i ∈ OL for all i ≥ 0.

Exercise A2. The action of H on K∞ extends to L. Show that if
α =

∑
m≥0 amπ

m ∈ O×K , then

(7.0.3) ρ(α)(t) =
∞∑
m=0

amt
qm .

Exercise A3. Show that OL = FqJt1/q
∞K, this being the t-adic comple-

tion of Fq[t1/q
∞

]. (Hint: first show that OL/t = Fq[t1/q
∞

]/t.) That is,
every element of OL can be expressed uniquely as a “fractional power
series” of the form

∑
α cαt

α, where α runs through Z[1/q]≥0, and for
every N ≥ 0, there are only finitely many α ≥ N with cα 6= 0. In
particular, L is a perfect field.

Exercise A4. It follows from Exercise A3 that the element π is ex-
pressible as a fractional power series in t, which has to be invariant
under all of the substitutions of the type described by Eq. (7.0.3). In
fact, show that

π = lim
n→∞

∏
(a0,...,an−1)

(
a0t+ a1t

q + · · ·+ an−1t
qn−1

)q−n
.

Here (a0, . . . , an−1) runs over tuples of elements of Fq, with a0 6= 0.
(Warning: I haven’t done this exercise. But the expression on the
right seems like a very natural way of coming up with a Galois-invariant
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element, and it has the right valuation, so what else could it be but
π?)

Exercise A5. Show that LH (the field of H-invariant elements of L)
is a perfect field containing Kwhich is closed inside of L. In fact, show
that it is the smallest such field. That is, LH is the completion of the
perfect closure of K in L.

Exercise A6. Find similar formulas for t1, t2, . . . in terms of t.

Exercise A7. Show that there is a canonical isomorphism between
the absolute Galois groups GL and GK∞ . Also show that GL is iso-
morphic to the absolute Galois group of Fq((t)). Since this field is
(non-canonically) isomorphic to K = Fq((π)), we therefore have an iso-
morphism between GK and its subgroup GK∞ .

8. Project B: Determinants of formal groups

The Artin-Hasse exponential is the formal power series

AH(T ) = exp

(
T +

T p

p
+
T p

2

p2
+ . . .

)
.

A priori it lies in QpJT K.

Exercise B1. (Dwork’s lemma) Show that if f(T ) = 1 + T + · · · ∈
QpJT K is a power series satisfying f(T p)/f(T )p ≡ 1 (mod pZpJT K),
then in fact f(T ) ∈ ZpJT K. Use this to show that AH(T ) ∈ ZpJT K.

Exercise B2. Give another proof that AH(T ) ∈ ZpJT K by showing
formally that

AH(T ) =
∏
p-n

(1− xn)−µ(n)/n .

Exercise B3. By Hazewinkel’s theory of p-typical formal groups, there
exists a formal group law F over Zp of height 1 whose logarithm is

logF (T ) = T +
T p

p
+
T p

2

p2
+ . . .

Show that [p]F (T ) ≡ T p (mod pZpJT K). By Lubin-Tate theory, if G
and G ′ are two one-dimensional formal groups of height 1 over Zp for
which [p]G and [p]G ′ are congruent mod p, then G ∼= G ′. Conclude that

F is isomorphic to the formal multiplicative group Ĝm, and that the
isomorphism between them is AH(T )− 1 (which gives a third proof of
integrality).
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Exercise B4. Let λ be a nonzero root of [p]F (T ), so that logF (λ) =∑∞
i=0 λ

pi/pi = 0. Since AH(T ) is an isomorphism onto the formal
multiplicative group, AH(λ) must be a primitive pth root of 1. On

the other hand AH(λ) = exp(
∑∞

i=0 λ
pi/pi) = exp(0) = 1. Resolve this

apparent contradiction.

Exercise B5. Show that the limit

G(T ) = lim
n→∞

AH(T 1/pn)p
n

exists in ZpJT 1/p∞K. Show that this power series satisfies the identities
G(0) = 1 and G(T p) = G(T )p. Then give the following interpretation

for G(T ). The isomorphism of formal groups AH : F → Ĝm induces

an isomorphism of formal vector spaces ÃH : F̃ → ˜̂Gm. On the other
hand, once we forget the Qp-vector space structures, we have an iso-

morphism F̃ → Nil[ (see Cor. 5.0.12). Show that the composite map

Nil[ // F̃
ÃH // ˜̂Gm

is given by (x0, x1, . . . ) 7→ (G(x0), G(x1), . . . ).

Exercise B6. Show that

(8.0.4) G(T ) = exp

(
∞∑

i=−∞

T p
i

pi

)

Actually, this statement, while formally easy, needs to be made more
precise. To what ring does that power series even belong? We need to
make a slight detour into the world of affinoid algebras.

For each m ≥ 1, consider

A+
m = Zp 〈T, Tm/p〉 = p-adic completion of Zp[T, Tm/p]

Am = Qp 〈T, Tm/p〉 = A+
m[1/p]

ThenAm is the affinoid algebra of functions on the closed disk
{
|T | ≤ |p|1/m

}
,

and A+
m becomes the subalgebra of functions which are integral on that

disk. We have that Am contains Am+1. Set Qp {{T}} =
⋂
m≥1Am; you

can think of this as the algebra of functions on the open disk. On the
other hand,

⋂
m≥1A

+
m is the algebra of integral functions on the open

disk; this is just ZpJT K. The series
∑∞

i=0 T
pi/pi lies in Qp {{T}}, and

its exponential is AH(T ).
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To make sense of Eq. (8.0.4), we need to pass to the larger world of
perfectoid affinoid algebras. Let

B+
m = Zp

〈
T 1/p∞ , Tm/p

〉
= p-adic completion of Zp[T 1/p∞ , Tm/p]

Bm = Qp

〈
T 1/p∞ , Tm/p

〉
= B+

m[1/p].

Then Bm is the algebra of functions on what might be called the “per-

fectoid closed disk” of radius |p|1/m. Set Qp

{{
T 1/p∞

}}
=
⋂
m≥1Bm.

Then the series
∑∞

i=−∞ T
pi/pi lies in Qp

{{
T 1/p∞

}}
, and it is in this

ring that Eq.(8.0.4) takes place.

Exercise B7 (the main problem of the project). Now let G be
the formal group law of height 2 whose logarithm is

logG (T ) =
∞∑
i=0

T p
2i

pi
.

Let L(T ) be the fractional power series

L(T ) =
∞∑

i=−∞

T p
2i

pi
,

so that L(T ) lies in Qp

{{
T 1/p∞

}}
.

The problem at hand is to show that the fractional power series

∆(X, Y ) = exp det

(
L(X) L(Y )
L(Xp) L(Y p)

)
lies in ZpJX1/p∞ , Y 1/p∞K. (Is there a ring containing ZpJX1/p∞ , Y 1/p∞K
in which ∆(X, Y ) lives a priori? If B = Zp

〈
X1/p∞ , Y 1/p∞ , X/p, Y/p

〉
,

then the entries of the matrix lie in pB, so the determinant lies in
p2B. Since B is p-adically complete, exp is well-defined on p2B, so
that indeed, ∆(X, Y ) belongs to B. The problem is to show that ∆
lies in the subring ZpJX1/p∞ , Y 1/p∞K.)

Post-AWS note: Members of our research group noticed that the
above formula for ∆(X, Y ) isn’t integral after all. The fix we found
was this: let Zp2 be the ring of integers in the unramified quadratic
extension of Qp. Let α ∈ Z×p2 be an element with αp = −α. The right

formula for ∆(X, Y ) is

∆(X, Y ) = expα det

(
L(X) L(Y )
L(Xp) L(Y p)

)
;

it turns out this lies in Zp2JX1/p∞ , Y 1/p∞K.

Exercise B8. Show that ∆ satisfies the properties

(1) ∆(Xp2 , Y ) = ∆(X, Y )p
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(2) ∆(X, Y p2) = ∆(X, Y )p

(3) ∆(Xp, Y p) = ∆(X, Y )−p

(4) ∆(Y,X) = ∆(X, Y )−1.

More generally, show that

((x0, x1, . . . ), (y0, y1, . . . )) 7→ (∆(x0, y0),∆(x1, y1)−1, . . . )

(the signs alternate) defines an alternating map of formal Qp-vector
spaces

G̃ × G̃ → ˜̂Gm.

Exercise B9. If V is a 2-dimensional vector space, and λ : V ×V → W
is an alternating map, then of course λ must factor through the exterior
square ∧2V . Does something like this hold when we replace V with

the formal vector space G̃ , and ∧2V with
˜̂Gm? If so, it will be easy to

use Exercise B8 to argue that (perhaps up to an element of Q×p ) that
the expression for ∆(X, Y ) in these exercises actually agrees with the
one used in Cor. 6.0.4 (which was derived from the Weil pairing on an
elliptic curve).
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