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1. Basics

1.1. Introduction. The theory of modular forms — and the numerous congruence
properties that their coefficients enjoy — can be approached on many levels. Take,
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for example, the following congruence of Ramanujan [Ram16]:

∆ := q

∞∏
n=1

(1− qn)24 ≡
∞∑
n=1

σ11(n)qn mod 691.

To prove this congruence requires knowing only three facts: that both ∆ and E12

are classical modular forms of weight 12, that the ring of classical modular forms is
given by Z[E4, E6]⊗C, and that the numerator of B12 is divisible by 691. At the
same time, this congruence also points towards a deeper strucure; it represents the
first incarnation of the main conjecture of Iwasawa theory — a theorem relating the
special values of Dirichlet L-functions to corresponding eigenspaces of class groups
of abelian extensions of Q. The theory of congruences of modular forms can be
(roughly) distinguished into two types:

(1) congruences between Hecke eigenforms,
(2) congruences between classical holomorphic or meromorphic modular forms.

The first subject is very rich indeed and encompasses (broadly construed) the
entire theory of two dimensional odd Galois representations of GQ. We shall not
concern ourselves with such congruences in these notes (except to the extent that
they are required to understand congruences of the second kind). Instead, we shall
grapple with the second class of congruences, which has as its genesis various con-
jectures of Ramanujan concerning the partition function proved by Watson [Wat38]
(see Theorem 1.1.2 below). Throughout this text, we shall consider the following
two examples, which, although enjoying some special properties which distinguish
them slightly from the general case, exhibit the typical behavior with respect to
the type of congruences treated in these notes.

Let

j =

(
1 + 240

∑
σ3(n)qn

)3

q

∞∏
n=1

(1− qn)24

=
1

q
+ 744 + 196884q + . . . =:

∑
c(n)qn.

This is the function known as Klein’s modular invariant (or, in a slightly different
context, as simply the j-invariant). It is a meromorphic modular function of weight
zero, and is the unique such function which is holomorphic away from a simple
pole at the cusp such that j(ρ) = 0 and j(i) = 1728. The q-expansion j has
coefficients in Z which grow sub-exponentially but faster than polynomially. We
shall be interested in the congruence properties of the coefficients c(n).

1.1.1. Exercise. The Wikipedia entry on the j-invariant is embarrassing — make
it better.

Our second example (which we consider more briefly) will concern the inverse
of Dedekind’s eta function, which is (essentially) the generating function for the
partitions, namely:

η−1 =
1

q1/24
∏∞
n=1(1− qn)

=
∑

p

(
n+ 1

24

)
qn.

(Following the standard convention, p(m) = 0 if m is not an integer.)
The following theorems are due to Lehner [Leh49] and Watson [Wat38] respec-

tively.
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1.1.2. Theorem. The following congruences are satisfied:

(1) If n ≡ 0 mod 2m and n > 0, then c(n) ≡ 0 mod 23m+8.
(2) If 24n ≡ 1 mod 5m, then p(n) ≡ 0 mod 5m.

The proof of these congruences relied on a judicious use of modular equations,
that is, the explicit functional relationships between modular functions of certain
small levels. We shall thereby dub this technique the modular equation method ;
it was also applied by Atkin and O’Brien to prove similar congruences for higher
moduli [AO67]. We shall argue that the systematic use of overconvergent modular
forms is a direct descendant of the modular equation method.

1.1.3. The scope of this document. These notes are not intended to be an intro-
duction to the theory of modular forms, although we shall summarize some of the
salient details. Rather, it is directed towards three specific audiences, namely:

(1) Graduate students in number theory with a basic understanding of classical
modular forms and their q-expansions.

(2) Those who are interested in congruences concerning specific modular forms,
for example involving partitions, but whom are not fully conversant with
the modern geometric and rigid analytic viewpoint of Dwork, Katz, and
Coleman.

(3) Those who understand the theory of overconvergent modular forms, and
are curious about the applications to concrete congruences.

Since these audiences by definition have somewhat different backgrounds, I will
have to apologize in advance for saying things that you, dear reader, will find
obvious. I will also apologize for eliding technical details whose absence may push
the more careful reader into an apoplectic fit. However, the theory of elliptic
curves and modular forms encompasses quite a lot of mathematics, and so I will
necessarily be cursory on several important points (most importantly, the technical
details concerning the construction of modular curves [DR73, KM85], as well as
any rigorous details at all concerning rigid analytic spaces). In particular, I will
concentrate on the issues that are most relevant to my purpose, and leave the
secondary matter to the literature, which is extensive and (quite frequently) very
well written, e.g. [Sil86, Sil94, Kat73, DS05, Buz03]. Indeed, as with any lecture
notes, the key choice is to decide which points to elide, which points to skip, and
which points to emphasize. Since much of what I say in the first half of these notes
overlaps with what is in [Kat73], I leave out several arguments that Katz gives in
detail, and instead concentrate on giving examples and emphasizing the points that
some might find confusing if approaching [Kat73] with limited background. Let me
include at this point the following table, whose content1 is self-explanatory.

The modern method The classical antecedent

The compactness of the U operator The modular equations method
Serre weights and Ash–Stevens The weight filtration in low weights
p-adic Langlands for GL2(Qp) The weight filtration in higher weights

Holomorphic sections over the ordinary locus Serre’s p-adic modular forms

1For reasons of time, I will not discuss in any detail the second and third rows of this table. For
the connection between the θ-operator and Serre weights, one should consult [AS86]. The only time
these ideas arise in any form within these notes is secretly — via an appeal to a result of Buzzard–

Gee [BG09] concerning Galois representations associated with small slope forms. However, I will
suppress all of the details of that paper, together with their concomitant difficulties relating to,
inter alia, p-adic local Langlands.
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I make no claim to the originality of most of the material presented here. Many of
the ideas here can be found in Katz [Kat73] and Coleman [Col96, Col97]. The gen-
eral philosophy regarding asymptotic expansions is in Gouvea–Mazur [GM95]. The
modular equation method of [Wat38] has its roots firmly in 19th century mathemat-
ics. I learned many of these ideas through conversations with Matthew Emerton
that started in 1993, and with Kevin Buzzard which started in 2001 — in relation
to his Arizona Winter School project. One reason I decided to write on this partic-
ular topic was that, being conversant with some of the explicit aspects of theory, I
might be more in a position than most to bridge the divide between the classical
and modern perspectives on congruences. Thanks go to Simon Marshall for some
conversations about adjoint L-functions and arithmetic quantum unique ergodicity
that influenced some of the wild conjectures of this paper, thanks also to David
Loeffler for some conversations and for making available some of his previous com-
putations. Thanks to Rebecca Bellovin, Ana Caraiani, Martin Derickx, Toby Gee,
James Newton, and David Savitt for some corrections, and thanks to Matt Baker
for some helpful remarks concerning p-adic equidistribution.

1.1.4. A note on the exercises. Some of the exercises are easy, some are tricky, most
I know how to do, but some I do not. I put a ? on the particularly tricky exercises.

1.2. What is a modular form? There are many (more or less general) definitions
of a modular form. A good source (which we follow here) is Katz [Kat73]. The
classical definition, which for most purposes is not particularly useful, is that a
modular form f of weight k for SL2(Z) is a holomorphic function on the upper half
plane H satisfying the functional equation

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ)

for all

(
a b
c d

)
∈ SL2(Z), and such that f(τ) is bounded as τ → i∞. A slightly

more useful definition is the following:

1.2.1. Definition (Version 1). A modular form f of weight k over C is a function
on lattices Λ = Zω1 + Zω2 ⊂ C such that:

(1) f(Zτ + Z) is holomorphic as a function of τ ,
(2) f(µΛ) = µ−kf(Λ) for all µ ∈ C×,
(3) f(Zτ + Z) is bounded as τ → i∞.

We say that two lattices Λ and Λ′ are homothetic exactly when there exists a
µ ∈ C× such that Λ = µΛ′.

The following theorem is proved in almost any book on modular forms or elliptic
curves.

1.2.2. Theorem (Weierstrass). Given a lattice Λ = Zω1 + Zω2, the quotient E :=
C/Λ has the structure of a smooth projective curve of genus one given by the (affine)
equation

E : y2 = 4x3 − 60G4x− 140G6,

where

G4 =
∑
Λ\0

1

λ4
, G6 =

∑
Λ\0

1

λ6
.
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Explicitly, the map is given by

x = ℘(z, τ) =
1

z2
+
∑
Λ\0

1

(z − λ)2
− 1

λ2
, y =

dx

dz
= ℘′(z, τ) =

∑ −2

(z − λ)3
.

Moreover, every elliptic curve over C admits such a uniformization.

In particular, given a lattice Λ, one obtains an elliptic curve E. (An elliptic
curve E over C is, by definition, a smooth genus one curve with a marked point,
which in this case is the point “at infinity”, e.g. z = 0. Showing that elliptic curves
over C admit a Weierstrass equation is an elementary exercise using the Riemann–
Roch Theorem.) It is important to note, however, this map is not a bijection. It is
easy to see that if one scales the lattice Λ by a homothety, say replacing Λ by µΛ,
then G4 is replaced by µ−4G4 and G6 is replaced by µ−6G6. The corresponding
elliptic curves are isomorphic under a scaling in x and y. In particular, this map
is a bijection between lattices Λ in C up to homothety and elliptic curves E over
C. Modular forms, however, are not functions on lattices up to homothety unless
k = 0. It is natural to ask, therefore, whether Weierstrass’ theorem gives a natural
bijection between lattices and elliptic curves enriched with some extra structure.

1.2.3. Lemma. The space of holomorphic differentials on an elliptic curve E over
C is one dimensional, that is, H0(E,Ω1) = C.

Proof. If one defines an elliptic curve to be a smooth projective curve of genus one,
then this lemma is a tautology. If one imagines an elliptic curve to be given by a
quotient E = C/Λ, then one can argue as follows. Any holomorphic differential
pulls back to a differential ω = f(z)dz on C which is invariant under translation.
Since the differential dz has no poles and no zeroes, it follows that f(z) must be
holomorphic on C and doubly periodic, and thus (by Liouville’s theorem) constant.
Hence the only such differential (up to scalar) is dz. �

This definition allows us to understand what extra structure a lattice contains
beyond the isomorphism class of the corresponding elliptic curve.

1.2.4. Lemma. There is a bijection between lattices Λ ⊂ C and elliptic curves E
together with a non-zero differential ω ∈ H0(E,C). The bijection is given by taking
a lattice Λ to the corresponding Weierstrass equation, and then taking

ω := dz =
dx

dx/dz
=
dx

y
.

This bijection is canonical, but it is not canonically canonical, since one could
form such a bijection using any fixed multiple of dX/Y . This choice, however, also
makes sense integrally (at least up to factors of 2). Under this bijection, we can
compute explicitly what happens if we replace Λ by µΛ. We do this in gory detail.
Explicitly:

Λ 7→: y2 = 4x3 − 60G4x− 140G6, ωΛ =
dx

y
,

µΛ 7→: v2 = 4u3 − 60G4µ
−4u− 140G6µ

−6, ωµΛ =
du

v
.
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Now we may write the latter curve as (vµ3)2 = 4(uµ2)3− 60G4(uµ2)− 140G6, and
hence

ωµΛ =
du

v
=
dxµ−2

yµ−3
= µ · ωΛ.

This leads to a new definition of a modular form.

1.2.5. Definition (Version 2). A modular form f of weight k over C is a function on
pairs (E,ω) consisting of an elliptic curve E and a non-zero element ω ∈ H0(E,Ω1

E)
such that

f(E,µω) = µ−kf(E,ω),

and such that f(C/(Zτ + Z), dz) is bounded as τ → i∞.

This coincides with the previous definition if we let f(Λ) = f(C/Λ, dz), since
(as we saw above) f(µΛ) = f(C/Λ, µdz).

1.2.6. The fundamental domain and X(1). The action of PSL2(Z) on the upper
half plane H has a fundamental domain given by the shaded region in Figure 1.2.6:

Figure 1. This is a picture you have seen before

The quotient Y (1) = H/PSL2(Z) has a natural structure as a complex orbifold
with cone points of angles 2π/2 at z = i, 2π/3 and z = ρ, and 2π/∞ at z = i∞.
There is a natural compactification X(1) obtained by filling in the cusp at infinity.
The function

j : X(1)→ P1
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is a bijection over the complex numbers, and thus can (roughly) be interpreted
as giving X(1) the structure of the complex variety P1

j with j as a uniformizing

parameter. On the other hand, the corresponding map j : H→ P1 has the property
that j has a triple zero at z = ρ and j − 1728 has a double zero at z = i. In
particular, the functions 3

√
j and

√
j − 1728 extend to holomorphic functions on H

(they are no longer invariant under PSL2(Z), although they are modular functions
for various congruence subgroups). The two ways of thinking about j reflect the
difference between the underlying orbifold structure and the topological structure,
which ultimately is related to the fact that X(1) — as a moduli space — is more
properly thought of as a stack. However, thinking in terms of stacks is not at all
necessary in this case, by virtue of the fact that these issues can (essentially) be
completely avoided by working at higher level.

1.2.7. Modular forms with level structure. It is natural to consider modular forms
for various special subgroups of SL2(Z). The most natural ones are defined as
follows.

1.2.8. Definition. For an integer N , the congruence subgroups Γ0(N), Γ1(N), and
Γ(N) are defined as follows:

Γ0(N) =

{
γ =

(
a b
c d

) ∣∣∣∣ γ ∈ SL2(Z), γ ≡
(
∗ ∗
0 ∗

)
mod N

}
Γ1(N) =

{
γ =

(
a b
c d

) ∣∣∣∣ γ ∈ SL2(Z), γ ≡
(

1 ∗
0 1

)
mod N

}
Γ(N) =

{
γ =

(
a b
c d

) ∣∣∣∣ γ ∈ SL2(Z), γ ≡
(

1 0
0 1

)
mod N

}
These groups act naturally on H via the action of SL2(Z). The sets H/Γ are

naturally in bijection with the following sets:

(1) H/Γ0(N) is naturally in bijection the following set up to homothety: Pairs
(Λ,Σ) consisting of a lattice Λ together with a cyclic subgroup Σ ⊂ C/Λ
of order N .

(2) H/Γ0(N) is naturally in bijection following set up to homothety: Pairs
(Λ,Λ′) consisting of a pair of lattices Λ, Λ′ with Λ ⊂ Λ′ and Λ′/Λ ' Z/NZ.

(3) H/Γ1(N) is naturally in bijection with the following set up to homothety:
Pairs (Λ, P ) consisting of a lattice Λ together with a point P ∈ C/Λ of
exact order N .

(4) H/Γ(N) is naturally in bijection the following set up to homothety: Lattices
Λ together with a commutative diagram:

1

N
· Λ/Λ

'- (Z/NZ)2

µN

∧

?
====== Z/NZ

∧

?

where ∧ is the Weil pairing on the left hand side and the symplectic pairing
(Z/NZ)2 → Z/NZ given by (a, b)∧ (c, d) = ad− bc on the right hand side,
and µN → Z/NZ is the map sending a fixed root of unity ζN to 1.
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The sets (1) and (2) are in bijection. If π denotes the projection π : Λ 7→ Λ/NΛ,
then

(Λ,Σ) 7→ (Λ, π−1(Σ)), (Λ,Λ′) 7→ (Λ, π(Λ′)).

One might wonder why the set H/Γ(N) is not simply in bijection with lattices Λ
together with an isomorphism Λ/NΛ 7→ (Z/NZ)2. The reason is the space of such
pairs is not connected in the natural topology: the Weil pairing of any chosen basis
(P,Q) of Λ/NΛ yields (locally) a continuous map from this space to µN , which is
thus constant. Moreover, if one passes from one lattice to an equivalent one (both
given by a point τ in the upper half plane), the corresponding change of basis matrix
lies in SL2(Z), and thus the effect on the chosen basis (P,Q) is via an element of
the image:

SL2(Z) 7→ GL2(Z/NZ).

Yet this map is not surjective — the image consists exactly of the matrices of deter-
minant +1. In particular, the locally constant function extends to a global function
from this space to µN . In particular, this space is most naturally isomorphic to

|(Z/NZ)×|

copies of H/Γ(N)2.

1.2.9. Modular curves as complex manifolds. If Γ is a finite index subgroup of
SL2(Z), we let Y (Γ) denote the quotient H/Γ. If one lets H∗ = H∪P1(Q) (where
∞ corresponds to i∞) then H∗ admits a natural action of SL2(Z), and H∗ \H is
a single orbit. The quotients X(Γ) := H∗/Γ provide natural compactifications of
Y (Γ). If Γ is torsion free, then X(Γ) and Y (Γ) are smooth complex manifolds, and
indeed Y (Γ) is a K(π, 1)-space with π1(Y (Γ)) = Γ. If Γ = Γ0(N), Γ1(N), or Γ(N),
we write X0(N), X1(N), and X(N) respectively for the corresponding spaces. If
Γ′ ⊂ Γ has finite index, the natural map:

X(Γ′)→ X(Γ)

is smooth away from the cusps and the preimages of i and ρ in X(1). Computing
the genus of modular curves is a simple exercise from Galois theory and from the
Riemann–Hurwitz formula.

1.2.10. Example. Let p be prime. The genus of X(p) is given by

g(X(p)) =

0, p = 2
(p+ 2)(p− 3)(p− 5)

24
, p > 2.

Consider the case when p ≥ 3 for convenience. The map X(p)→ X(1) is a Galois
covering which — in an orbifold sense —is smooth away from the cusps. However,
thinking of X(1) as P1, there will be ramification above i and ρ of degree 2 and 3
respectively (since X(p) is a manifold for p ≥ 3). We may thus use the Riemann–
Hurwitz formula. Since X(1) has only one cusp, the group G = PSL2(Fp) acts

2As seen below, we denote the corresponding algebraic curves (with complex points H/Γ(N)

or H∗/Γ(N)) by Y (N) and X(N) respectively. However, there are alternate definitions of these
curves which are not geometrically connected. Since one usually uses the same notation, one

distinguishes them by talking about the big X(N) and the small X(N).
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transitively on the cusps of X(p). The stabilizers of the cusps are all isomorphic,
but the stabilizer of ∞ is clearly equal to(

1 ∗
0 1

)
,

which is a group of order p. Hence, by the Orbit–Stabilizer theorem, the number
of cusps is equal to

c =
1

p
· |G|.

Similarly, there are |G|/2 and |G|/3 points above i and ρ respectively. Hence, by
Riemann–Hurwitz, we have

χ(X(p)) = |G|χ(X(1))− (2− 1)|G|
2

− (3− 1)|G|
3

− (p− 1)|G|
p

,

= |G|
(

2− 1

2
− 2

3
− 1 +

1

p

)
= − (p2 − 1)(p− 6)

12
,

and hence

g(X(p)) =
(p+ 2)(p− 3)(p− 5)

24
.

A similar calculation works for X0(p) and X1(p) — although the covers are
no longer Galois in these cases, and the ramification at i and ρ depends on the
reduction of p modulo 12. Note that the action of Γ0(p) on P1(Q) has two orbits,
corresponding to ∞ and 0. The cusp ∞ is unramified, and the cusp 0 is ramified
of degree p.

1.2.11. Modular curves as algebraic curves. The curves X(Γ) = H∗/Γ are compact
Riemann surfaces, and so, by a theorem of Riemann, are algebraic curves.

1.2.12. Exercise. Why are compact complex manifolds of dimension one algebraic?
Understand why the key point is the existence on X of a meromorphic differential
ω. Also, understand why the result fails in higher dimensions.

1.2.13. Modular curves as moduli spaces. Another way to define the modular curves
Y (Γ) for suitable Γ is to define them as moduli spaces for appropriately defined func-
tors. For example, Y1(N) is the fine moduli space for pairs (E,P ) of elliptic curves
E together with an inclusion of group schemes Z/NZ→ E. For Y (N), is is natural
to consider elliptic cuves E together with an isomorphism Z/NZ⊕µN → E[N ] (al-
though this leads to the “big” Y (N) rather than the small one). There are technical
issues relating to this construction for Γ = Γ0(N) due to the presence of automor-
phisms, but for Y1(N) and Y (N) (at least for N > 4 and N ≥ 3 respectively) it
provides a construction of the appropriate spaces as algebraic varieties. By defini-
tion, the curves Y1(N) and Y (N) then come along with a universal modular curve
E/Y (Γ). There are several ways one might like to improve this construction:

(1) Make the construction more arithmetic, so it defines a smooth curve over Q
(or Q(ζN )), or even the integral rings Z[1/N ] and Z[1/N, ζN ]. Even better,
construct a nice model over Z with good reduction over Z[1/N ].

(2) Extend the construction in a natural way to the cusps.
(3) Do this all in a moduli theoretic way.
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That this can be done is not an entirely trivial proposition [DR73, KM85]. On
the other hand, it is not hugely complicated either, and one is “lucky” (compared
to the moduli space of higher dimensional abelian varieties, say) that the cusps are
not all that complicated in the end. For our purposes we can take these on faith.

We may now extend our definition of a modular form to general rings R.

1.2.14. Definition (Version 2a). A meromorphic modular form f of weight k over
R is a function on pairs (E/A, ω) where ω is a nowhere vanishing section of Ω1

E/A

and A is an R-algebra such that:

(1) f(E/A, ω) depends only on the A-isomorphism class of (E/A, ω).
(2) f(E,µω) = µ−kf(E,ω) for any µ ∈ A×.
(3) If φ : A→ B is any map of rings, then f(E/B, ωB) = φ(f(E/A, ω)).

One deficit with this definition is that it doesn’t address the issue at the cusps,
in order to address this we will need to say something about Tate curves.

1.2.15. Exercise. Let R be a ring in which 6 is invertible. Prove that, given a pair
(E/R, ω), there exists a Weierstrass equation:

y2 = x3 + a4x+ a6

for E such that
ω = dx/y.

Prove that the rules f(E/R, ω) = a4 and g(E/R, ω) = a6 define modular forms of
weights 4 and 6 respectively.

1.2.16. Modular forms and modular functions on X(Γ). Naturally enough, the vari-
ous definition of modular forms of level one each extend to corresponding definitions
in higher weight. For any fixed level Γ, we consider the points on H/Γ as pairs
(Λ, α) up to homothety, where α denotes the extra structure. One defines mod-
ular forms of higher weight simply to be rules on triples (E/R, ω, α) which are
compatible in the natural way.

1.2.17. Modular forms as sections of a line bundle. How does H0(E,ΩE) vary as
one winds around the curve Y (Γ) = H/Γ? If we start with a curve Eτ = C/{Z +
τZ}, together with its canonical differential dz, then we can imagine moving (in
the upper half plane) from τ to

γτ = τ ′ =
aτ + b

cτ + d
, γ =

(
a b
c d

)
∈ Γ

which brings us back to the same elliptic curve Eτ ′ ' Eτ . The invariant differential
dz ∈ H0(E,ΩE) varies continuously as we vary E, yet when we return to E we
observe that ωE and ωγE have changed, in particular,

dz ∈ H0(C/{(aτ + b)Z + (cτ + d)Z)},Ω1)←→ (cτ + d)dz ∈ H0(C/{Z + τ ′Z},Ω1).

In particular, the behavior of (dz)⊗k as one winds around Y (Γ) via the element
γ exactly corrects the corresponding behavior of a modular form of weight k. This
leads to the identification of modular forms (ignoring issues at the cusps) as sec-
tions of some line bundle L whose fibers at a point E are naturally isomorphic to
H0(E,Ω1

E)⊗k. By “naturally”, we mean that the monodromy of this bundle is as
computed above. How may one construct such a line bundle? We want to “inter-
polate” the (trivial) sheaf Ω1 as E varies over Y (Γ). To do this, one can consider
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Figure 2. The monodromy of ωX for γ ∈ Γ

the sheaf of relative differentials Ω1
E/Y (Γ) on Y (Γ). If π : E → Y (Γ) denotes the

natural projection, then we let:

ωY := π∗Ω
1
E/Y .

Intuition tells us that the fibre of ωY at a point E ∈ Y corresponding to an elliptic
curve E should be exactly what we are looking for, i.e.,

Ω1
E = H0(E,Ω1

E)

(a sheaf at a closed point is simply the module of global sections). This intuition
is correct — it requires only that the map π is proper.

1.2.18. Definition (Version 3a). A meromorphic modular form f of weight k over
R and level Γ is a section of H0(Y (Γ)R, ω

⊗k).

Note that we also would like to understand what happens at the cusps. For-
tunately, the construction of [DR73] provides us with a generalized elliptic curve
E/X(Γ), and a corresponding local system ωX on X(Γ), and we may set:

1.2.19. Definition (Version 3b). A modular form f of weight k over R and level Γ
is a section of H0(X(Γ)R, ω

⊗k).

It’s usually sensible to assume that R is a Z[1/N ]-algebra where N is the level
of Γ. Denote the R-module H0(X(Γ)R, ω

⊗k) of modular forms by Mk(Γ, R).

1.2.20. Warning. In order to define ωY or ωX , one needs the existence of a univer-
sal generalized elliptic curve E, which requires the moduli problem to be fine, which

11



requires working with X1(N) rather than X0(N). This is not an artificial problem
— there is no appropriate sheaf ω on X0(N), and modular forms of odd weight on
X0(N) are automatically zero for parity reasons.

1.2.21. Exercise. Show that — when it makes sense to compare them — all the
definitions of meromorphic modular forms coincide.

1.2.22. Kodaira–Spencer: Another description when k = 2. Another description of
modular forms of weight 2 over C arises from the fact that, for such forms, f(τ)dτ
is invariant under Γ. This might lead one to suspect that

Ω1
X ' ω⊗2

X ,

but this is only correct along Y (Γ). The problem is that the differential dτ is not
smooth at the cusp. The natural (analytic) parameter at ∞ is q = e2πiτ , and

dτ =
1

2πi

dq

q
.

In particular, a section of H0(X,Ω1) will be (locally) a multiple of dq, and so the
corresponding function f(τ)dq = 2πiqf(τ)dτ will automatically vanish at the cusp.
In particular, the correct isomorphism is

Ω1
X(∞) ' ω2

X ,

where D(∞) indicates that differentials are allowed to have poles of orders at most
one at the cusps. These isomorphisms go by the name of the Kodaira–Spencer
Isomorphism — over Y it can be deduced more directly using deformation theory
(see §3B of [HM98] for a geometric discussion).

1.2.23. Change of coefficients. Mostly the coefficients R just come along for the
ride. In particular, Mk(Γ, R) denotes the forms of weight k and level Γ over R,
then one might hope that

Mk(Γ, S) = Mk(Γ, R)⊗R S
for an S-algebra R. This is certainly true if S is a flat R-algebra, but it is not
always true. The exceptions, however, are mainly confined to vary particular cir-
cumstances:

1.2.24. Proposition. Let S be an R-algebra, and suppose that N is invertible in
R. Then there is an isomorphism:

Mk(Γ(N), S) 'Mk(Γ(N), R)⊗R S
provided that N ≥ 3 and k ≥ 2.

The only interesting case is really when R = Zp and S = Fp for a prime p not
dividing N . There is a map:

0→ ω → ω → ω/p→ 0

of local systems on X(N)/Zp. Since j∗X(N)/Fp → X(N)/Zp is a closed immer-
sion, there is an isomorphism

Hi(X(N)/Fp, ω
⊗k) ' Hi(X(N)/Zp, j∗ω

⊗k) = Hi(X(N)/Zp, ω
⊗k/p).

It suffices to show that H1(X(N)/Zp, ω
⊗k) = 0. Since this is finitely generated,

it suffices to show that H1(X(N)/Zp, ω
⊗k)/p is zero, and hence it suffices to show

that H1(X(N)/Fp, ω
⊗k) is zero. There is a very natural way to show that the

12



first cohomology of a locally free line bundle on a smooth curve vanishes, which
is to show that the degree of the line bundle is at least 2g − 2 and then to use
Riemann–Roch (or Serre duality). In our case, the appropriate estimate for the
degree follows from the Kodaira–Spencer isomorphism ω2 ' Ω1

X(∞) of § 1.2.22
provided that k ≥ 2.

You may wonder where the previous argument used the fact that N ≥ 3. It
comes up in order to even talk about the sheaf ω which requires the universal
elliptic curve E/X. In fact, we shall see later that the result is not even true for
N = 1 — since the Hasse invariant gives a weight 1 form of level 1 modulo 2 which
(clearly) does not lift to characteristic zero.

One may also wonder whether the result is true for k = 1. Katz proves that
it is true for N ≤ 11 and leaves open the possibility that it might be true more
generally. Yet it is not. In particular, there are modular forms modulo p of weight
one which may not lift to characteristic zero.

1.2.25. Exercise (Schaeffer). Show that the map M1(Γ1(7 · 347),Zp)→M1(Γ1(7 ·
347),Fp) is not surjective when p = 935666449040629144864934236346813. Or at
least, think about how one might prove this.

1.2.26. Tate Curves. (See [Sil94]). Let q = e2πiτ . The exponential map induces an
isomorphism:

C/Z⊕ τZ→ C×/qZ = Gm(C)/qZ.

Writing the Weierstrass parametrization in terms of the parameter q instead of
τ , (and changing the scaling by an appropriate factor of 2πi), we find that a model
for C×/qZ is given by ([Sil94])

y2 + xy = x3 + a4(q)x+ a6(q),

where

a4 = −
∑ n3qn

1− qn
, a6 = −

∑ (5n3 + 7n5)qn

12(1− qn)

are both in Z[[q]]. The discriminant of this elliptic curve is (of course)

∆ = q

∞∏
n=1

(1− qn)24.

In particular, the equation above formally defines an elliptic curve over the Laurent
series ring Z[[q]][∆−1] = Z((q)). We call this the Tate Curve and denote it by T (q).
It provides a description of the universal elliptic curve E/X over a punctured disc
(over Z) at the cusp ∞. We may associate to T (q) an canonical differential

ωcan :=
dt

t
∈ H0(T (q),Ω1),

where T (q) = Gm/qZ and Gm = Spec(Z[t, t−1]). In particular, given a meromor-
phic modular form f of weight k (thought of as a rule via definition 2a), we define
the q-expansion of f to be:

f (T (q), ωcan) ∈ Z((q))

1.2.27. Exercise. In what context does the definition Gm/qZ make sense?
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1.2.28. Definition (Version 2b). A modular form f of weight k over R is a function
on pairs (E/A, ω) where ω is a nowhere vanishing section of Ω1

E/A and A is an R-

algebra such that:

(1) f(E/A, ω) depends only on the A-isomorphism class of (E/A, ω).
(2) f(E,µω) = µ−kf(E,ω) for any µ ∈ A×.
(3) If φ : A→ B is any map of rings, then f(E/B, ωB) = φ(f(E/A, ω)).
(4) We have f (T (q), ωcan) ∈ A[[q]].

This definition can also be extended to include level structure in the obvious
way. If f is a modular form over a ring R which admits an injection φ : R → C,
then the image of the q-expansion of f under φ coincides exactly with the usual
definition of the q-expansion of a modular form in terms of its Fourier expansion.

1.3. The q-expansion priniciple. We have (Prop. 1.6 of [Kat73]):

1.3.1. Proposition. A modular form f is determined by its q-expansion.

If one is to be precise, this applies only to connected modular curves X(Γ);
for non-connected curves one must (clearly) have the data of f at a cusp on each
component. Note that the basic idea of Prop. 1.3.1 is obvious — if f vanishes on
a Tate curve then it should vanish in a “neighbourhood” of infinity, and thus over
the entire curve. In fact, this is exactly the proof, more or less. We also refer to
the following corollary as the q-expansion principle:

1.3.2. Corollary. Let R→ S be an inclusion of rings, and suppose that the level N
of Γ is invertible in R. Suppose that f is a modular form over S whose q-expansion
has coefficients in R[[q]] ⊂ S[[q]]. Then f arises from a modular form in R.

This is an easy consequence of the previous lemma. What this theorem really
means is that we can be a little sloppy with defining the rings R we are working
over, because we can “detect” the smallest such R from the q-expansion.

1.4. Hecke operators. One often sees the Hecke operator Tp on modular forms
of weight k to be defined as follows:

Tp

(∑
anq

n
)

=
∑

(anp + pk−1an/p)q
n,

where an/p is interpreted to be zero unless p divides n. While this is an important
property of Tp (which indeed characterizes it, by the q-expansion principle), it is a
rubbish definition. Here are two better ones.

1.4.1. Tp as a correspondence. Suppose that R is a ring in which p is invertible.
We have a diagram as follows:

X0(p)
wp
- X0(p)

X

π

?
...................

Cp

- X

π

?

Recall that X0(p) is the moduli space of pairs (E,D) together with a cyclic isogeny

φ : E → D of order p. The map wp sends a pair φ : E → D to φ̂ : D → E, where φ̂
is the dual isogeny. It is an involution. The map π is the natural projection. The
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“map” Cp is a many to many map which makes the diagram commute. Given a
finite map φ : Z → Z between varieties, the graph of φ in Z × Z defines a closed
subscheme of (co-)dimension dim(Z). The map Cp gives rise to a correspondence,
which defines a Zariski closed subscheme of X × X. Any such correspondences
induces actual maps on any object functorially associated to X which is linear —
for example, the ring of functions on X, the tangent space of Jac(X), and more
generally any appropriate cohomology group (coherent, Betti, étale) associated to
X. The induced map Cp then acts as π∗(π ◦ wp)∗ = π∗w

∗
pπ
∗, and in particular

defines a map:

pTp = π∗(π ◦ wp)∗ : H0(X(Γ), ωk)→ H0(X(Γ), ωk).

Since p is invertible in R, we may divide by p to obtain R.

1.4.2. Remark. In the above calculation, we secretly made an identification
π∗ωk ' (π ◦ wp)∗ωk. One way to do this is simply from the definition of ω. On
other natural Hecke modules (like H1(X,Ql)) the correspondence Cp induces Tp,
rather than pTp. The identification of Tp as above with the map on q-expansions
is done (for example) in [Buz03]. (We also do a related computation below.)

1.4.3. Tp on modular forms defined as a rule. The definition of Tp above can be
made very explicit when modular forms are thought as sections of H0(X(Γ), ωk).

Let (E,α) denote a point on X(Γ), where we denote by α the auxiliary level
structure associated to the E. We assume that the level of Γ is prime to p. The
pre-image of the map:

X(Γ)×X(1) X0(p)→ X(Γ)

consists of p + 1 points φ : D → E where φ is cyclic of degree p. In any such
situation, if ω ∈ H0(E,Ω), we may pull ω back to D via φ∗. Similarly, one may
pull back α to a level structure φ∗α on D.

1.4.4. Definition. If f is a modular form of weight k, and let E/R be an elliptic
curve where p ∈ R is invertible. Then

Tpf(E,ω, α) = pk−1
∑

φ:D→E

f(D,φ∗(ω), φ∗α).

Let us also introduce the operator Up which makes sense at level Γ0(p). Here
we are given E together with a distinguished p-isogeny η : E → B. We define Up
simply by considering the maps φ : D → E which are not equal to η∨ : B → E.
that is;

Upf(E, η : E → B,ω, α) = pk−1

φ6=η∨∑
φ:D→E

f(D,φ∗(ω), φ∗α).

The equivalence of these definitions with the usual ones involving q-expansions is an
easy exercise, which we now do. As usual, we ignore the level structure α, because
it doesn’t make any difference to the computation.

One can also consider the same operator but now thinking of subgroup schemes
P ⊂ E[p] instead of maps D → E, that is:
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1.4.5. Alternate Definition. If f is a modular form of weight k, and let E/R be
an elliptic curve where p ∈ R is invertible. Then

Tpf(E,ω, α) = pk−1
∑

φ:E/P→E

f(E/P, φ∗(ω), φ∗α),

where the sum is over all p+ 1 étale subgroup schemes P of order p in E[p].

1.4.6. Exercise. Understand why — as promised in §1.3 — the above definition is
sloppy. Hint: why is Tpf a modular form over R if the maps φ (or the subgroup
schemes P ) are not necessarily defined over R. Show that everything is OK using
the q-expansion principle (Corr. 1.3.2).

Given T (q), we would like to write down the p + 1 curves D together with the
corresponding isogenies φi : D → T (q). For any such map, we have corresponding
dual isogenies φ∨i : T (q)→ D, which are determined by the cyclic subgroup scheme
of order p. The subgroups of order p are given by the subgroups of the p-torsion,
which is:

T (q)[p] = {ζp, q1/p}.

Hence we have the p+ 1 maps φ∨0 , . . . , φ
∨
p defined as follows:

φ∨i :=

{
T (q)→ T (q)/q1/pζip, i = 0, 1, . . . , p− 1

T (q)→ T (q)/ζp, i = p.

The elliptic curve T (q)/q1/pζi is isomorphic to T (q1/pζi). On the other hand, the
elliptic curve T (q)/ζp is isomorphic to T (qp) via the map induced by the p-th power
map on Gm. We may thus write down the corresponding dual isogenies as follows:

φi =

{
T (q1/pζip)→ T (q1/pζip)/ζp ' T (q), i = 0, 1, . . . , p− 1

T (qp)→ T (qp)/q = T (q), i = p.

Let us suppose that

f (T (z), ωcan) =
∑

anz
n.

Then formally we have:

f (T (q), ωcan) =
∑

anq
n,

f
(
T (q1/pζip), ωcan

)
=
∑

anq
n/pζnip ,

f (T (qp), ωcan) =
∑

anq
np.

The isomorphism T (qp)/q ' T (q) sits inside the commutative diagram:

Gm ======= Gm

T (qp)
?

φp
- T (q)

?
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and hence φ∗pωcan = φ∗pdt/t = dt/t = ωcan. Hence, by definition:

Tpf(T (q), ωcan) = pk−1

(
f(T (qp), ωcan) +

p−1∑
i=0

f(T (q1/pζip), pωcan)

)

= pk−1

(
f(T (qp), ωcan) + p−k

p−1∑
i=0

f(T (q1/pζip), ωcan)

)

= pk−1
∑

anq
np +

1

p

p−1∑
i=0

anζ
in
p q

n

=

∞∑
n=0

(anp + pk−1an/p)q
n.

.

recovering the previous definition.

1.4.7. Hecke operators defined on functions of lattices. Yes, you can do that too, if
you like.

1.4.8. The operator Tp on q-expansions in characteristic p. The definitions pre-
sented above included the assumption that p be invertible in R. Yet the effect
on q-expansions does not introduce denominators, and hence one may expect that
the operator also exists in characteristic p at level prime to p. That one can do
this is an immediate consequence of the q-expansion principle, namely, one may
lift to characteristic zero, apply Tp, and then reduce modulo p to get the following
commutative diagram defining Tp in characteristic p:

H0(X/Zp, ω
k)

Tp- H0(X/Zp, ω
k) ⊂ - Zp[[q]]

H0(X/Fp, ω
k)

??
Tp- H0(X/Fp, ω

k)

??
⊂ - Fp[[q]]

??

1.4.9. The operator Tp on q-expansions in characteristic p and weight one. Perhaps
you might complain that the argument above assumes that the mod-p reduction
map is surjective in weight one. The formula, however, is still correct. The point
is that, after removing the cusps, Y is affine, and then we have maps:

H0(Y/Zp, ω
k)

Tp- H0(Y/Zp, ω
k)

H0(Y/Fp, ω
k)

??
Tp- H0(Y/Fp, ω

k)

??

If f ∈ H0(X/Fp, ω
k), the lifted form f may have poles at the cusps, but the

definition of Tp (as well as the computation involving q-expansions) still makes
sense for meromorphic forms. The reduction

Tp(f)
17



is then a priori a meromorphic modular form, however, by looking at the q-
expansion, we see that it is regular at the cusps and thus holomorphic by the
q-expansion principle. (This nice argument is due to Gross [Gro90] §4.) On the
other hand, for discussion of Hecke operators “without the crutch of q-expansions”
see [Con07].

1.5. The Frobenius morphism. Suppose that S is a ring with pS = 0, and
suppose that X/S is a scheme. In this context, there are a pair of maps which go
via the name Frobenius. First, one has the absolute Frobenius, which induces maps
Fabs : Spec(S)→ Spec(S) and X → X. This map is given, locally on rings, by the
map x 7→ xp. There is a commutative diagram as follows:

X
F ∗abs

- X

Spec(S)
?

F ∗abs

- Spec(S)
?

In particular, F ∗abs is not a map of schemes over S, unless F ∗abs on S happens to
be constant (so S = Fp). The relative Frobenius is a way of modifying this to give

a morphism of schemes over S. Namely, let X(p) = X ×S S, where S is thought
of over S not by the trivial map but via Fabs. Then, by construction, there is a
map, relative Frobenius, given by F : X → X(p), such that the composition with
the natural map X(p) → X is F ∗abs.

1.5.1. Exercise. Let X be the smooth curve:

ax3 + by3 + cz3 = 0

over k, where 3abc 6= 0. Prove that X(p) is the curve

apx3 + bpy3 + cpz3 = 0.

Note that the map F ∗abs on H∗(X,OX) is not S-linear, although it is Fp-linear.

1.6. The Hasse invariant. Let S be as in the previous section. Suppose that
E/S is an elliptic curve together with a differential ωS generating Ω1

E/S . By Serre

duality, we may associate to ωS a dual basis element η ∈ H1(E,OE). The Frobenius
map induces a map:

F ∗absH
1(E,OE)→ H1(E,OE),

and we may write
F ∗abs(η) = A(E,ω) · η

for some A(E,ω) ∈ S.

1.6.1. Lemma. A is a meromorphic modular form of level one and weight p − 1
over S.

Proof. If one replaces ω by ω′ = λ · ω for λ ∈ S×, then η becomes η′ = λ−1η, and

F ∗abs(η
′) = F ∗abs(λ

−1η) = λ−pA(E,ω) · η = λ1−pA(E,ω) · η′,
and thus

A(E, λ · ω) = λ1−pA(E,ω).

�
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If S is a field, then A(E,ω) is either zero or a unit — it is zero precisely when E
is supersingular (this is essentially a definition of what it means to be supersingular,
see [Sil86]). We call A the Hasse invariant of E. To compute the q-expansion of
A, we need to evaluate A on the pair (T (q), ωcan). In order to do this, we need to
understand the operator F ∗abs more explicitly on curves.

1.7. The Cartier operator on curves. Suppose that X/S is a smooth curve of
genus g, and that S is perfect. The Cartier operator C defines a map from the
meromorphic differentials on X to itself satisfying the following properties:

(1) C preserves the holomorphic differentials H0(X/S,Ω1).
(2) C(fpω) = f · C(ω) for any meromorphic function f .

(3) C(fn−1df) =

{
df, n = p

0, 0 < n < p.
.

(4) If η ∈ H1(X,OX), then, under the pairing of Serre duality,

〈C(ω), η〉 = 〈ω, F ∗absη〉.

To imagine why such an operator might exist, consider the completion ÔX,x of a
local ring at x. Because X is smooth, the corresponding ring is S[[x]], the mero-
morphic differentials are of the form S[[x]]dx. Then C may be defined as follows,
writing ω = f(x)dx:

C(ω) :=
p

√
−d

p−1f

dxp−1
dx.

Clearly C preserves holomorphicity at a point. By the chain rule, one has:

dp−1fpg

dxp−1
= fp

dp−1g

dxp−1
,

dp−1fn−1df

dxp−1
≈ 1

n
· d

p

dxp
(fn).

The usage of ≈ is meant to indicate that this equality is only an equality of formal
expressions over Z[[x]] — over S[[x]] it makes perfect sense if (n, p) = 1 and implies
that C(fn−1df) = 0, because dp/dxp is clearly the zero operator. For p|n it is not too
hard to make formal sense of what this means and compute that C(fp−1df) = df .
To make this rigorous, one needs to show that C may also be defined algebraically,
and that it does not depend on the choice of a uniformizer. It would take us a little
too far afield to prove these statements, however.

1.7.1. Deligne’s Computation of A. Now let us compute the q-expansion of A,
namely, to compute A(T (q), ωcan) over R = Fp((q)).

1.7.2. Theorem (Deligne). A(T (q), ωcan) = 1.

The idea is simply to show that the corresponding 1-form η is preserved under
F ∗abs. From the characterizing properties of the Cartier operator, it thus suffices to
show that C(ωcan) = ωcan. Let x = t− 1 be a uniformizing parameter of Gm at the
origin. Then a (Gm-invariant) differential is given by

dx

1 + x
=
dt

t
= ωcan.

Yet an easy computation shows that C(dt/t) = t−1C(tp−1dt) = dt/t. We can’t
quite argue this way, because R is not perfect (even the local definition of C above
involves taking pth roots and thus requires that the underlying ring S be perfect).
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On the other hand, if Rper is the perfection of R, then, since R → Rper is flat,
by the q-expansion principle (Corr. 1.3.2), it suffices to work over Rper, where the
argument above goes through.

1.8. Lifting the Hasse invariant. (cf. [Buz03]). If p ≥ 5, then A lifts to a
modular form in characteristic zero. From the computation above, we note that
the q-expansion of any such lift is congruent to 1 mod p. From the Kummer
congruences, we deduce:

1.8.1. Theorem. Suppose that p ≥ 5. The modular form Ep−1 is a lift of A such
that Ep−1 ≡ A mod p. If p = 2 or p = 3, the modular forms E4 and E6 are lifts
of A4 mod 8 and A3 mod 9 respectively.

Proof. For p = 2 and 3 this is a computation; for p ≥ 5 it is an immediate con-
sequence of the von Staudt–Clausen theorem on Bernoulli numbers, as well as the
identification of the constant term of the classical holomorphic Eisenstein series. �

Just to be clear, here by “mod” p we really mean modulo the ideal (p), so
that if Ep−1 is thought of as a modular form over some ring R, this congruence
identifies the value of A in R/p, even if the latter is not reduced. In particular,
given a Weierstrass equation for E (and hence a canonical differential ω) one may
compute A mod p by computing the corresponding value of Ep−1, with appropriate
modifications if p = 2 or 3.

2. p-adic modular forms

Let us fix a congruence subgroup Γ of level prime to p. The definition of p-adic
modular form and overconvergent p-adic modular form at level one are virtually the
same as the corresponding definition at level Γ — one need only add the natural
compatibility with the level structure α away from p. In the sequel, therefore, we
shall essentially ignore this distinction and work at level one, making remarks about
the level structure away from p (the “tame” level structure) when appropriate.

2.1. p-adic modular forms: The Serre approach. Serre wrote a beautiful3 and
elementary paper on p-adic modular forms [Ser73b]. The basic idea (translated in
to somewhat different language) is as follows. In order to capture the notion of
congruences between modular forms in some topological way, then we would like to
say that two q-expanions a and b are close if a ≡ b mod pn for large n. Recall that
(up to normalization) the space of modular forms has a basis with coefficients in
Z. There is a natural topology on Zp[[q]]⊗Qp (note, this is different from Qp[[q]])

3As one would expect, Serre effortlessly explains everything seemingly starting from first prin-
ciples and gives a beautiful explanation of the construction of p-adic L-functions. Following the

elementary arguments down to the source, the key fact is to show that φ =

∞∑
n=1

σp−2(n)qn does

not lie in the field of fractions of the ring of modular forms modulo p on the complement X \ S
of the supersingular locus ([Ser73b], p.199 Ser-9). An elementary argument using weights shows

that φ itself is not a mod-p modular form. Serre notes that φ− φp = ψ for some explicit ψ, and
then uses the fact that H0(X \ S,OX) is integrally closed (because X and thus X \ S is smooth)

to obtain a contradiction. Yet to get the identification of M̃0 with H0(X \ S,OX), one uses the

fact that the Hasse invariant A is congruent to 1 mod p, which is of an order of difficulty higher
than the rest of the arguments in the paper. Thus it is better to read [Ser73b] in conjuction with
Serre’s Bourbaki seminar on the subject [Ser73a], which gives a little more detail concerning this

argument.
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which exactly records this notion of congruence, and we may define p-adic modular
forms to be the closure of the set of modular forms (see [Ser73b]). Let A be (any)
lift of the Hasse invariant. Since A ≡ 1 mod p, it follows that the powers of A (at
least the pnth powers) are becoming more and more congruent to 1 mod p. Hence
they converge to 1. It follows that the powers Ap

n−1 are converging to A−1, or
in particular that any lift of the Hasse invariant is invertible. The space of p-adic
modular functions then defines itself:

2.1.1. Definition. The p-adic modular functions on X(Γ) are the functions which
are well defined at all points of ordinary reduction.

Naturally enough, one might be a little suspicious of this definition, since one is
allowing poles at an infinite number of supersingular points (there are only finitely
many supersingular points modulo p, but there are infinitely many lifts to charac-
teristic zero). An initial step to repairing this is give a rule–based definition.

2.1.2. Definition (Version 2). A p-adic modular form f of weight k and level one
over a p-adically complete algebra A is a function on pairs (E/R, ω) for a p-adically
complete A-algebra R satisfying

(1) ω is a nowhere vanishing section of Ω1
E/A,

(2) A(E/B, ωB) is invertible, where B = A/p,

such that:

(1) f(E/A, ω) depends only on the A-isomorphism class of (E/A, ω).
(2) f(E,µω) = µ−kf(E,ω) for any µ ∈ A×.
(3) If φ : A→ B is any map of rings, then f(E/B, ωB) = φ(f(E/A, ω)).
(4) f(T (q), ωcan) ∈ A[[q]].

As expected, there is an analogous definition at level Γ prime to p, where one
considers functions f(E/A, ω, α) for some level structure α away from p correspond-
ing to the group Γ. Denote this space by Mk(Γ, R, 0). If Γ = SL2(Z) (which is a
natural choice for which all the phenomena can already be seen) we simply write
Mk(1, R, 0). Clearly any classical modular form of weight k over R gives a p-adic
modular form. Moreover, a p-adic modular form over a finite field k (necessarily of
characteristic p) consists of sections of H0(X \S, ωk), where S is the supersingular
locus (since invertible over a field is the same as non-vanishing). If A is the Hasse
invariant, then A is a modular form of weight p− 1 over Fp, and A−1 is a modular

form of weight 1−p over Fp. Moreover, Ap
n−1

defines an invertible p-adic modular
form of weight pn−1(p− 1) over Z/pnZ, and thus:

2.1.3. Lemma. Suppose that pn = 0 in R. Then the map;

Ap
n−1

: Mk(Γ, R, 0)→Mk+pn−1(p−1)(Γ, R, 0)

is an isomorphism.

From this we deduce the q-expansion principle.

2.1.4. Lemma. There is an injective map Mk(Γ, R, 0)→ R[[q]].

Proof. By construction,

Mk(Γ, R, 0) = Mk(Γ, lim
←
R/pn, 0) = lim

←
Mk(Γ, R/pn, 0).
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It thus suffices to assume that pn = 0 in R. By dévissage (and Prop. 1.2.24), it suf-
fices to consider the case R = Z/pnZ. Given g ∈Mk(Γ, R, 0), its reduction modulo
p extends to a section of H0(X,ωk) with poles of finite orders at the supersingular

points. In particular, after multiplication by some power of Ap
n−1

, it extends to a

classical modular form. Since the q-expansion of Ap
n−1

is 1, this construction does
not depend on any choices. The lemma then follows from the classical q-expansion
principle. �

Moreover:

2.1.5. Lemma. The closure of the set of classical modular forms over a p-adically
complete ring R of all weights coincides with the set of p-adic modular forms over
R of all weights.

Proof. Again by the limit property of Mk(Γ, R, 0) mentioned above, It suffices to
show that any classical modular form f gives an element of Mk(Γ, R/pn, 0) where

weight(f) ≡ k mod pn−1(p− 1),

and conversely that every element of the latter set arises in such a way. As in the
previous lemma, any classical f defines a modular form in Mweight(f)(Γ, R/p

n, 0)

which then only depends on weight(f) mod pn−1(p − 1) by Lemma 2.1.3. Con-
versely, the construction of q-expansions above implies that any g comes from a
space of classical modular forms modulo pn of large weight, which then lifts to a
classical modular form by Lemma 1.2.24. �

Another nice property of p-adic modular forms is that one sees all forms of
p-power level:

2.1.6. Lemma. Suppose that R is a p-adically complete ring such that ζpn ∈ R.
Then there is an inclusion:

Mk(Γ1(pn), R) ⊂Mk(1, R, 0)

for any k.

Proof. By dévissage (and Prop. 1.2.24) it suffices to consider the case R = Zp[ζpn ].
Let f be a classical modular form of level Γ1(pn). Suppose we are given an elliptic
curve (E/R, ω) such that A(ES , ωS) is a unit for S = R/π so E is ordinary. The
group scheme E[pn] is then an extension of an étale group scheme by a local group
scheme C. The base change of C to S = R/p is the kernel of Frobnp , and (for

example) if R is the ring of integers of a finite extension of Qp then the Qp-points
of C are the kernel of the reduction map. Over some unramified extension of R,
there is an isomorphism C ' µpn . Since ζpn ∈ R, this module has a canonical
generator P , and hence we define the p-adic modular form g by

g(E,ω) = f(E,ω, P ).

�

A similar argument shows that Mk(Γ0(pn), R) ⊂ Mk(1, R, 0) for any p-adically
complete ring R.

2.1.7. Exercise. Serre [Ser73b] also proves this result using the level lowering prop-
erties of the Up operator. Show that these proofs are the same.
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2.1.8. Congruences for p-adic modular forms. Given a p-adic modular form f over
R, we have the following basic result governing congruences for f :

2.1.9. Lemma. Let R denote the ring of integers of a finite extension of Qp. Let
f ∈Mk(Γ, R, 0), where Γ has level N . For any fixed power pd of p, the quantity

a(`) mod pd

depends only on the conjugacy class of Frob` in a finite extension Kd/Q unramified
outside Np · ∞.

Proof. By passing to sufficiently high integral weight, we may lift f mod pn to a
classical modular form g. We may then write g as a finite sum of eigenforms, where
αi ∈ Qp:

g =
∑

αigi.

In the usual manner [Del71], the eigenforms gi may be associated with Galois
representations unramified outside Np ·∞, and thus the coefficient ai(`) of gi mod
any fixed power of p only depends on the conjugacy class of Frob` in some finite
extension unramified outside Np · ∞. The result follows. �

Note that as n increases, the number of eigenforms gi required typically increases,
and the fields Kd become more and more complicated. For certain exceptional g
and for small d, however, the fields Kd may turn out to be abelian, in which case
a(`) only depends on ` modulo some fixed modulus (by class field theory).

2.1.10. Exercise. Let g =
∑
a(n)qn be a p-adic modular form. For any integer d,

prove that there exists a positive density of primes ` such that a(`) ≡ 0 mod pd.
Hint: use the Cebotarev density theorem and the fact that Tr(ρ(c)) = 0 for a modular
Galois representation ρ and any complex conjugation c ∈ GQ.

2.1.11. Rigid Analytic Spaces. Let X be a modular curve which is smooth over
Z[1/p]. It makes perfect sense to talk about the ordinary locus of X/Fp, since
there are only finitely many supersingular points. It makes less sense to talk about
the “ordinary locus” over Zp, since know we would like to exclude all (infinitely
many) lifts of supersingular elliptic curves. Specifically, we would like to remove a
“unit ball” around any supersingular point. Clearly this is not a construction that
can be done in the Zariski topology. Rigid analytic spaces provide the right context
in which these constructions make sense, and such that the topology is fine enough
to allow such constructions.

2.1.12. Exercise. Pick up a book on rigid analytic spaces. Hold it in your hand
held out perpendicularly from your body for approximately ten minutes. Deduce that
actually reading it would be less painful and stop complaining already.

Alternatively, consult Brian Conrad’s lectures from the 2007 Arizona Winter
School [BCD+08].

For a modular curve X, a first approximation to thinking about the associated
rigid analytic space Xrig is to think about X as a complex manifold over Cp.

2.1.13. Definition. The p-adic modular forms of weight k are the global sections
H0(Xrig[0], ωk), where Xrig[0] denotes the ordinary locus of the rigid analytic space
Xrig.
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Instead of defining rigid analytic spaces, we consider an example which tells you
everything you need to know (at least for the purposes of these lectures). Suppose
that N = 1 and p = 2. The modular curve X(1) is just the j-line. A curve E/F2

is supersingular if and only if jE = 0. Thus the supersingular locus is the region
|j| < 1, and the ordinary locus is the region |j| ≥ 1, or |j−1| ≤ 1. In particular,
the p-adic modular functions of level one for p = 2 are exactly given by the Tate
algebra:

C2〈j−1〉 :=

∞∑
n=0

anj
−n, lim |an| = 0.

That is, the 2-adic modular functions of level one are just functions on an explicit
closed ball, and Xrig[0] consists of the maximal ideals of this ring, which are easily
seen to consist canonically of points in this ball.

2.2. The ordinary projection. Let R be p-adically complete ring, and consider
the space Mk(Γ0(p), R) of classical modular forms. The operator Up acts on this
space. Since this space is finite as an R-module, we may define the following
operator:

ep := lim
→
Un!
p .

2.2.1. Lemma. ep is an idempotent on Mk(Γ0(p), R), and projects onto the space
generated by Hecke eigenforms on which Up acts by a unit.

Proof. By dévissage (and Prop. 1.2.24), we may reduce to the case when R = Zp.
In this case, the result is an elementary statement in linear algebra. �

Note that Up and hence ep commutes with the Hecke operators T` for ` prime to
the level. Thus the image (and kernel) of ep is module for the Hecke algebra, and ep
is an Hecke equivariant projection. If f is a Hecke eigenform with unit eigenvalue
for Up then one says that f is ordinary.

The following is a consequence of results of Hida:

2.2.2. Theorem (Hida). The operator ep extends to an idempotent on Mk(Γ, R, 0).
Denote the image of ep by epMk(Γ, R, 0). Then

(1) epMk(Γ, R, 0) is finite dimensional, and the dimension depends only on k
mod p− 1.

(2) If k > 1, then epMk(Γ, R, 0) ⊆ Mk(Γ0(p), R, 0) is spanned by classical
modular forms.

(3) The minimal polynomial of Up on epMk(Γ, R/pn, 0) only depends on k
mod pn−1(p− 1).

In fact, Hida proves much more than this. The last condition points to the fact
that the eigenforms of weights k and k′ are congruent to each other modulo some
power of p which depends on (k − k′) — in fact one can form a natural family H
of ordinary modular eigenforms that varies over all weights, in particular a finite
module H over Λ = Zp[[Z

×
p ]] such that

H⊗Λ Zp(ψk) ' epMk(Γ0(p),Zp),

where Zp(ψk) is the abelian group Zp where the action of Z×p is via the character

ψk(x)m = xk−1m. Indeed the theme of eigenforms varying in families is central to
the topic of p-adic and overconvergent modular forms, although we concentrate on
somewhat different topics in these notes.
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2.2.3. Remark. Since newforms of level Γ0(p) have Up-eigenvalue equal to one of

the numbers ±p(k−2)/2, when k > 2, the ordinary projection is generated by old
forms from Mk(Γ, R).

2.3. Why p-adic modular forms are not good enough. Let us explain why
one might ask to go beyond the theory of p-adic modular forms. We do this with
an example, first observed by Atkin and O’Brien [AO67]. The j-invariant defines
a meromorphic modular form of weight zero and level 1 for any p. It follows that
Upj also a p-adic meromorphic modular form of weight zero and level 1. On the
other hand, since Upj ∈ Zp[[q]], the function Upj extends to the cusp and defines
an honest p-adic modular form. By Hida’s theorem, it follows that epUpj lies
in the ordinary space epM0(1,Zp, 0), and can thus be written as a finite sum of
(generalized) ordinary eigenforms. Atkin and O’Brien consider the special case of
p = 13. In this case, the dimension of e13M0(1,Z13, 0) is the same dimension as
e13M12(1,Z13, 0), which is the image of the classical space M12(1,Z13) under e13.
The space of modular forms of weight 12 and level 1 over Z13 is generated by
E12 ≡ 1 mod 13 and ∆. The eigenvalue of T13 on ∆ is

τ(13) = −577738,

and thus the ordinary projection e13M12(Γ0(13),Z13, 0) consists of the forms:

E12(q)− 1311E12(q13), ∆(q)− β∆(q13),

with U13 eigenvalues 1 and α respectively, where

β = − 288869−
√
−1708715094876 = 5 · 1311 + 3 · 1312 + 9 · 1313 + . . .

α = − 288869 +
√
−1708715094876 = 8 + 5 · 13 + 10 · 133 + 5 · 134 + . . .

are the roots (in Z13) of x2 + 577738x + 1792160394037 = 0. In particular, the
ordinary space has dimension two. A priori it is easy to obtain an upper bound of
2, but the lower bound requires the computation τ(13) ≡ 8 6≡ 0 mod 13. It follows
that e13M0(Γ,Z13, 0) has dimension two. The function 1 is a classical modular form
of level one and weight 0, and it is also an ordinary form with eigenvalue 1. The
other ordinary form is thus a normalized cuspidal eigenform h ∈ Zp[[q]]. Indeed,
h ≡ ∆ mod 13. It follows that there is an identity

e13U13j = 744 + αh

for some α ∈ Z13. In particular, we deduce that, for any fixed d,

Un13j − 744 mod 13d =

∞∑
k=1

c(13nk)qk mod 13d

is a Hecke eigenform for sufficiently large n depending on d. These arguments do
not make clear, however, how large n has to be for any particular d. On the other
hand, Atkin and O’Brien conjectured something much more precise, namely, they
conjecture that

∞∑
k=1

c(13nk)qk mod 13n

is already a Hecke eigenform. That is, the convergence of Un13j to the ordinary
projection is linear. We may ask: is this a general phenomenon for all p-adic
modular forms? In this generality, it turns out that the answer is no.
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2.3.1. There are too many p-adic modular forms. Consider the space of p-adic mod-
ular forms of level 1 and some weight, say k = 12. This certainly contains the
modular form ∆.

2.3.2. Exercise. If f =
∑
anq

n ∈Mk(Γ, R, 0), show that

Vpf =
∑

anq
np ∈Mk(Γ, R, 0),

and that UpVp is the identity. Prove it by defining Vp in the correct way. Then
compare your nice argument to the explicit computations in [Ser73b] and smile to
yourself.

Let g be the p-adic modular form

g := (1− VpUp)∆ =
∑

(n,p)=1

τ(n)qn.

Note that Upg = (Up − UpVpUp)∆ = (Up − Up)∆ = 0. Let R = OCp , which is
p-adically complete. If λ ∈ Cp has positive valuation, then

fλ :=

∞∑
n=0

λnV np g

is also a p-adic modular form over R. On the other hand, since Upg = 0 and UpVp
is the identity, one checks that Upfλ = λfλ. In particular, fλ is an eigenform for Up
with eigenvalue λ. It is also easy to check that fλ is an eigenform for all the Hecke
operators T` as well. Since v(λ) > 0, it follows that epfλ = 0. But this implies
that the ordinary projection might converge arbitrarily slowly in general, e.g., if
one takes the p-adic modular form:

h = fp + pfp1/2 + p2fp1/3 + . . . =
∑

fp1/np
n ∈ Cp[[q]].

Then:

(1) eph = 0,
(2) For arbitrarily small rational r > 0, we have Unp h 6≡ 0 mod pnr for suffi-

ciently large n.

In particular, the convergence of h is not linear (and one can cook up this example
to make the convergence as slow as one desires).

In general, the fact that Up contains a continuous spectrum on Mk(Γ, R, 0) rules
out the possibility that one can decompose a p-adic modular function into an infinite
sum of eigenforms. The key observation, already in [Kat73], is that one must
consider sections of Xrig which converge beyond the ordinary locus Xrig[0]. A
key argument with p-adic modular forms is that one can pass between level 1 and
level Γ0(p) (and higher levels) using the fact that an ordinary elliptic curve E/R
comes with a canonical subgroup scheme P ⊂ E[p], coming from the kernel of
the reduction map. The key idea turns out to be generalizing this construction to
elliptic curves which are no longer ordinary.

3. The canonical subgroup

(cf. §3 of [Kat73].) Let (R,m) be the ring of integers of some finite extension of
Qp with residue field R/m = k and fraction field K. Let us normalize valuations
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so that v(p) = 1. If E/R is ordinary, then E(k)[p] = Z/pZ. There is a reduction
map:

E(K)→ E(k).

The kernel C of E(K)[p] → E(k)[p] is thus a cyclic subgroup of order p, which is
canonically associated to E/R.

Suppose now that E/k is supersingular, and thus E(k)[p] is trivial. The group
E(K)[p] = (Z/pZ)2 contains p + 1 subgroups C, and there does not seem to be
any obvious way to make a canonical choice amongst all such subgroups. An idea
of Lubin, however, shows that this can be done in many — although not all —
cases. Let us do so explicitly when p = 2. An elliptic curve E/R has a minimal
Weierstrass equation of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where ai ∈ R. The choice of Weierstrass equation also determines a differential

ω =
dx

2y + a1x+ a3
∈ H0(E/R,Ω1).

Let K be the field of fractions of R. Then we may explicitly find the 2-torsion
points of E over K in the usual way, in particular, we may write:(

y +
a1x

2
+
a3

2

)2

= x3 +

(
a2 +

a2
1

4

)
x2 +

(
a4 +

a1a3

2

)
x+

(
a6 +

a2
3

4

)
,

and then the x-coördinates4 of the 2-torsion points are obtained by finding the
roots of the cubic. How might one find a canonical root of this cubic? One way
would be to look at the 2-adic valuation of the roots, and take the root of minimal
valuation (if it exists). Note that the valuation of the roots can easily be computed
by Newton’s Lemma. Moreover, this naturally generalizes what happens in the
ordinary case, where there will be exactly one root with valuation 0 which reduces
to the 2-torsion point in k. Let us now apply Newton’s Lemma.

Suppose that a1 = 0 mod m. If a3 = 0 mod m, then the equation would be
singular. Hence v(a3) = 0. If v(a1) ≥ 1, then the valuation of the coefficients of the
cubic are all non-negative except the last term, which will have valuation −2. In
this case, all the roots have valuation −2/3, and there is no unique smallest root.
Suppose instead that v(a1) < 1. Then the coefficients have the following valuations:

[0, 2v(a1)− 2, v(a1)− 1,−2].

In particular, we have the following:

(1) If v(a1) ≥ 2/3, then all the roots have valuation −2/3.
(2) If v(a1) < 2/3, then there is a unique root with valuation 2(v(a1)− 1).

Strictly speaking, this calculation was only valid for v(a1) 6= 0, but one can check
that when v(a1) = 0 that E is ordinary, and that there is a unique root of valuation
0.

One might ask: what is the meaning of the coefficient a1? The Weierstrass equa-
tion when written in this form is only well defined up to certain transformations.
However, one can check that all such transformations leave a1 mod 2 invariant.
In particular, a1 mod 2 is a well defined invariant of E together with a choice of

4as the New Yorker would say.
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differential, which is to say that a1 is a modular form of level 1 and weight 1 over
any ring R in which 2 = 0.

3.0.3. Exercise. Let S = R/2. Prove that a1 mod 2 = A(ES , ωS) is the Hasse
invariant.

In particular, we have seen the following:

3.0.4. Lemma. Let R be a complete Z2-algebra, and S = R/2. An elliptic curve
(E/R, ω) has a canonical subgroup of order 2 if and only if v(A) < 2/3, where
A = A(ES , ωS) is the Hasse invariant of ES.

3.0.5. Exercise. Consider the following curve

E : y2 +
√

2 · xy + y = x3 − x
over R = Z2[

√
2]. Prove that E has a canonical subgroup generated over K =

Q2(
√

2) by the point

P = [2−1 + 21/2 + 23/2 + 22 + . . . , 2−3/2 + 2−1 + 2−1/2 + 21/2 + . . .]

3.0.6. Exercise. Do the same computation as was done in the beginning of this
section except now with 3-torsion instead of 2-torsion. Show that there exists a
canonical subgroup of order three if the valuation of a2 is less than 3/4. Identity a2

mod 3 with the Hasse invariant A(ES , ωS), where S = R/3.

If R is a discrete valuation ring and E/R is an elliptic curve, then there is
essentially a canonical choice of differential ωR ∈ H0(E/R,Ω1), because the latter
is free of rank one over R (canonical up to units in R, of course). It is elementary to
see that the valuation of A(ES , ωS) with S = R/p does not depend on this choice,
so by abuse of notation we can talk of the valuation of A(ES). Suppose that p ≥ 5.

Then by Prop. 1.2.24), we may lift A to a classical modular form Ã of weight p− 1
over Zp. Although this lift is far from unique, the valuation of such a lift evaluated
at a point E/R does not depend on the lift providing that the valuation is < 1. It
follows that:

min{1, v(Ã(E/R, ωR)} = min{1, v(A(E/S, ωS)}
depends only on E/S. Hence, by abuse of notation, we may talk about the valuation
of the Hasse invariant of E and refer to this quantity. Explicitly, we may take

Ã = Ep−1. When p = 2 or 3, we may instead lift A4 mod 8 or A2 mod 9 to E4

and E6 respectively.

3.1. Canonical subgroups for general p. A key fact is the following generaliza-
tion:

3.1.1. Theorem (Lubin–Katz). Let R be a complete Zp-algebra. An elliptic curve
E/R has a canonical subgroup of order p if and only if

v(A) <
p

p+ 1
,

where A(ES , ωS) is the Hasse invariant of E/S with S = R/p.

We call elliptic curves E/R satisfying the hypothesis of the theorem not too
supersingular. How does one prove this for all p? They key point is to use formal
groups, which (following [Sil86]) is a good way to understand elliptic curves over
local fields.
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Note that if E is defined over Zp, then E will never have a canonical subgroup
unless E is ordinary, because otherwise v(A) ≥ 1. Suppose that R is the ring
of integers of a finite extension of Qp, and suppose that E/R admits a canonical
subgroup C. One might ask what the canonical subgroup looks like explicitly. It
should define a finite flat group scheme over Spec(R) of order p. Yet such objects
were classified by Oort–Tate ([TO70]), they take the form:

Spec(R[x]/(xp + α · x))

for some α, β ∈ R with p = αβ. Note that a change of variables allows one to
change α by αλp−1 and β by λ1−pβ for for any λ ∈ R×, and that this is the only
isomorphism between these group schemes for distinct α. C is étale if and only if
α ∈ R×; Cartier duality has the effect of replacing α by β ·w by some specific unit
w (see [TO70]).

3.1.2. Theorem (Coleman [Col05]). The Canonical subgroup of E is given by

C = Spec

 R[x](
xp +

p

A(E,ω)
· x
)
 .

Note that changing ω by a unit λ does not change the isomorphism type of C.

3.2. The curves Xrig[r]. (cf. [Buz03], and also [Con06].) Fix a modular curve X
of level prime to p, and assume that X is a fine moduli space which is smooth over
Zp. Let k denote a finite extension of Fp. The corresponding rigid analytic space
Xrig admits a map

Xrig(Cp)→ X(k).

The pre-image of any point x is an open disc. The complement of the open discs
corresponding to the supersingular points is the ordinary locus5 Xrig[0]. We would
like to remove “smaller” discs. Let x be a supersingular point, and let E/k denote
the corresponding elliptic curve. Since X is smooth at x, the completion of X at x
is isomorphic to W [[t]], where W = W (k) and t is a local parameter. It is natural
to define Xrig[r] by removing from Xrig the open balls B of radius |pr|p = p−r in
the parameter t. If r = 0, this recovers the ordinary locus Xrig[0].

3.2.1. Lemma. This definition is independent of any choices provided that r < 1.

Proof. Any different uniformizing parameter would be of the form s = ap + ut
where a ∈ W and u ∈ W [[t]]×. Yet v(s) = v(t) provided that either v(s) or v(t) is
less than v(p). �

3.2.2. The canonical section. The existence of the canonical subgroup produces a
section of the natural map:

Xrig
0 (p)→ Xrig,

in a neighbourhood of ∞. Namely, we map E to (E,C) where C is the canonical
subgroup of E. For example, there is an isomorphism

Xrig
0 (p)[0]→ Xrig[0],

5More precisely, there exists a rigid subspace Xrig[0] ⊂ Xrig whose closed points are identified

with the pre-image of the ordinary points over k. However, from this point on, we shall elide the
distinction between a rigid analytic space and its underlying set of closed points.
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as long as we interpret Xrig
0 (p)[0] to be the component of the ordinary locus con-

taining∞. Yet this section extends as far as the canonical subgroup can be defined,
namely, to Xrig[r] for any

r <
p

p+ 1
.

To see this explicitly for p = 2, we need to recall some of the geometry of X0(2). It
has genus zero, and thus it is given by the projective line for some modular function
f . There are various choices of f to make, but one classical one is the inverse of
the Hauptmodul:

f =
∆(2τ)

∆(τ)
= q

∞∏
n=1

(1 + qn)24 = q + 24q2 + . . .

One has the classical modular equation:

f

(1 + 28f)3
= j−1 =

(
1

q
+ 744 + . . .

)−1

= q − 744q2 + 356652q3 . . .

The functions f and j−1 are both uniformizing parameters at the cusp ∞. Let us
try to compute a section by solving the corresponding cubic equation:

(1 + 28f)3 − jf = 0

in a neighbourhood of j−1 = 0. The slopes (valuations of the coefficients) of this
polynomial (as a polynomial in f) are

[24, 16, v(3 · 28 − j), 0].

In particular, as long as:

‖j−1‖2 < ‖2−8‖ = 28,

there is a unique root f of valuation > −8. How does this relate to our previous
computation and Lemma 3.0.4? Note that

E4 = 1− 240
∑

σ3(n)qn

is a lift of A4. Moreover, we have

E3
4

∆
= j.

If we are close to the cusp of X(1), then ∆ is close to zero and there is a canon-
ical subgroup corresponding to µp in T (q) (The corrsponding elliptic curves have
multiplicative reduction). Suppose instead that E has good reduction at 2. Then,
choosing ω so as to obtain a minimal model for E, we find that ∆(E,ω) is a unit,
and hence

v(E3
4) = v(j).

In particular, the region v(j) < 8 corresponds (for curves of good reduction) to the
region

v(A) =
1

4
v(E4) =

1

12
v(E3

4) <
8

12
= 2/3,

which is exactly the bound required to admit a congruence subgroup.

3.2.3. Exercise. Show that, for the elliptic curve E of exercise 3.0.5, one has
j = 26 + 29 +O(211), and f(E,C) = 2−6 + 2−4 + 24 +O(25).
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Let’s also consider the case of p = 37. Because p ≡ 1 mod 12, the j-invariants
0 and 1728 are ordinary, and hence there are exactly

p− 1

12
= 3

supersingular points, given explicitly by j = 8 and the roots 3±
√

15 of α2−6α−6 =
0. The ordinary locus Xrig[0] is simply the Riemann sphere minus three discs.
Moreover, Xrig[r] will also be the Riemann sphere minus three slightly smaller
discs. There is a map: Xrig → [0, 1] given by taking the minimum of 1 and the
valuation of the Hasse invariant. The pre-image of [0, r] may be identified with
Xrig[r], by definition. Over any interval [0, r] with r < p/(p + 1), there exists

a section s : Xrig[r] → Xrig
0 (p), which sends a E to (E,C), for the canonical

subgroup C of E. If E is ordinary, then C will be the kernel of the reduction map
E[p]→ E → E(Fp)[p]. It looks something like Figure 3.

3.3. The reason everything works. Suppose that

r <
p

p+ 1
,

and consider the curve Xrig[r]. If (`, p) = 1, then the Hecke operators T` extends to
a correspondence on Xrig[r], since taking quotients by group schemes of order prime
to p does not effect the Hasse invariant. The key point, and literally everything
hangs on this, is that, for a subgroup scheme H of E of order p which is not the
canonical subgroup, the valuation of A(E/H, φ∨∗ω) decreases as long as 0 < v(A) <
p/(p+ 1). This is the key theorem:

3.3.1. Theorem (Katz–Lubin). Let (E/R, ω) be an elliptic curve and suppose that

v(A(E,ω)) <
p

p+ 1
.

Suppose that H ⊂ E is a subgroup scheme of order p which is not the canonical
subgroup. Let φ : E → E/H be the natural projection, and φ∨ : E/H → E the dual
isogeny.

v(A(E/H, (φ∨)∗ω)) =
v(A(E,ω))

p
.

The proof of this is not terribly hard, it requires knowing something about formal
groups (which is mostly in [Sil86]), and is contained in [Kat73]. The identification

of Xrig[r] with the component of Xrig
0 (p)[r] containing ∞ allows us to define an

operator Up on sections of Xrig[r]; one simply takes the sum over all pairs (E,H)
where H is not the canonical subgroup. As a consequence of the theorem above,
we have the following:

3.3.2. Theorem. Let 0 < r < 1/(p+1). Suppose that f is a section of H0(Xrig[r], ωk).
Then Upf extends to a function on H0(Xrig[pr], ωk). In particular, Up defines a
map:

Up : H0(Xrig[r], ωk)→ H0(Xrig[pr], ωk).

Proof. Let (E,ω) denote an elliptic curve with v(A(E,ω)) < pr. It suffices to show
that we can extend Upf to (E,ω). By definition, to evaluate f on (E,ω) involves
evaluating f on elliptic curves E/P as P runs over the p subgroup schemes of E[p]
which are not the canonical subgroup. In particular, all those elliptic curves have
Hasse invariant at most r, and thus f is well defined. �
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Figure 3. The map Xrig
0 (37)→ Xrig drawn as if C37 were archimedean

The correct way to think about this is that the operator Up increases the conver-
gence of an overconvergent modular form. The next thing to consider is what type
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of operators have this property. Imagine, for example, we let C(r) denote the com-
plex analytic functions on the closed ball |z| ≤ r. Suppose we had an continuous
operator

U : C(1)→ C(2).

Then we could compose U with the restriction map C(2)→ C(1). What is amazing
about this last map is that it is compact.

3.4. Overconvergent p-adic modular forms.

3.4.1. Definition. Let 0 < r < p/(p+ 1) be rational. The space of overconvergent
modular forms of weight k, level Γ, and radius r, is defined to be:

M†k(Γ, r) = H0(Xrig[r], ωk).

3.4.2. Remark. There is an inclusion:

M†k(Γ, r)→Mk(Γ,Cp, 0)→ Cp[[q]].

Hence overconvergent modular forms satisfy the q-expansion principle.

3.4.3. Example. Suppose that N = 1 and p = 2 and k = 0. Then

M†0 (Γ, r) = C2〈2rf〉
is a ball of radius 2−r.

3.4.4. Lemma. M†0 (Γ, r) is a Banach space with respect to the supremum norm on
Xrig[r].

Denote the norm by ‖ · ‖r. The restriction maps;

φ : M†0 (Γ, s)→M†0 (Γ, r)

are continuous, since

‖g‖s ≤ ‖φ(g)‖r.
The norm also makes sense when r = 0. In this case the forms are no longer
overconvergent and thus we drop the †.

3.4.5. Exercise. Show that ‖ · ‖0 co-incides with the q-expansion norm. Deduce

that any sequence of overconvergent modular forms converging in M†k(Γ, r) are also
converging in the q-expansion topology.

It is not too difficult to construct sections of ωk which don’t vanish on Xrig[r],

and hence M†k(Γ, r) ' M†0 (Γ, r) as Banach spaces for every integer k. Of course,
these isomorphisms don’t commute with Hecke operators.

3.5. Compact operators and spectral expansions. Let U be a linear operator
on a finite rank vector space V (you can, if you wish, choose a basis for V and think
of U as a matrix). Here we suppose that the coefficients lie in R, or C, or Qp, or
Cp, or any complete normed field F . The operator U has n generalized eigenvalues
in some finite extension of F . For any v ∈ V , we may write

v =
∑

αivi

for an eigenbasis vi. Let us suppose that

|λ1| > |λ2| ≥ . . . ≥ |λn|.
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That is, we assume that there is a unique greatest eigenvector. Then we observe
that

lim
k→∞

Ukv

λk1
= α1v1.

If, on the other hand, we have

|λ1| = |λ2| = . . . = |λm| > |λm+1| ≥ . . . ≥ |λn|,

Then, if π denotes the projection of v onto the subspace of V generated by vi for
i = 1 to m, (so πv =

∑
αivi for i ≤ m) we at least have:

lim
k→∞

Ukv

λk
− Ukπv

λk
→ 0,

where λ is any of the eigenvalues λi for i ≤ m.

Now let us suppose that V has infinite dimension. In order to make sense of
continuity, we assume that V has a norm, and is complete with respect to this
norm; in particular, it is a Banach space. A random continuous linear operator
need not have a spectrum, However, there exists a special class of operators, the
compact operators, which admit a nice spectral theory (though not quite as nice as
the finite dimensional case).

3.5.1. Definition. A continuous bounded operator U on a Banach space B to itself
is compact if the image of the unit ball is relatively compact.

It turns out that compact operators are easier to understand in the ultrametric
case because the norms are much easier to handle. Suppose that B is a separable
Banach space with an ultrametric norm (which will always be true in the cases we
consider). Then being compact is equivalent to being a limit of operators of finite
rank, which is equivalent to U being a Nuclear operator (i.e. a compact operator
such that the trace of U and its powers are well defined). Note that in some sources
(say in Coleman or in [Ser62]) these operators are called completely continuous, but
we will not use that notation.

An operator U as above admits (see [Dwo62], §2) a spectrum

|λ1| ≥ |λ2| ≥ . . . ≥ . . .

where |λi| → 0 as i becomes arbitrarily large, and a sequence of generalized eigen-
vectors v1, etc. such that any v ∈ V admits an asymptotic expansion:

v ∼
∑

αivi.

The asymptotic expression need not converge: consider, for example, the damped
shift operator U such that:

Uxn−1 = βnxn

for a sequence βn such that limβn = 0, and βn 6= 0 for any n. Explicitly, we have

U(a0, a1, a2, a3 . . .) = (0, β1a0, β2a1, β3a2, . . .),

and so on. Suppose that Uv = λv. Let ak−1 denote the first non-zero entry of v.
Then the first non-zero entry of Uv is βkak 6= 0. Yet this contracts the equality
Uv = λv. Hence every v ∈ V has a trivial asymptotic expansion. On the other
hand, we have the following:
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3.5.2. Lemma (Asymptotic Expansions). Suppose that U acts compactly on a sep-
arable Banach space B with an ultrametric norm. Then, for v ∈ B, there exists
constants αi and generalized eigenvectors vi of U with non-zero eigenvalue

∑
αivi

and a “spectral expansion” v ∼
∑
αivi with the following property. Let ε > 0 be a

fixed real number. Then, as n goes to infinity,∥∥∥∥∥∥Unv −
∑
≥ε

αiU
nvi

∥∥∥∥∥∥ = o(εn),

where the sum ranges over the finitely many generalized eigenvectors vi whose cor-
responding eigenvalue is ≥ ε.

In particular, an asymptotic expansion allows one to understand Unv modulo
any fixed power of ε, with the necessary proviso that the implied error constants
depend on ε.

3.5.3. Remark. Note that for a fixed eigenvalue λ 6= 0, the generalized eigenspace
of U is finite dimensional, but that not all generalized eigenfunctions may be actual
eigenfunctions. This happens already in the finite dimensional case.

3.5.4. Exercise. Let C(r) denote the complex analytic functions on |z| ≤ r. Prove
that the composition:

C(1)→ C(2)→ C(1)

defined by Uf(z) = f(z/2) is compact. Determine all the eigenvectors of U , and
prove that every element in C(1) admits an absolutely convergent spectral expansion.

The point of this exercise is that the map Up is exactly of the form, and hence:

3.5.5. Theorem. Suppose that

r <
p

p+ 1
.

Then the map U : H0(Xrig[r], ωk)→ H0(Xrig[r], ωk) is compact.

The proof is that it is composed of a continuous map which extends convergence
with the restriction map which is compact (this uses Theorem 3.3.2.) The big
question then is, what type of compact operator is this?

3.6. Classical Forms. The following lemma is the analog of Lemma 2.1.6

3.6.1. Lemma. There is an inclusion:

Mk(Γ0(pn)) ⊂M†k(Γ, r)

for any k and small enough r.

If E/R is not too supersingular, then E has a canonical subgroup C. As long as
the Hasse invariant of E/R is sufficiently large, we deduce that E/C is also not too
supersingular, and thus (by induction) as long as r is sufficiently small, for suitable
E/R we may find a canonical subgroup C of order pn, from whence the lemma
follows.
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3.6.2. Some important but not entirely relevant facts. Suppose that f is a classical
eigenform of weight k and level Γ. Suppose that Tp has eigenvalue ap. Consider
the polynomial

x2 − apx+ pk−1,

which is the minimal polynomial of crystalline Frobenius (a fact which is both highly
relevant and can be ignored completely). Associated to f is a two dimensional space
of old-forms of level Γ0(p), given explicitly by f = f(q) and Upf = apf−pk−1f(qp).
If α and β are the roots of the characteristic polynomial (they are conjecturally
distinct if k > 1) then f(q) − αf(qp) and f(q) − βf(qp) have level Γ0(p) and
are eigenvalues of Up. They are overconvergent! Note that v(α), v(β) ≤ p − 1.
There is (almost) a converse to this, namely, if f is an overconvergent eigenform
for Up with Upf = λf and v(λ) < k − 1, then f is classical. This is a theorem of
Coleman [Col96]. When v(λ) = k − 1, it can (and does) go either way, although
there are more refined conjectures predicting what should happen in this case.

3.7. The characteristic power series. Associated to the compact operator Up
is the Fredholm power series det(1 − TUp) ∈ Zp[[T ]]. Generalizing Hida’s theo-
rem, Coleman shows that as the weight varies, the coefficients of this series vary
continuously in the weight. Moreover, they may be identified with elements in the
Iwasawa algebra Λ = Zp[[Z

×
p ]]. Using the fact that forms of small weight are classi-

cal, the usual trace formula allows one to give an exact formula for the coefficients
of det(1−TUp) as finite sums involving class numbers. In particular, the coefficients
are very computable, and thus, via Newton’s Lemma, the valuations of the spectral
eigenvalues |λ1| ≥ |λ2| ≥ . . . are also very computable.

3.7.1. Exercise. Show that any finite slope eigenvalue of Up lies in M†k(Γ, r) for

any r <
p

p+ 1
.

3.7.2. Exercise. Prove that the trace of U2 on M†0 (1, r) is

7−
√
−7

28
= 1 + 23 + 24 + 27 + 210 + 212 + 213 + . . .

3.8. The Spectral conjecture. We have seen that, in general, the asymptotic ex-
pansion with respect to a compact operator need not be absolutely convergent. One
may ask whether this sequence does converge in the special case of overconvergent
modular forms with respect to the Up-operator. One obstruction to convergence is
as follows.

3.8.1. Lemma. If the asymptotic expansion of an operator U on a Banach space
B is convergent to the identity operator, then ker(U) = 0.

Proof. This is obvious. �

On the other hand, we have the following.

3.8.2. Lemma. Vp defines a map

Vp : M†k(Γ, r)→M†k(Γ, r/p).

The proof is virtually the same as the proof that Vp preserves p-adic modular
forms. More precisely, Vpf evaluated on E depends only on f evaluated at E/C,
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where C is the canonical subgroup. Yet this increases the valuation of the Hasse
invariant. On q-expansions, we have

Vp
∑

anq
n =

∑
anpq

n.

In particular, the composition UpVp is the identity. (This follows from the q-
expansion principle.) Let Wp be the operator 1 − VpUp. Then UpWp = Up −
UpVpUp = Up − Up = 0. In particular, if f lies in ker(Up) then Wpf = f , and
moreover, the image of Wp lies in the kernel of Up. On q-expansions, we have

Wp

∑
anq

n =
∑

(n,p)=1

anq
n.

3.8.3. Lemma. Suppose that r <
1

p+ 1
, then Wp defines a map:

M†k(Γ, r)→M†k(Γ, r)

which is a projection onto ker(Up).

The reason the bound on r is needed is that for larger r, it is not necessarily
the case that Up increases the radius of convergence by a factor of p, and thus the
composite VpUp may decrease the radius of convergence. We immediately deduce
from this the following:

3.8.4. Lemma. Suppose that

r <
1

p+ 1
.

Then the kernel of Up on M†k(Γ, r) is infinite dimensional. In particular, the spectral
expansion of Up for such r is not in general convergent.

On the other hand, there seems to be a transition that takes place at r = 1/(p+1),
as indicated by the following lemma.

3.8.5. Lemma. If r >
1

p+ 1
, then the kernel of Up on M†k(Γ, r) is trivial.

Proof. This is [BC06] Lemma 6.13 (and Remark 6.14). �

The kernel of a compact operator is not the only obstruction to convergence.
Recall that the damped shift operator Uxn−1 = βnxn considered above (where
limβn = 0 is a sequence of non-zero elements) has trivial spectral expansions even
though U itself has no kernel. There still, however, appears to be reason to believe
the following.

3.8.6. Conjecture. Suppose that r ∈ (1/(p+1), p/(p+1)). Then any F ∈M†k(Γ, r)
has a convergent spectral expansion which converges to F .

Explicitly, we may write any F ∈M†k(Γ, r) as

F =
∑

πi(F )vi,

where the vi are a fixed choice of (generalized) eigenvectors with eigenvalues λi.
Note that by “convergence” above we mean convergence in the Banach space norm

on M†k(Γ, r) (that is, the supremum norm). This is a much more restrictive condi-
tion than convergence in the q-expansion topology (which is the supremum norm
on the ordinary locus Xrig[0].)
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3.8.7. Remark. Since the norm on Xrig[r] is non-Archimedean, given any spectral
expansion of F as above one has:

‖F‖r ≤ sup |πi(F )| · ‖vi‖r.

It is natural to supplement the spectral conjecture with the guess that ‖F‖1/2 =
sup |πi(F )| · ‖v‖1/2, which would be a consequence of knowing that the eigenvectors
vi are sufficiently disjoint.

This conjecture also has immediate consequences for a form F ∈ M†k(Γ, r) for
any r.

3.8.8. Lemma. Let F ∈M†k(Γ, r), and suppose that F ∼
∑
αivi is the asymptotic

expansion of F . Assume Conjecture 3.8.6. Then

Unp F = Unp
∑

αivi.

for sufficiently large n. One may take any n such that v(rn) > 1/(p+ 1).

3.8.9. Remark (Remark on semisimplicity of Up). One might wonder if F can
actually be decomposed into eigenfunctions. It turns out that this is a subtle
question even for classical forms. The action of Up on the two dimensional space
of old forms for an eigenform f of level prime to p is given by (with respect to one
basis): (

ap pk−1

−1 0

)
.

This is semi-simple only if a2
p 6= pk−1. It is still unknown whether this can happen,

although it follows from the Tate conjecture [CE98]. One certainly expects — even
if Up fails to be semi-simple — that the corresponding generalized eigenforms all
decompose into actual eigenforms for the Hecke operators T` with ` prime to p and
the level.

3.9. The invariant pairing. How does one prove that a spectral expansion of a
compact operator U on a Banach space B exists and is convergent? A natural way
is to show that the operator U actually preserves extra structure, namely, that B
has the structure of a Hilbert space H = (B, 〈, 〉) such that U is self-adjoint. One
of the problems with trying to apply this to our case is that there is no notion
of Hilbert space for non-Archimedean fields. The point is that quadratic forms in
sufficiently many variables over Qp are never anisotropic. (That is, quadratic forms
have zeros.) It follows that it’s very hard to define a “non-degenerate” quadratic
form, since one will invariably end up with vectors v such that 〈v, v〉 = 0. On the

other hand, it turns out that the operator Up on M†0 (Γ, r) does preserve a natural
pairing, as long as r is sufficiently big.

Let (E/R, ωR) be an elliptic curve with

v(A(E,ω)) = s <
p

p+ 1
.

We know that E admits a canonical subgroup C, and one has a corresponding point
(E,C) on Xrig

0 (p), the image of E under the section Xrig[r] → Xrig
0 (p) for r > s.

The Fricke involution wp acts on Xrig
0 (p) by sending (E,C) to (E/C,E[p]/C). If E

is the Tate curve T (q), for example, then (E,C) = (T (q), µp) and (E/C,E[p]/µp) =
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(T (qp), {q}). In particular, the corresponding subgroup is no longer the canonical
subgroup, and E/C is not in the image of Xrig[r]. If, however,

1

p+ 1
< s <

p

p+ 1
,

then E[p]/C has a canonical subgroup which may be identified with E/C ([Buz03]).
Moreover (ibid.) one has an equality

v(A(E/C, φ∗ω)) = 1− s.

It follows that, if v ∈M†k(Γ, r) then w∗pv is a function defined on pairs (E,ω) such
that

1 > v(A(E,ω)) ≥ 1− r.
Suppose that r ≥ 1/2. Then for any pair of functions u and v in M†0 (Γ, r), both

u and w∗pv are then both defined on the annulus |t| = |p1/2|, where t is a local
parameter at the supersingular point. In particular, as long as r ≥ 1/2, one may

define a pairing on M†0 (Γ, r) as follows:

〈u, v〉 =

∫
w∗vdu := Resz=∞w

∗vdu.

3.9.1. Lemma (Loeffler [Loe07]). This pairing is Up and Hecke equivariant.

If N = 1 and p = 2 and r = 1/2, then M†0 (1, 1/2) = C2⊗Z2[[g]], where g = 26f .
Note that w∗g = g−1, and so

〈gm, gn〉 =

∫
g−m · ngn dg

g
=

{
m, m = n

0, m 6= n.

3.9.2. Symmetric operators. A symmetric matrix over C is not necessarily diago-
nalizable. One might ask if being symmetric allows one to deduce anything. Let
B be a Banach space over Cp with |B| = pQ ∪ {0}. Suppose that B admits a
continuous bilinear pairing

〈·, ·〉 : B ×B → Cp.

Suppose, furthermore, that B admits a topological basis {xi} such that

〈xi, xj〉 = δij .

3.9.3. Question. Let U be a compact operator on B that is equivariant with respect
to the pairing, that is,

〈Ux, y〉 = 〈x, Uy〉.
Suppose that B contains a non-zero vector v such that the action of U on the
closure of the vectors Unv for all n is topologically nilpotent. Then is it the case
that ker(U) 6= 0?

3.10. A special case of the spectral conjecture. One piece of evidence for this
spectral conjecture is the following.

3.10.1. Theorem (Loeffler [Loe07]). The spectral conjecture is true if N = 1 and
p = 2 for r ∈ (5/12, 7/12). Moreover, one also has ‖F‖r = sup ‖αiφi‖r in that
range.

In light of the main theorem of [BC05], one has the following.
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3.10.2. Theorem. Let λ1 ≥ λ2 ≥ λ3 ≥ . . . denote the eigenvalues which occur
for N = 1 and p = 2 of valuation 3, 7, 13, . . .. Let vi denote the corresponding

eigenform, normalized so that the leading coefficient is 1. If F ∈ M†0 (1, 1/2), then
there is an equality

F =
∑

αiφi, where αi :=
〈F, φi〉
〈φi, φi〉

.

Moreover, ‖αiφi‖1/2 ≤ ‖F‖1/2 for all i.

3.10.3. Lemma. If φi is a normalized overconvergent eigenform, then

‖φi‖r ≥ 1.

Proof. We noted previously that ‖φi‖r ≥ ‖φi‖0. The latter is given by the q-
expansion norm, and thus (since φi is normalized) it follows that ‖φi‖0 = 1. �

By Lemma 3.10.3, we deduce that

|αi| ≤
‖F‖1/2
‖φi‖1/2

≤ ‖F‖1/2.

In practice, one expects ‖φi‖1/2 to increase relatively quickly. However, this esti-
mate at least allows for an explicit computation of αi. We return to the numerology
of eigenforms in section §5.

3.11. Some heuristics. Let us now reformulate the spectral conjecture in a slightly
different way in weight 0. First, suppose we are working with classical cusp forms
in Sk(Γ,C). Then, for a cusp form F , one has an identity:

F =
∑ 〈φi, F 〉
〈φi, φi〉

φi,

where the right hand side is a finite sum over cuspidal eigenforms φi, and 〈∗, ∗〉 is
the Petersson inner product, given by

〈φ, ψ〉 =

∫
Ω

φψ · yk dxdy
y2

,

which satisfies

〈φ, φ〉 = L(1, ad0φ)

for eigenforms φ. On the other hand, we expect that for F ∈ S†0(Γ, r) (and r
sufficiently large), one has an identity:

F =
∑ 〈φi, F 〉
〈φi, φi〉

φi,

where the right hand side is now an infinite sum over finite slope eigenforms φi,
and 〈∗, ∗〉 is the invariant pairing described above.

3.11.1. Exercise (?). Show that, suitably normalized, the invariant pairing 〈φ, φ〉
for a finite slope eigenform φ coincides with the p-adic L-function Lp(1, ad0φκ) at
κ = 0, where φκ denotes the Coleman family of eigenforms of weight κ passing
through φ.
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Here are some thoughts on this exercise. Note that the p-adic adjoint L-function
is related to the ramification of the Coleman family φκ over weight space. In
particular, Lp(1, ad0φκ) should have zeros exactly at the ramification points (results
of this flavour were proved by Kim in his thesis [Kim06]). On the other hand,
assuming the existence of spectral expansions one expects that 〈φ, φ〉 = 0 where
Uφ = λφ if and only if there exists a generalized eigenform ψ such that (U−λ)ψ = φ
(see the calculation of §5.0.7 for one direction, and use the q-expansion principle
and the fact that 〈∗, φ〉 is non-vanishing for the other direction). Yet the non-semi-
simplicity of U is equivalent to the eigencurve being ramified at this point.

4. Examples

In this section, we give some explicit examples in order to illustrate the general
theory. Write

j =
1

q
+ 744 + 196884q + . . . =

∑
c(n)qn.

We first show how to understand congruences for c(n) modulo powers of two using
a classical method, and we shall return later and use a modern approach, which
gives more information.

4.1. An example: N = 1 and p = 2; the Watson approach. Recall that X0(2)
is uniformized by the function:

f = q

∞∏
n=1

(1 + qn)24 = q + 24q2 + . . .

and that there is an identity
(1 + 28f)3

f
= j.

We first apply U2 to j, and we find that:

U2j = 744 +
∑

c(2n)qn.

Formally, U2 takes functions on X0(1) to X0(2). Thus U2j is a meromorphic func-
tion on X0(2). Moreover, since U2j(E) is a sum of j(E/C) for various C, the
function U2j will be holomorphic on X0(2) away from the cusps. Since U2j is holo-
morphic at∞, it can only have poles at the other cusp of X0(2), namely at f =∞,
and hence U2j is a polynomial in f . Indeed:

U2j − 744 = 140737488355328f4 + 3298534883328f3 + 19730006016f2 + 21493760f

= 25
(
262144g4 + 393216g3 + 150528g2 + 10495g

)
,

where g = 26 · f . On the other hand, if h is a meromorphic function on X0(2)
then so is U2h, and if h only has a pole at 0 then so does U2h; that is, U2 takes
polynomials in f to polynomials in f . We see:

U2f = 24f + 2048f2,

U2f
2 = f + 1152f2 + 196608f3 + 8388608f4,

and so on. More generally,

U2f
n =

1

2

(
f
(τ

2

)
+ f

(
τ + 1

2

))
.
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Hence U2f
n satisfies a recurrence relation xn − a1xn−1 + a2xn−2 = 0, where

X2 − a1X + a2 =
(
X − f

(τ
2

))(
X − f

(
τ + 1

2

))
= X2 − (48f + 4096f2)X − f.

The classical idea is now to explicitly compute the “matrix” of U on some nice
basis. If, for example, one shows that this matrix is divisible by 8 (in this case),
then iterating U will establish the necessarily congruences.

4.1.1. Lemma. Let h = 8f , and consider the ring R = Z2[[h]] of power series in h
with integral coefficients. Then the operator F := U2/8 acts continuously on h ·R.

Proof. Continuity is equivalent to asking that F(hn) ∈ R, and the degree of U2h
n

goes to infinity with n. Both claims follow by induction. From the computations
above, we see that:

F(h) = 3h+ 32h2, F(h2) = h+ 144h2 + 3072h3 + 16384h4,

and then F(hn) = 16(3h+ 32h2)F(hn−1) + 8hF(hn−2). �

Since U2j − 744 ∈ 28h ·R, it follows that

∞∑
n=1

c(2mn)qn = Um2 j − 744 = (8F)m−1(U2j − 744)

⊂ (8F)m−1(28h ·R) ⊂ 23m+5F(h ·R) ⊂ 23m+5h ·R ⊂ 23m+8Z2[[q]].

This proves Lehmer’s congruence in the introduction.

4.2. An example: N = 1 and p = 2; the Coleman approach. The function j
defines a meromorphic function on Xrig[r] with a pole only at ∞, and hence Upj

extends to an element of M†0 (Γ, r) for any

r <
p

p+ 1
.

The operator Up on this space is compact. Now let p = 2. We may manually
compute the first few slopes of the spectrum of U2 to be 0, 3, 7, and 13. Of course,
1 is an eigenvalue for U2 with slope zero. In particular, for any overconvergent

form g in M†0 (Γ, r) with no constant term we have, from the asymptotic expansion
Lemma 3.5.2), that

g ∼ α1φ1 + α2φ2 + α3φ3 + . . .

and thus:

Um2 (U2j − 744) = α1λ
m
1 φ1 + α2λ

m
2 φ2 + o(213m).

How may one compare these arguments? The Watson style argument essentially
proves by hand that U2 is compact, and indeed that the norm of F = U2/8 on
the cuspidal overconvergent forms is 1. This justifies the claim in the introduction
— Coleman gives you the compactness of U by geometry, whereas Watson gives
it to you by explicit computation, but by a computation which needs to be redone
every single time to get the best bounds. Moreover, such computations become
essentially infeasible as soon as X0(p) has genus > 0. On the other hand, the fact
that F has operator bound 1 is is stronger than the fact that the first eigenvalue
has slope 3, even if it doesn’t say anything about the higher order eigenvalues. How
may we reconcile these two approaches?
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Let us see what can be extracted from the spectral conjecture, which is a theorem
in this case. We may write

U2j − 744 =
∑

αiφi, where αi :=
〈U2j, φi〉
〈φi, φi〉

.

Moreover, ‖αi‖1/2 ≤ ‖U2j − 744‖1/2 for all i. Given the formula for U2j above,

and the fact that ‖g‖1/2 = 26‖f‖1/2 = 1, we deduce that there is an identity

‖U2j‖1/2 = |25| = 2−5, and thus v(αi) ≥ 5. It follows that

Um2 (U2j) = α1λ
m
1 φ1 + α2λ

m
2 φ2 mod 213m+5,

that is, we have made the constant above effective. From this we may compute
easily enough that α1 = 211 + 212 + . . . and α2 = 216 + 217 + . . . from which we
deduce the congruence of Lehmer. Yet we see that we get something much stronger,
namely, that not only does v(c(2m)) = 3m+ 8, but

∞∑
n=1

c(2mn)

c(2m)
qn mod 24m+1

is a Hecke eigenform. More generally, we have the following:

4.2.1. Lemma. Let F ∈ M†0 (1, 1/2), and suppose that F is normalized so that
‖F‖1/2 = 1. Then the spectral expansion takes the form:

25 ·
∑

αiφi

where αi is divisible by 2i.

Proof. This follows from the estimates on ‖φi‖1/2 we shall prove in Lemma 5.1.9 �

4.3. An example: the coefficients of c(n) modulo powers of p. Let’s now
consider a more general example, which seems harder to prove by any direct com-
putation.

4.3.1. Example. Let j =
1

q
+ 744 + 196884q + . . . =

∑
c(n)qn be the modular j

invariant. Let j̃ := epj denote the projection of j to the ordinary subspace. Then
there exists a constant c depending only on p such that

Unj ≡ Unj̃ mod pn−c.

Proof. We first prove that there does not exist an overconvergent eigenform of
weight zero and slope α with 0 < α < 1. Assume otherwise. Then, by theory of
Coleman, there exists a classical form with the same slope and (possibly very large)
weight 0 mod p−1. By Theorem 1.6 of [BG09], it follows that if ρ : GQ → GL2(k)
is the corresponding mod-p Galois representation attached to this form, and Dp =

Gal(Qp/Qp) ⊂ GQ is the decomposition group at p, then

ω2 ⊗ ρ|Dp = ω2 ⊗ Ind
Qp

K ωp−2
2 = ω2p+2

2 ⊗ Ind
Qp

K ωp−2
2 = Ind

Qp

K ω3p
2 = Ind

Qp

K ω3
2 .

In particular, it follows that ρ|Dp and thus ρ is irreducible (as long as p 6= 2, which
we already considered), and hence, by the weight part of Serre’s conjecture, the
twist ω2 ⊗ ρ gives rise to a non-trivial class in

S4(SL2(Z),Fp) = 0,
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a contradiction. In particular, the eigenfunction of weight zero with largest slope
which is not ordinary has slope at least 1. The result then follows immediately
from the asymptotic expansion. �

4.3.2. Remark. Note that exactly the same argument — and conclusion — applies
to any overconvergent p-adic modular form of weight 0 and level 1.

4.3.3. Exercise. Let g be any p-adic overconvergent modular function which is

congruent to 1 mod p, for example, g = 1 + p
∆(pτ)

∆(τ)
. Prove that

gs := exp(s log(g)) = 1 + s(g − 1) +

(
s

2

)
(g − 1)2 +

(
s

3

)
(g − 1)3 + . . .

is also overconvergent for sufficiently small s ∈ Cp. Compute what sufficiently
small means explicitly in this case.

A natural question that presents itself is as follows: Can one effectively compute
the constant c? Suppose one assumed the existence of a convergent spectral expan-
sion, together with the estimate ‖F‖r = sup |αi| · ‖φi‖r for r = 1/2. As with p = 2,
we would then have:

Upj = Upj̃ + α1φ1 + α2φ2 + . . .

and it would suffice to obtain effective and uniform bounds for αi. Yet there are
obvious bounds ‖φi‖r ≥ 1 and ‖Upj‖r ≤ p for all r, and thus |αi| ≤ p. As we shall
see later, it is most likely the case that the norms ‖φi‖r grow extremely rapidly
(exponentially in i) and thus the αi decrease to zero in a concomitant fashion.

4.3.4. Exercise (?). What is the optimal upper bound for ‖Upj‖r for general p?
What about the optimal upper bound for the operator norm ‖Up‖r?
4.4. An example: convergence slower than O(pn). There do exist forms of
slope strictly between 0 and 1, which may effect the rate of convergence. To give
an easy example, let

f =
∑

a(n)qn = q
∏
n=1

(1− qn)2(1− q11n)2 ∈ S2(Γ0(11),Z),

which corresponds to the modular curve X0(11). This elliptic curve has super-
singular reduction at 2, and the minimal polynomial of crystalline Frobenius is
x2 +2x−2. It follows that the corresponding old forms fα, fβ with α, β = −1±

√
3

of level Γ0(22) each have slope 1/2. In particular, it is not too hard to show that:∑
a(2mn)qn ≡ 0 mod 2d

m
2 e,

but that there is no such congruence modulo any higher power of 2. Of course, the
same thing happens (with the same form) for any of the infinitely many primes p
such that X0(11) is supersingular.

4.4.1. Exercise. Show that if

E4∆

E58
=

(
1 + 240

∑
σ3(n)qn

)
q

∞∏
n=1

(1− qn)24

(
1− 1416

2913228046513104891794716413587449

∑
σ58(n)qn

) =:
∑

d(n)qn,

then
∑

d(59mn)qn converges to zero no faster than O(59m/2).
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4.5. Forms of half integral weight. (cf. [Ram06, Ram08]). One may ask whether
there exists a corresponding theory of p-adic and overconvergent modular forms of
half -integral weight. The answer is yes. First recall how modular forms of half

integral weight are defined — one starts with a particular modular form θ =
∑
qn

2

and uses it to define (analytically) a square root of the sheaf ω. On the other
hand, the form θ certainly lies in Z[[q]], and so with a little care one can carry out
these constructions a little more arithmetically. A key point in Coleman’s work is
that, as far as the analysis goes, one can pass between any integral weight k ≡ 0
mod p− 1 and weight 0. In particular, suppose that k is positive. Then there is an
isomorphism of Banach spaces:

ψ : M†k(Γ, r)→M†0 (Γ, r)

defined by divisiion by VpEk. (Since Ek ≡ 1 mod p, it doesn’t vanish on the
ordinary locus, and hence for formal reasons both Ek and VpEk are invertible for
some r > 0 — one can be more explicit.) Although this map is not Up-equivariant,
one may define a twisted operator by the formula:

Ũ =
Ek
VpEk

· U.

Then, for F of weight k, one has

ψ(UpF ) =
UpF

VpEk
=

Ek
VpEk

· UpF
Ek

=
Ek
VpEk

· U F

VpEk
= Ũψ(F ).

The key observation, however, is that one may now extend this to any weight κ in
Hom(Λ,Cp), by replacing Ek by the p-adic Eisenstein series:

Eκ =
ζp(κ)

2
+

∞∑
n=1

∑
d|n

κ(d)

d

 qn.

When κ is the weight x 7→ xk, one recovers the classical Eisenstein series E∗k of
weight Γ0(p). For forms of half-integral weight, one may also transfer the actions of
Hecke operators to any other weight in exactly this way. Note that for half-integral
weights, the appropriate operator at p is Up2 .

4.5.1. Theorem (Ramsey). Let k be a half-integer. There exists a space of over-

convergent forms M†k(Γ, r) of weight k, and Up2 acts compactly on this space.

4.6. An example: congruences for p(n) modulo powers of p.

4.6.1. Example. Let

η−1 =
1

q1/24
+ q23/24 + 2q47/24 + . . . =

∑
p

(
n+ 1

24

)
qn

be the inverse of Dedekind’s eta function. Let η̃−1 denote the projection of η−1 to
the ordinary subspace. Then there exists a constant c depending only on p such that

Unη−1 ≡ Unη̃−1 mod pn−c.

Note that this has no content if p = 2 or p = 3, so assume that p > 3.

The form η−1 is meromorphic of weight −1/2. The form η−1(24τ) has level
Γ0(576) and character χ — but it will be relevant to note that η has extra symme-
tries — suggested, for example, by the fact that η24 has level one. In particular,
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one may define modular forms of half integral weight in a different way — by using
η instead of θ.

4.6.2. Definition. The modular forms Mk(1,C) of half-integral weight k and η-
level one are the holomorphic forms on H which are bounded at the cusps and such
that:

f(γτ)

f(τ)
=
η(γτ)k

η(τ)k
.

We can’t quite use this to give a splitting of ω at level one, for stacky reasons.
However, by allowing various different auxiliary levels this space admits a good
integral structure6. Note that ω⊗12 does exist on X(1), and that there are natural
maps:

M12(1,C)⊗Mk(1,C)→M12+k(1,C).

where k is half-integral. We have

Up2η
−1 ∈ S†−1/2(1, r).

Alternatively, in the usual normalization, we certainly have

Up2η
−1(24τ) ∈ S†−1/2(Γ0(576), r).

Let e denote Hida’s idempotent operator, and let F = Up2η
−1(24τ). Then, formally,

there is an equality

F = epF +H +H≥1,

where H is a finite sum of generalized eigenforms of slope strictly between 0 and 1,
and p−kUkp2(H≥1) is bounded. It suffices to show that H is zero.

4.6.3. The Shimura correspondence. Suppose that H 6= 0. It follows that there ex-

ists, in S†1/2, an eigenform of slope between 0 and 1. By the overconvergent Shimura

correspondence [Ram09], there exists a corresponding overconvergent eigenform of
weight −2, also with slope between 0 and 1. A priori, one might expect the level
to be Γ0(288). However, after twisting, this form lies in Γ0(6), a fact that requires
proof but follows from the underlying symmetry of η. Indeed:

4.6.4. Lemma. The image of the Shimura correspondence from S−1/2(1, r) lies in

S†−2(Γ0(6), r)⊗ χ12,

where χ12 is the quadratic character of conductor 12. Moreover, the eigenvalues
of the corresponding form of level Γ0(6) of U2 and U3 are given by 2−2 and 3−2

respectively.

One can provide fairly soft proofs of these type of facts using the trace formula
— one only needs to compute that the appropriate spaces have the same traces of
(Up2)n and (Up)

n respectively.

From the existence of the eigencurve [CM98] (or by Coleman’s results), it follows
that there exists a classical form of weight k ≡ −2 mod p − 1 and slope between
0 and 1, as well as the indicated eigenvalues for U2 and U3. It follows from [BG09]

6Explicitly, choose an auxiliary prime q distinct from 2, and then work at level X(q), where
the sheaf ω exists. Then, take invariants under PGL2(Fq).
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Theorem 1.6 that if ρ : GQ → GL2(O) is the corresponding Galois representation,
then

ρ|Dp = Ind
Qp

K ωp−4
2 = ω ⊗ Ind

Qp

K ω−5
2 ,

and hence that

(ρ⊗ ω4)|Dp = (Ind
Qp

K ω−5
2 )⊗ ω5 = (Ind

Qp

K ω−5p
2 )⊗ ω5(p+1)

2 = (Ind
Qp

K ω5
2).

Thus there exists a classical eigenform h ∈ S6(Γ0(6),O) which is supersingular.
Moreover, the eigenvalues of U2 and U3 are given by 24 · 2−2 = 22 and 34 · 3−2 = 32

respectively. On the other hand, S6(Γ0(6),O) is one dimensional, and the corre-
sponding eigenform

h = q + 4q2 − 9q3 + 16q4 − 66q5 − 36q6 + . . .

has U2 = 4 but U3 = −9.

4.7. An example: congruences for the partition function modulo powers
of 5. A routine computation shows that the corresponding eigenvalues λ1 ≥ λ2 ≥
λ3 ≥ . . . of Up2 on S†−1/2(1, r) have slope

2, 7, 9, 15, 19, 22, 27, 29, 36, 39, . . .

It follows that one has an asymptotic expansion:

Up2η
−1 ∼ α1φ1 + α2φ2 + α3φ3 + . . .

The fact that φ1 has slope 2 corresponds to the congruence for the partition function
modulo powers of 5. In particular, it follows that:

∞∑
n=0

p

(
25mn+ 1

24

)
qn ≡ λm1 · φ1 +O(57m),

where φ1 is an eigenform for the Hecke operators T`2 with ` 6= 5 as well as the
operator U25. Here one may numerically compute that

λ1 = 4 · 52 + 2 · 53 + 3 · 54 + 55 + 2 · 57 + 3 · 59 + 511 + 512 + 514 + . . .

4.7.1. Exercise (?). The eigenvalues of weight −2 of level N = 6 with p = 5 which
are new at 2 and 3 with w2 = w3 = +1 have slope:

v(λn) = v

(
52n−1 (3n)!(3n)!

(3n+ 1)!(3n− 1)!

(6n+ 2)!(6n− 2)!

(2n)!(2n)!

)
4.7.2. Exercise. One has the following congruences for c(n) and p(n) modulo other
small primes:

(1) If n ≡ 0 mod 2a3b5c7d11e and n 6= 0, then

c(n) ≡ 23a+832b+35c+17d11e.

(2) If 24n ≡ 1 mod 5c7d11e, then

p(n) ≡ 0 mod 5c7[(d+2)/2]11e.

Explain these congruences in terms of the eigenvalue of Up or Up2 of smallest slope.
Compute the slope of the next smallest eigenvalue in each case to give convergence
results as above for p = 5.
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4.8. An example: congruences for the partition function modulo powers
of 5, following Watson. Suppose instead of using Coleman’s theory, one wanted
to prove the congruence above directly, even just the considerably weaker classical
congruences. Then one has to explicitly determine enough about the operator
U = U25 to show that (for example) it is divisible by 25. As in § 4.1, one needs to
work explicitly with modular equations. For example, let

f(τ) = 25 4

√
∆(5τ)

∆(τ)
= 25

η(5τ)6

η(τ)6
= 25q

∞∏
n=1

(1− q5n)6

(1− qn)6
,

4.8.1. Lemma. The following identity holds:

4∏
m=0

(
X − f

(
τ +m

5

))
= X5 − a1X

4 − a2X
3 − a3X

2 − a4X − a5,

where

a1 = 52f(63 + 260f + 315f2 + 150f3 + 25f4)

a2 = 54f(52 + 63f + 30f2 + 5f3)

a3 = 55f(63 + 30f + 5f2)

a4 = 57f(6 + f)

a5 = 58f

Proof. The proof is routine. �

4.8.2. Lemma. For a non-negative integer n, let An =
U5f

nη−1(τ)

η−1(5τ)
and Bn =

U5f
nη−1(5τ)

η−1(τ)
.

Then An and Bn are polynomials in f which satisfy the recurrence relation

Xn = a1Xn−1 + a2Xn−2 + . . .+ a5Xn−5.

Moreover, for small values of n, we have the following equalities:

A0 =
f

5

A1 = 5f(28 + 245f + 525f2 + 455f3 + 175f4 + 25f5)

A2 = 52f(104 + 9100f + 113880f2 + 528125f3 + 1232725f4 + 1660750f5 + 1376375f6

+ 715000f7 + 227500f8 + 40625f9 + 3125f10)

A3 = 53f(19 + 13889f + 672885f2 + 9791080f3 + 66083900f4 + 252487675f5 + 608947625f6

+ 988926250f7 + 1124158750f8 + 913721875f9 + 534909375f10 + 224081250f11 + 65609375f12

+ 12765625f13 + 1484375f14 + 78125f15)

A4 = 56f(1 + 8375f + 1375975f2 + 52547625f3 + 831122125f4 + 7023871875f5 + 36454450625f6

+ 126528231250f7 + 310499593750f8 + 559393046875f9 + 759056634375f10 + 788952734375f11

+ 634365468750f12 + 396053515625f13 + 191527734375f14 + 71064453125f15 + 19855468750f16

+ 4042968750f17 + 566406250f18 + 48828125f19 + 1953125f20)
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B0 = 1

B1 = 5f(63 + 260f + 315f2 + 150f3 + 25f4)

B2 = 53f(104 + 4095f + 32820f2 + 107300f3 + 182700f4 + 180375f5 + 107500f6

+ 38250f7 + 7500f8 + 625f9)

B3 = 54f(189 + 49230f + 1512585f2 + 15998850f3 + 83171925f4 + 251923750f5 + 488490750f6

+ 640687500f7 + 586327500f8 + 379518750f9 + 173362500f10 + 54750000f11 + 11390625f12

+ 1406250f13 + 78125f14)

B4 = 56f(24 + 42920f + 4266360f2 + 118018875f3 + 1455608800f4 + 9969720300f5 + 42885018000f6

+ 125026746500f7 + 259678080000f8 + 397294462500f9 + 457754050000f10 + 402607546875f11

+ 272038500000f12 + 141147812500f13 + 55788750000f14 + 16505156250f15 + 3540625000f16

+ 520312500f17 + 46875000f18 + 1953125f19

∞∑
n=0

AnT
n

=
q/5 + 5(28f + 182f2 + 265f3 + 140f4 + 25f5)T − 52(−104f − 20f2 + 10f3)T2 − 54(−19f + 6f2 + 5f3)T3 + 56fT4

1− a1T − a2T2 − a3T3 − a4T4 − a5T5

∞∑
n=0

BnT
n

=
1− 20f(63 + 260f + 315f2 + 150f3 + 25f4)T − 53f(156 + 189f + 90f2 + 15f3)T2 − 54f(126 + 60f + 10f2)T356f(6 + f)T4

1− a1T − a2T2 − a3T3 − a4T4 − a5T5

Proof. These follow from the standard methods. Note that some of these identities
are quite classical, for example, A1 = f/5 is just the identity∑

p(5n+ 4)qn = 5
(1− q5)5(1− q10)5(1− q15)5 · · ·

(1− q)6(1− q2)6(1− q2)6 · · ·
�

Many of these equations are (in slightly disguised form) in [Wat38]. These re-
currences give enough information to prove (as in § 4.1) that, with respect to some
suitable basis, that U25 = 52F for some suitable continuous operator F , which
allows one to prove the desired congruences, which is what Watson does. However,
it does not seem obvious how one can use this approach to understand the second
eigenvalue (and eigenvector) of U25. What one needs to show is that the action
on U25 on some natural space is divisible by 57 — yet this is only possible if one
can somehow project away from the eigenform φ1 of slope 2. Unlike the Eisenstein
series — which in weight 0 is just the constant 1 — there is no obvious way to
account for the influence of φ1 when trying to estimate the error term.

5. p-adic arithmetic quantum chaos

(See [Sar95].)
Fix a modular curve X = X(Γ). Don Blasius suggested to me the possibility that

there could be an useful analogy between the discrete spectrum of the hyperbolic
Laplacian

∆ = −y2

(
∂2

∂x2
+

∂2

∂y2

)
and the operator Up in weight zero. In this section, we discuss various conjectures
relating to this question.

One natural question is how to count such eigenvalues. They both form infinite
countable sets — in the Archimedean case by a non-trivial result of Selberg, and in
the p-adic case by Coleman — it suffices to note that the coefficients of the Fredholm
determinant are all non-zero, which follows by a theorem of Koike [Koi75, Koi76].
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The natural way to count eigenforms is thus by bounding the size of the eigenvalues.
In the classical case, the classical result is the following:

5.0.3. Theorem (Weyl’s Law). Let N(T ) := #{λ |v(λ) < T} denote the counting
function for discrete eigenvalues of ∆. Then

N(T ) ∼ Vol(X)

4π
· T.

The modular curves inherit from H a natural metric of constant curvature -1.
Recall that, with respect to this metric,

Vol(X) = [Γ0(1) : Γ] · π
3
.

Somewhat better error bounds are known, but they, too, are non-trivial. Note
that volume is taken with respect to the natural measure on X which makes it a
manifold of constant curvature −1. When it comes to counting finite slope eigen-
forms, the natural measure of size of eigenvalues is by their valuation. Since the
operator Up depends on the choice of a subgroup of order p, it is more natural to
work with X0(p) rather than X (at the level of the appropriate rigid analytic spaces
Xrig[r] there is no difference due to the existence of the canonical subgroup).

5.0.4. Conjecture (p-adic Weyl’s Law). Let N(T ) := #{λ |v(λ) < T} denote the
counting function for eigenvalues of Up. Then

N(T ) ∼ Vol(X0(p))

4π
· T.

How does one count such eigenvalues? The slopes of the eigenvalues are de-
termined (via Newton’s Lemma) to the valuations of the Fredholm power series
of 1 − TU . We have the following partial result, which proves one direction of
Conjecture 5.0.4:

5.0.5. Theorem. There is an inequality:

N(T ) ≤ Vol(X0(p))

4π
· T + o(T ).

This follows from the estimates of Wan [Wan98] (in particular, it follows via an
easy computation from Lemma 3.1 of ibid.) One also obtains from this a bound:

5.0.6. Theorem. There is an inequality:

N(T )� Vol(X0(p))

4π
· T,

where the implicit constant depends on X.

Another natural problem to be concerned with is the behavior of the eigenfunc-
tions Uφ = λφ as functions as λ→∞. For example:

(1) How fast does the L∞-norm grow with λ? Obviously this depends on some
normalization of the eigenfunctions φ. Since the eigenfunctions are L2, a
natural normalization is the L2-norm, i.e., insisting that

‖φ‖22 = |〈φ, φ〉| = 1.
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(2) What is the distribution of the zeroes of φ? More generally, what do the
eigenfunctions φ look like as functions?

For modular surfaces (at least in the compact case, although a lot is known in
the open case as well), the answers to these questions are as follows:

(1) There is a general bound for surfaces ([SS89])

‖φ‖∞ = O(λ1/4).

In the specific case of ∆ on compact arithmetic surfaces, one has

‖φ‖∞ = O(λ5/32)

by Iwaniec–Sarnak [IS95], who moreover conjecture that

‖φ‖∞ =? O(λε).

Iwaniec–Sarnak (ibid.) also prove the lower bound

‖φ‖∞ � log log λ

holds for infinitely many φ.
(2) Roughly speaking, the φ become “equidistributed” over X as λ becomes

arbitrarily big, and the point measure based on the zeros (of eigenforms)
converges to the point measure.

5.0.7. Remark. In the non-Archimedean case, there is an issue concerning how to
take normalizations. One natural normalization is given by q-expansions, namely,
assuming that the leading coefficient of φ is q. A different possible normalization
is given by insisting that

|〈φ, φ〉| = 1,

as in the arithmetic case. One issue with this is that it is not even clear that
this normalization is possible. The point is that one does not know, given λ 6= 0,
whether the generalized λ-eigenspace of U is a genuine eigenspace. This is because
the pairing does not give rise to a Hilbert space structure which doesn’t seem to
exist in the non-Archimedean world. For example, suppose that (U − λ)ψ = φ and
(U − λ)φ = 0. Then

〈φ, φ〉 = 〈(U−λ)ψ, φ〉 = 〈Uψ, φ〉−λ〈ψ, φ〉 = 〈ψ,Uφ〉−λ〈ψ, φ〉 = 〈ψ, λφ〉−λ〈ψ, φ〉 = 0.

The semi-simplicity is still unknown even in the classical case, see Remark 3.8.9.

We do, at least, have the following estimate:

5.0.8. Lemma (Cauchy–Schwartz). Let α, β ∈M†0 (Γ, r), with r = 1/2. Let ‖ · ‖ =
‖ · ‖1/2. There is an inequality:

|〈α, β〉| ≤ ‖α‖‖β‖.

In particular, one could “define” ‖φ‖∞ to be the quantity

‖φ‖∞ :=
‖φ‖√
|〈φ, φ〉|

,

then ‖φ‖∞ does not depend on φ up to scalar, and is conjecturally finite for eigen-
forms, but may (and will) be infinite in general.

5.0.9. Exercise. Prove that given any two functions φ and ψ, there exists some
non-trivial linear combination αφ+ βψ such that 〈αφ+ βψ, αφ+ βψ〉 = 0.
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We fix a radius of convergence r, and let ‖ · ‖ denote the supremum norm. In
this case, we have:

(1) We view ‖φ‖ = ‖φ‖r as a substitute for the L∞-norm (it is a supremum
norm).
(a) There is no known upper bound for ‖φ‖.
(b) There is a trivial lower bound ‖φ‖ ≥ 1, if we normalize by using q-

expansions, but no known non-trivial bounds.
(c) If r ≤ 1/2, there is a trivial lower bound ‖φ‖ ≥ 1, if we normalize by

setting

|〈φ, φ〉| = 1.

(2) Regarding the function φ for large λ, there are two natural questions one
could ask depending on the normalization.
(a) On the ordinary locus, the functions φ can be thought of as elements

of the universal deformation ring of a finite number of residual repre-
sentations. Nothing is known about the distribution of these points.

(b) On the supersingular locus, a result of Buzzard [Buz03] implies that
eigenforms φ extend to sections of Xrig[r] for all r < 1, and that they
cannot be extended beyond this (so ‖φ‖r →∞ as r → 1), but nothing
is known concerning what these functions look like.

5.0.10. Lemma (Hadamard three-circle theorem). Suppose that ‖F‖a = pA and
‖F‖b = pB for rational 0 < a < b < p/(p+ 1). Then there is an inequality:

logp ‖F‖r ≤ A+ (B −A)
(r −A)

(b− a)

for all a ≤ r ≤ b in Q. If F has no zeroes on the corresponding annulus, then
equality holds.

Proof. Both A and B are rational. Since norm of an integral power of F is the
corresponding power of the norm, after replacing F by a power of itself and mul-
tiplying the result by a power of p, we may assume that A = ma and B = mb for
some m ∈ Z. Now consider the function:

G = F · t−m.

By construction, the norm of G on the annulus |t| = |pa| is 1, and the norm on
the annulus |t| = |pb| is also 1. If F has no zeroes, the same argument applies to
F−1. �

One consequence is that the minimum value of ‖F‖s‖F‖1−s for s ∈ (1 − r, r)
and F ∈M†0 (Γ, r) with r > 1/2 occurs for s = 1/2.

5.1. An explicit example: N = 1 and p = 2. When N = 1 and p = 2, some
mileage7 may be obtained from the fact that X0(2) has genus zero, as well as the

fact that U2 has such an explicit form on M†0 (1, r), namely by identifying the latter
with the Tate algebra

M†0 (1, r) ' C2〈2r · f〉, f = q

∞∏
n=1

(1 + qn)24.

7or kilometrage, if you prefer.
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With respect to the natural basis in terms of powers of 2r · f , one has U2 = [sij ],
where

sij =
3i(i+ j − 1)!22i+2j−1

(2i− j)!(2j − i)!
· 2(6−12r)(i−j).

When r = 1/2 this is particularly symmetric. We will (mostly) be concerned with
this value of r, although not exclusively. Note that one has the following relationship
between the valuation of f and the annuli |t| = |2r|, which can be deduced in a
similar manner to the computations in §3.2.2:

5.1.1. Lemma. Suppose that 0 < r < 1. Then, on the annuli |t| = |2r|, one has
|f | = ‖f‖r = 212r.

For convenience, however, we make the following definitions.

5.1.2. Definition. Let ‖ · ‖ denote the norm ‖ · ‖1/2, and let g = 26f .

Note that ‖g‖ = 1. Let us denote the eigenvectors by φn for positive integers n.
A key result of [Buz03] implies that eigenvectors φ can be analytically continued to
be sections of Xrig[r] for any r < 1. One has an exact formula for the slopes of the
eigenvalues [BC05], and one knows the spectral conjecture [Loe07]. For example,
the slope of the nth eigenvalue λn of the eigenfunction φn is

v(λn) = 1 + 2v

(
(3n)!

(n)!

)
.

5.1.3. Exercise. Using the explicit formulae for the slopes, prove the 2-adic Weyl’s
law for N = 1, namely, that

N(T ) ∼ Vol(X0(2))

4π
· T +O(log(T )).

Recall the matrices A = [aij ] and B = [bij ] and the diagonal matrix [Dii]
from [BC05], where:

aij = 2(j−i)(12−6r)6ij

(
(2j)!

2jj!

)2(
2ii!

(2i)!

)2(
(2i− 1)!

(i+ j)!

)(
(2j + i− 1)!

(3j)!

)(
j

i− j

)
,

bij =
j

i
aji,

dii =
24i+1(3i)!2i!2

3(2i)!4
.

One has a factorization U = ADB. When r = 1/2, the matrices A and B lie in Z2

and are congruent to the identity modulo 2. As noted in [Loe07], the same holds
for all r in the range 5 < 6r < 7. In particular, if we let α = 2(6r−12), then the
proof of the main theorem of Loeffler [Loe07] implies the following:

5.1.4. Lemma. The n-th eigenfunction φn, considered as an element of the Tate
algebra C2〈αg〉, admits, after normalization, an expansion:

φn =
∑

ai(αg)i

where v(ai) > 0 for all i 6= n, and v(an) = 0.

We derive some immediate corollaries from this.
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5.1.5. Corollary. φn has exactly n zeroes in Xrig[r] for any 5/12 < r < 7/12. In
particular, any eigenform φn does not vanish on the annuli |t| = |pr| for r in that
range.

Proof. This follows from the Weierstrass preparation theorem. Note that exactly
one of the zeroes occurs in the ordinary locus (at the cusp ∞). �

As an example, consider the point τ = i, one has j = 1728 and f = −2−6 or
g = −1, which lies on the annulus |t| = 1/2. Hence, no eigenform vanishes at (or
anywhere near) this point. On the other hand, an easy exercise shows that every
classical modular form of level 4m vanishes at i.

5.1.6. Exercise (?). Where are the zeros for large n?

5.1.7. Corollary. Suppose that n is odd. Then

|〈φn, φn〉| = ‖φn‖2.

Proof. Writing φ =
∑
aig

i with ai ∈ Z2, and φ ≡ gn mod 2. we have

〈φn, φn〉 =
∑

aiaj〈gi, gj〉 =
∑

ka2
k ≡ nan mod 2,

which, if n is odd, has valuation 1. On the other hand,

‖φn‖ = sup |ai|‖gi‖ = sup |ai| = 1,

since ‖g‖ = 1. �

5.1.8. Corollary. Normalize the φn so that ‖φn‖ = 1. Then the limit:

lim
→
‖φn‖

exists as a continuous R-valued function on Xrig[1/2], and coincides with the locally
constant function which is 1 on the annulus |t| = |p1/2| and zero everywhere else.

There also exists a second natural normalization of the eigenforms φ, namely,
the one given by q-expansions. In particular, for these normalizations, we can take
the q-expansion norm ‖φ‖0. Since the φ are eigenforms, the q-expansion norm can
be read off from the coefficient of g in φ, e.g., if φ =

∑
aig

i, then ‖φ‖0 = |26 · a1|.

5.1.9. Lemma. There is a lower bound:

‖φn‖
‖φn‖0

≥ 2n+5.

Proof. Let us write φn =
∑
aig

i with ai ∈ Z2 and φn ≡ gn mod 2. Then we may
also write:

αnφn =
∑

αn−iai(αg)i,

and by Lemma 5.1.4 we deduce that:

(n− i)v(α) + v(ai) > 0

for all −1 < v(α) < 1. With this normalization, we have ‖φn‖ = 1, and ‖φn‖0 =
|26 ·a1|. Yet, taking v(α)→ −1, we deduce that v(a1) ≥ n−1, and hence v(26 ·a1) ≥
n+ 5. The result follows. �

54



5.1.10. Guess. Suppose that φn ≡ gn mod 2. Then

|〈φn, φn〉| = |〈gn, gn〉| = |n|.

In particular,

‖φn‖2∞ :=
‖φ‖2

|〈φ, φ〉|
=

1

|n|
= O(log v(λ)).

Moreover, there are equalities:

‖φn‖0
|〈φn, φn〉|

= |29n · λn|,
‖φn‖20
‖φn‖2

= |29n2 · λn|.

I must admit the first equality is based on an embarrassingly small amount of
data (for n = 1 to 4), although the final identity is similar to one guessed by Loeffler
when N = 1 and p = 5. If we compare the conjectural lower bound of ‖φn‖/‖φn‖0
to the bound established in Lemma 5.1.9 (to check for consistency), we obtain the
estimate:

v(λn) + 2v(n) ≥ 2n+ 1.

This is easy to prove directly (given the explicit formula for the slopes in this case),
and equality holds only for n = 1. From Weyl’s Law, we actually have v(λn) ∼ 4n.

5.1.11. Guess. The zeros of φ1 occur when v(A(E)) = r takes the following values:
once when r = 8, and then 2n times for integers n ≥ 1, when

r =
1

12

(
12− 2

2n

)
.

The zeroes of φ2 occur when v(A(E)) = r takes the following values: once when
r = 3, and then 2n times for integers n ≥ 1, when

r =
1

12

(
12− 4

2n

)
.

This guess is equivalent to the following. Write φ1 =
∑

a(n)hn, then the New-

ton polygon of this power series occurs at the vertices (1, 0), (2, 8), and

(2n + 1, 24 · 2n − 2n− 6).

5.1.12. Exercise. Verify this for r < 1− ε for some small ε.

5.2. Overconvergent p-adic arithmetic quantum unique ergodicity. In the
spirit that the section heading suggests8, we make the following general guesses:

5.2.1. Guess. Consider the space M†0 (Γ, 1/2). Then the following hold.

(1) The Spectral Conjecture: The operator Up admits a convergent spectral
expansion, and the action of Up is semi-simple.

(2) p-adic Weyl’s law: The number of eigenvalues of slope at most T satisfies
Weyl’s law.

(3) If ‖ · ‖ denotes the supremum norm, then

1 ≤ ‖φ‖2

|〈φ, φ〉|
= O(log v(λ)).

8Thanks to Simon Marshall for the satisfying acronym.
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(4) If ‖ · ‖0 denotes the q-expansion norm, then

‖φ‖2

|〈φ, φ〉| · |λ|
= O(log v(λ)).

(5) As λ → 0, are the functions φ are distributed in some natural way? As a
special case, is it true that the (normalized) sequence

‖φ‖2

on M†0 (Γ, 1/2) converges to functions which are constant on supersingular
annuli |t| = 1/2, at least if one restricts to subsequences for which the
residual representation ρφ is constant? (Or, perhaps, to a connected com-

ponent of the eigencurve?) Do the sum of delta measures on Xrig[1/2]
supported on the zeros of φ converge to any explicit measure on the corre-
sponding Berkovich space (already an interesting computation for N = 1
and p = 2)? To make an even wilder guess, let Sφ denote the zero set of φ in
the region Xrig[1/2]. We expect (and know for N = 1 and p = 2) that |Sφ|
grows linearly with respect to the natural ordering of the eigenvalues. It
may also be the case that Sφ is completely contained within Xrig[r], where
r = 1/(p+ 1). Consider the measures:

1

|Sφ|
∑
x∈Sφ

δx.

Is it the case that these measures on complex valued continuous functions
on Xrig[r] have a limiting measure on the Berkovich space associated to the
affinoid Xrig[r] (for r = 1/(p+1))? If so, does it converge to the Gauss point
corresponding to the supremum norm on the entire space? For example, is
it the case that when N = 1 and p = 2, and for a polynomial F ∈ C2[[g]],
one has

lim
λ→0

1

|Sφ|
∑
x∈Sφ

|F (x)| = ‖F (x)‖r,

where r = 1/(p+1). For example, if F = g, this is equivalent to saying that
almost all of the zeros of φ (in Xrig[1/2]), the Hasse invariant has valuation
at least r − ε for any fixed ε > 0 and r = 1/(p+ 1).

(6) As λ→ 0, the Galois representations ρφ are distributed on the correspond-
ing global deformation rings Spec(Rρ) with respect to a natural measure.
Note that when N = 1 and p = 2 all the eigenfunctions have coefficients in
Z2; In general, Buzzard raises the question [Buz05] of whether for any N
and p all finite slope eigenforms in any particular weight are defined over
a fixed extension K/Qp. Hence, by measure, we are considering subsets of
the compact p-adic manifold Hom(Rρ,OK) rather than some measure on
the Berkovich space associated the rigid analytic space corresponding to
Rρ.

Assuming a very strong version of the Gouvêa–Mazur conjecture, one can rephrase
part 6 of this guess as follows (and equally vaguely):

5.2.2. Guess. Consider the classical modular eigenforms of weight pk−1(p−1) over
Qp. Then, as k →∞, the Galois representations modulo pk are distributed on the
corresponding global deformation rings with respect to a natural measure.
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On the other hand, the claims concerning the distribution of φ on the annuli are
close to meaningless without some possible candidate distribution.

6. Student projects

There are various projects, depending on the inclination of the student — some
are more theoretical and some are more computational. (Of course, the computa-
tions should help with the theoretical musings.)

6.1. Turn Guess 5.2.1 into a conjecture. or at least a question. This requires:

6.1.1. More data. Suppose that N = 1 and p = 2. Here’s a practical way of com-
puting eigenforms of high slope. Choose an arbitrary cut off, say n = 100; let
M = [sij ] for i, j ≤ 100 denote the corresponding matrix. Compute the character-
istic polynomial X100 + . . . of M . The roots of this polynomial all lie in Z2, so they
are easy to compute to high 2-adic accuracy. Let λ′ denote a root of this polyno-
mial to high 2-adic accuracy. Let λ denote the corresponding genuine eigenvalue.
Choose a a random vector u ∈ Z100

2 , and let

v = (M − λ′)−mu.
for some largish integer m. Then v should be a good approximation to the genuine
eigenvector associated to λ. For example, the eight eigenvalue λ8 has valuation 31,
and, using Hensel’s Lemma, we compute that

λ8 = 180209030460611922811273746736146081159890376260

1218215405738446438703552331427086814610754371584 +O(2321)

Let λ′ denote this number, and let M be the 50×50 matrix [sij ] with i, j = 1, . . . , 50.
Let

v = (M − λ′)−100(1, 0, 0, 0, . . . , 0).

(A larger exponent would probably give a more accurate approximation, but I
didn’t do this in a very clever way so even this computation was a little slow.) Let
w denote the scalar multiple of v normalized so that the first entry is 2−6. An
approximation to φ8 should then be given by

φ8 ∼
50∑
i=1

vig
i.

We compute the valuations of the coefficients vi to be as follows:

[−6,−9,−9,−14,−13,−16,−16,−23,−16,−16,−13,−14,

− 9,−9,−6,−7, 4, 6, 11, 12, 19 . . .]

To test this as an approximation to φ8, note that the square of the norm ‖φ8‖2
appears to be equal to 246 = 29 · 82 · 223, as predicted by Guess 5.1.10. We also
compute the first few terms of the q-expansion (omitted, because they are ratios
of 500000 digit numbers, although it is ridiculous to compute them in this man-
ner, since one should work modulo some power of 2 — hopefully some of you can
programme better than I can):

φ8 ' q + a(2)q2 + a(3)q3 + a(4)q4 + a(5)q5 + a(6)q6 + . . .

we find that v(a(2)) = 31 = v(λ8), and we also check that

a(3)a(5) ≡ a(15) mod 2115,
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which is a good check that this is actually an eigenform. We can compute that the
zeroes of φ8 in Xrig[1/2] occur at the cusp q = 0 and on |t| = r for

r = {1/4, 7/24, 7/24, 5/16, 5/16, 5/16, 5/16}.

Do there exist φ with zeros on the annulus |t| = |pr| with 1/3 < r < 2/3? Do
almost all of the zeroes of φ with r ≤ 1/2 have valuation 1/3− ε? A possibly dodgy
computation for φ12 found zeroes of the following valuations (away from q = 0):

r = {1/4, 7/24, 7/24, 5/16, 5/16, 5/16, 5/16, 1/3, 1/3, 1/3, 1/3}.

A computation for φ64 (no attempt to be careful about accuracy) with λ64 =
2255 + . . . yields φ64 ∼?

∑
aig

i with the following valuations for the coefficients ai
(normalized so that a1 = −6):

[−6,−9,−9,−14,−13,−16,−16,−23,−21,−24,−24,−29,−28,−31,−31,−40,−37,−40,−40,

− 45,−44,−47,−47,−54,−52,−55,−55,−60,−59,−62,−62,−73,−69,−72,−72,−77,−76,

− 79,−79,−86,−84,−87,−87,−92,−91,−94,−94,−103,−100,−103,−103,−108,−107,−110,

− 110,−117,−115,−118,−118,−123,−122,−125,−125,−138,−125,−125,−122,−123,−118,

− 118,−115,−117,−110,−110,−107,−108,−103,−103,−100,−103,−94,−94,−91,−92,−87,

− 87,−84,−86,−79,−79,−76,−77,−72,−72,−69,−73,−62,−62,−59,−60 . . .]

which yields ‖φ64‖ = 29 · 642 · 2255 = 2276 = 22·138, and has roots with |t| = |pr|
and r ≤ 1/2 with r as follows:

r = {1/4, 7/24, 7/24, 5/16, 5/16, 5/16, 5/16, 31/96, 31/96, 31/96, 31/96, 31/96, 31/96, 31/96,

31/96, 21/64, 21/64, 21/64, 21/64, 21/64, 21/64, 21/64, 21/64, 21/64, 21/64, 21/64, 21/64,

21/64, 21/64, 21/64, 21/64, 127/384, 127/384, 127/384, 127/384, 127/384, 127/384, 127/384,

127/384, 127/384, 127/384, 127/384, 127/384, 127/384, 127/384, 127/384, 127/384, 127/384,

127/384, 127/384, 127/384, 127/384, 127/384, 127/384, 127/384, 127/384, 127/384, 127/384,

127/384, 127/384, 127/384, 127/384, 127/384},

Note that one has

4

|Sφ64 |
∑
x∈Sφ

|g(x)| = 0.92577 . . . ' 4‖g‖1/3 = 1,

which (if correct) might be taken as some sort of evidence. In comparison, the
sets Sn of nth roots of unity also converge to the Gauss norm on the affinoid
corresponding to the closed unit disk, and one has

1

|S64|
∑
ζ64=1

|ζ − 1| = 1

64

5∑
n=0

2n · 2−1/2n = 0.92577 . . . ∼ ‖z − 1‖ = 1.

(The numerical coincidence is not accidental — the LHS are literally equal, which is
perhaps surprising but not completely preposterous since both are sums of powers
of two with exponents in 1

32Z — if |t(x)| = |2r| with r = 127/384, for example,

then |g(x)| = 2−6212r = 2−65/32, and so 4|g(x)| = 2−1/32. In comparison, the roots
of φ63 all occur with r = 1/3 with the exception of the cusp ∞ and one root for
r = 1/4, so

4

|Sφ63
|
∑
x∈Sφ

|g(x)| = 41

42
= 0.97619 . . . ' 4‖g‖1/3 = 1.
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6.2. More precise questions. What does it mean for the eigenvectors φj them-
selves to become “equidistributed”? Compute lots of eigenfunctions φj for N = 1
and p = 2 and then stare at them, and think about p-adic equidistribution and
Berkovich spaces.

6.3. Some Guesses. Let N = 1 and p = 2, and let k ∈ Z2. Let j denote a
sequence of positive integers tending to infinity such that j → k in Z2. Do the
Galois (pseudo-)representations φj tend to a limit? For example, if j → 0, does φj
tend to 1 ⊕ ε−1 where ε is the cyclotomic character? Numerically, one (seems to
have)

φ64 ≡ q +

(
1 +

1

3

)
q3 +

(
1 +

1

5

)
q5 +

(
1 +

1

7

)
q7 + . . . mod 219,

suggesting that φ2m converges to

∞∑
n=1

d odd∑
d|n

1

d

 qn = h− 24h2 +
2560

3
h3 − 35840h4 + . . .

=

∞∑
n=1

(
2n

n

)
(−1)n−1

32n
(16h)n

=
1

16
log

(
1 +
√

1 + 64h

2

)
Note (by inspection) that this function lies in M†0 (1, r) for all r < 1/3, but not for
r = 1/3 (this is also consistent with Lemma 3.8.5, because it lies in the kernel of
U2). Moreover, the zeroes of this function occur exactly when 16h = ζ2 − ζ for a
root of unity ζ with |ζ−1| < 1, equivalently, for a root of unity of two power order.
This is also consistent with the computations above. Another reason one might gues
this convergence is that φ2n , which has slope 2n+2 − 1, lives in a Coleman family
— and if the radius of the family with constant slope is very large (exponential
rather than linear as predicted by the Gouvêa–Mazur conjecture) then it will pass
through the evil Eisenstein series of weight 2n+2.

6.4. Trace formula methods. Consider the question of how the Galois represen-
tations ρj associated to φj are distributed. For N = 1 and p = 2, they all have
coefficients in Z2, so they land in the Q2-points of the universal deformation ring
of ρ. (More accurately, there is only a universal pseudo-deformation ring, and a big
Hecke algebra T.) The corresponding big Hecke algebra is presumably a quotient of
a power series ring over Z2 in a small number of variables. Probably those variables
can be chosen to map to Tl for small primes l. One may then study Tl using the
p-adic trace formula (for p = 2 here, but also more generally). Specifically, one may

compute the trace of any compact operator on M†k(r). Hence suitable test functions
are continuous maps composed with Up, for example TlUp for any prime l.

6.5. Rigorous arguments. Can one prove/improve any of the upper or lower
bounds for ‖φn‖ or |〈φn, φn〉|? Can one prove any useful bounds at all for general
N and p?

6.6. The Spectral conjecture. Can one prove anything? For example:

6.6.1. p-adic Adjoint L-functions. Prove Exercise 3.11.1.
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6.6.2. Symmetric Matrices. What restrictions — if any — does the existence of

the invariant pairing 〈∗, ∗〉 put on the spectrum of U on M†0 (Γ, 1/2)? For example:
determine whether their exists an ∞×∞ matrix M with coefficients in Zp such
that:

(1) M is symmetric. (mij = mji.)
(2) If B is the Banach space of convergent sequences in Qp, then M acts

compactly on B in the natural way. (limmij = 0.)
(3) The kernel of M is trivial.
(4) The characteristic power series of M is trivial; equivalently, M is topologi-

cally nilpotent; equivalently, the trace of Mn is zero for all n > 0.

6.6.3. Integral structures. Can one find canonical integral structures on M†(Γ, r)
on which the action of U is (close to) semi-simple on the mod-p reduction? This is
already interesting and difficult on the space of classical modular forms.

6.6.4. The Slope conjectures. Due to Buzzard [Buz05], Lisa Clay, and others. Buz-
zard’s conjecture has associated pari.gp/magma scripts (see the paper); play around
with those programs if you can.

6.6.5. Applications to congruences. How often does one expect there to be a form
of slope µ with 0 < µ < 1 and weight 0?

6.7. Some reading. It might be worthwhile to take a look at the paper of Gouvêa
and Mazur [GM95] — it’s a very easy read. For the classical take on these con-
gruences, look at Waton’s paper [Wat38] (For a later, similar approach, see the
paper by Atkin and O’Brien [AO67].) All the technical fact concerning modular
forms we will need are mostly in the first chapter of Katz’s Antwerp paper [Kat73].
Remind yourself what the spectral theorem for compact operators is. It might be
useful to read [Loe07] and perhaps scan [BC05] for some computations with N = 1
and p = 2. Feel free to look at Coleman’s papers, although note that we won’t
require the full machinery he uses (and develops) because we will be working in
fixed weight.
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