
Note: In this document, unless otherwise noted, all rings are assumed to be commutative
with 1, and all ring homomorphisms take 1 to 1. The sources [HH], [BW], [CS], and [MS] are the
notes of Harbater-Hartmann, Bouw-Wewers, Chinburg-Stover, and Mieda-Saito, respectively.

Problem Set 1: Local Fields

Recall that a discrete valuation ring (DVR) is a Noetherian, integrally closed, local domain
of dimension 1. One can show that such a ring has a unique nonzero prime ideal. This is a
maximal ideal, and is principal. If A is a DVR and m is the maximal ideal, then A/m is the
residue field of A. Any generator of m is called a uniformizer of A. If K = Frac(A) for a DVR
A, then K is called a discrete valuation field (DVF). Note that, essentially by definition, the
localization of a Dedekind domain at any maximal ideal is a DVR.

Let A be a DVR with fraction field K and uniformizer π. Then K comes with a valuation
homomorphism

v : K× → Z

given by v(x) = i exactly when x = uπi, with u a unit of A.

Problem 1. Show that the valuation v satisfies the ultrametric inequality, that is, v(x + y) ≥
min(v(x), v(y)). Show that equality holds when v(x) 6= v(y).

Problem 2. Let c ∈ (1,∞), and define an absolute value on K× by |0| = 0 and |x| = c−v(x)

when x 6= 0. Show that this defines a metric on K, and thus a topology. Show that the topol-
ogy is independent of c. Show that K is a topological field under this topology (i.e., addition,
multiplication, and inversion are continuous). What is the unit disk centered at 0?

Problem 3. For a ∈ A and r ∈ (0,∞), let B(a, r) be the open disk of radius r centered
at a. Give meaning to the sentence “any element of the disk B(a, r) is its center.” Prove your
statement.

If π generates the maximal ideal m of A, then the topology above is called the m-adic topology
or the π-adic topology. When we speak of a DVR or DVF as a topological ring, it is assumed
that we mean this topology.

A complete DVR is a DVR that is complete as a topological space. If A is a DVR and m is
its maximal ideal, then the completion of A is

Â := lim←−
n

A/mn.

It is a complete DVR (you can prove this if you want).

Problem 4. Show that the canonical homomorphism A → Â is injective, that the image
of a uniformizer of A is a uniformizer of Â, and that the residue field of A is the same as that
of Â. Note: If A was already complete, then the canonical injection is an isomorphism.

Problem 5. (Hensel’s Lemma) Let Â be a complete DVR with maximal ideal m and residue
field k. Let f be a monic polynomial with coefficients in Â and let f be its reduction mod m.
Show that if f(x) = 0 has a solution a ∈ k such that f

′
(a) 6= 0, then there exists a ∈ Â such

1



that f(a) = 0 and the reduction of a (mod m) is a. Hint: Newton’s method

For any prime p, define the p-adic numbers Zp to be the completion of the local ring Z(p).
Let Qp = Frac(Zp).

Problem 6. Characterize the squares in Zp. Hint: For p = 2, the binomial theorem may
help.

Problem 7. Show that for p 6= q, Qp 6∼= Qq.

For any field k, the ring k[[t]] is a complete DVR with residue field k and fraction field k((t)).
Since the characteristic of the DVR is the same as the residue field, this is called a complete
DVR of equal characteristic. As a matter of fact, every complete DVR in equal characteristic is
of the form k[[t]].

Problem 8. If k is perfect of characteristic p, show that every finite purely inseparable exten-
sion of k((t)) is given by adjoining a qth root of t, where q is a power of p.

If k is a perfect field of characteristic p, then there is a unique complete DVR of character-
istic 0 with residue field k, such that p is a uniformizer. Since the characteristic of the DVR is
not the same as the characteristic of the residue field, this is called a DVR of mixed character-
istic. This is called the ring of Witt vectors over k, and written W (k). The construction can be
found in Serre’s Local Fields and Lang’s Algebra.

Problem 9. What is W (Fp)?

Problem 10. Show that, if r is prime to p, then there exists a field k of characteristic p
such that W (k) contains a primitive rth root of unity.

Problem 11. Does there exist a field k of characteristic p such that W (k) contains a pth
root of unity?

Note that the term local field generally refers to a complete DVF with finite residue field.
Such fields are always finite extensions of Qp or Fp((t)), for some p.
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Problem Set 2: Extensions of Complete DVR’s and Ramification

Let A be a complete DVR and K its fraction field, and assume for the rest of this problem
set that the residue field k of A is perfect. If L/K is a finite field extension, then L has a natural
topology as a K-vector space, and it is complete for this topology. Taking B to be the integral
closure of A in L, then B is a DVR with fraction field L, and its natural topology coincides
with the topology inherited from L. Thus B is a complete DVR. Also, this shows that if σ is
any automorphism of B fixing A, then σ preserves the valuation on B.

The residue field ` of B is a finite extension of the residue field k of A. The rank [` : k]
is called the residual degree of the extension, and is sometimes written fL/K . Also, if πA is a
uniformizer of A, then πA is an element of B. The valuation of πA (considered as an element
of B) is called the inertial degree of L/K, and is sometimes written eL/K . One can show (and
you may use) that eL/KfL/K = [L : K]. If A is a DVR of mixed characteristic (with residue
characteristic p), the absolute ramification index of A is the valuation of p.

Problem 1. Let K = Q7. Compute the residual and inertial degrees of K(
√

5)/K, K(
√

14)/K,
and K(

√
70)/K.

Let L/K be a G-Galois extension, for some finite group G. We know that G preserves the
valuation on L. Thus the action of G on L descends to an action of G on `.

Problem 2. Show that if L/K is unramified (i.e., eL/K = 1) iff the action of G on ` is
faithful.

Problem 3. Show that if L/K is totally ramified (i.e., eL/K = |G|) iff the action of G on
` is trivial.

Problem 4. Let L/K be a G-Galois extension as above. Show that there exists a unique
subextension M/K of L/K that is unramified, such that L/M is totally ramified.

In the situation above, M/K is called the maximal unramified subextension of L/K, and the
group G0 := Gal(L/M) ⊆ Gal(L/K) = G is called the inertia group of the extension L/K.
Clearly, one has |G0| = eL/K .

In fact, one can carry this idea further. Given L/K a G-Galois extension as above with
valuation ring extension B/A, for each i ∈ Z, let

Gi = {g ∈ G | ∀b ∈ B, v(g(b)− b) ≥ i+ 1}. (1)

Problem 5. Show that G−1 = G, that G0 is as it was defined above, and that Gi is a normal
subgroup of G for all i.

Problem 6. Show that, in (1), one need only check some b ∈ B such that B = A[b].

The filtration Gi is called the higher ramification filtration for the lower numbering. It is quite
important because of the following theorem.
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Theorem. If L/K is a G-extension as above, and the valuation ring of L has maximal ideal
mL and uniformizer πL, then the different ideal δL/K of L/K is mu

L, where

u =
∞∑
i=0

(|Gi| − 1).

The norm of the different is the discriminant of the extension. We will not say much about
this. Note that there is also a higher ramification filtration for the upper numbering. There will
be no problems about this, but we can discuss it if there is demand.

Problem 7. Show that, in the situation above, G0/G1 injects into `× as a group, where `
is the residue field of L. Hint: Show that the map θ0 : G0/G1 → `× given by g 7→ g(πL)/πL
does the trick. Here g is the image of g ∈ G0 in G0/G1.

Problem 8. In the situation above, for i ≥ 1, show that Gi/Gi+1 injects into `+ as a group.

Hint: Show that the map θi : Gi/Gi+1 → `+ given by g 7→ (g(πL)− πL)/πi+1
L does the trick.

Here g is the image of g ∈ Gi in Gi/Gi+1.

Problem 9. Show that if the residue field k of K is algebraically closed of characteristic
0, then G is cyclic. Show that if k has characteristic p, then G0

∼= G1 o C, where C is cyclic.
Show that G1 is a p-group and p - |C|.

The group G1 is often called the wild inertia group of L/K. If G1 is trivial, the extension
L/K is said to be tamely ramified.

Problem 10. Let K be a complete DVR with algebraically closed residue field of charac-
teristic p. If L/K is a separable extension with prime-to-p order (not assumed to be Galois),
then show that L/K is, in fact, Galois.

Problem 11. What is the absolute Galois group of C((t))?

Problem 12. For an arbitrary a ∈ Q2, compute the higher ramification groups and differ-
ent of Q2(

√
a)/Q2. If this is too hard, assume a ∈ Z.

Problem 13. Let ζp be a pth root of unity. Compute the higher ramification groups and
different of Qp(ζp)/Qp. What about Qp(ζp, p

√
p)/Qp?

Problem 14. Prove the following version of Abhyankar’s Lemma: Let K be a complete DVF
with perfect residue field. Let L/K and M/K be Galois extensions of K with eL/K |eM/K , and
p - eM/K if K has residue characteristic p. Then LM/M is unramified.
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Problem Set 3: Artin/Swan Representations/Conductors

Recall that if G is a finite group and ρ : G→ GLn(C) is a representation, then the character
of ρ (written χρ) is a map G→ C given by χρ(g) = Tr(ρ(g)).

Problem 1. Show that χρ(g) = χρ(g−1).

Note that a character is a class function, that is, it is constant on conjugacy classes in G.
One can ask, given a class function on G, when is it in fact the character of a representation?
One knows that any character is the character of at most one representation.

Let G be a finite group, and let L/K be a G-Galois extension of complete DVRs. Assume
that the residue field k of K is perfect. The Artin class function aG is defined by

aG(g) =

−fL/K max({i | g ∈ Gi−1}) g 6= id

−
∑

g∈G
g 6=id

aG(g) g = id.

A major theorem is that the Artin class function is actually the character of a representation!
Thus, it is usually referred to as the Artin character.

The Swan character swG is given by aG + IndGG0
1G − rG, where rG is the character of the

regular representation and IndGG0
1G is the character of the G-representation induced from the

trivial representation of G0. It is also a character of a representation of G.

Problem 2. For the extensions in Problems 12 and 13 of Problem Set 2, calculate the Artin
and Swan characters, and find the corresponding representations.

Let ρ : G → GL(V ) be a C-representation of G, and let χρ be its character. Then the Artin
conductor of χρ, is given by

〈aG, χρ〉 :=
1

|G|
∑
g∈G

aG(g)χρ(g).

The Swan conductor of χρ is given by

〈swG, χρ〉 :=
1

|G|
∑
g∈G

swG(g)χρ(g).

One can show that the Artin conductor of χρ is in fact equal to

∞∑
i=0

|Gi|
|G0|

(dimV − dimV Gi),

where V Gi is the subspace of V fixed pointwise by Gi.

Problem 3. Given what we have said so far, show that the Swan conductor of χρ is equal
to

∞∑
i=1

|Gi|
|G0|

(dimV − dimV Gi).

5



Problem 4. If G = Gal(Qp(ζp)/Qp), let ρ = χρ : G → C× be the cyclotomic character.
Calculate its Artin and Swan conductors by both methods.

Problem 5. If G = Gal(Qp(ζp, p
√
p)/Qp), let ρ : G → GLp−1(C) be the unique irreducible

faithful representation, up to isomorphism. Calculate the Artin and Swan conductors of its
character χρ.
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Problem Set 4: Ramification in Characteristic p

Throughout this problem set, k is an algebraically closed field of characteristic p.
Let K be a field of characteristic p. The Artin-Schreier theory says that all Z/p-extensions

of K are of the form K[y]/(yp − y − a), where a ∈ K. The Galois action of a generator of Z/p
is given by y 7→ y + 1.

Problem 1. Fix an algebraic closure K of K. Show that if a′ = a + bp − b for some b ∈ K,
then K[y]/(yp − y − a) = K[y]/(yp − y − a′) as subextensions of K/K.

Problem 2. Let K = k((t)). Fix an algebraic closure K of K. Show that every Z/p-extension
of K inside K can be given by K[y]/(yp− y− a), where a =

∑n
i=1 ait

−i, with ai ∈ k, and ai = 0
when p | i. Hint: First show that every power series in t is of the form bp − b.

Problem 3. (From [BW]) Fix h ∈ N\pN. Let k be algebraically closed of characteristic p,
let A = k[[t]], let K = k((t)), and let L = K[y]/(yp − y − t−h). Let B be the integral closure of
A in L.

(a) Find z ∈ B such that B = k[[z]].

(b) If σ is a generator of Gal(L/K), write down a power series for σ(z).

(c) Determine the higher ramification filtration of L/K.

One major difference between characteristic p and characteristic zero is that, in characteris-
tic p, there exist nontrivial étale covers of the affine line (if you don’t know what étale means,
then for our purposes such a cover is a finite, generically separable map Y → A1

k of smooth
k-varieties such that the cardinality of each fiber is the same. See also Problem Set 10). If
A1
k is Spec k[x], then the function field of A1

k is k(x). If Y → A1
k is a finite morphism, and

Y is normal, then Y = Spec B, where B is the integral closure of k[x] in a field extension of
k(x). The map f : Y → A1

k is called a Galois cover (with group G) if this field extension is
Galois (with group G). The G-action on B yields a G-action on Y that preserves each fiber of f .

Problem 4. Let L/k(x) be the field extension given by yp − y = x. If Y → A1 is the
corresponding cover, show that it is étale and that Y is isomorphic to A1.

Recall the Hurwitz formula. This says that if f : Y → X is a finite, generically separable
map of smooth projective k-curves of degree d, then

2g(Y )− 2 = d(2g(X)− 2) + |R|,

where g(X) and g(Y ) are the respective genera of X and Y , and R is the ramification divisor
on Y . The ramification divisor is given as follows: If y ∈ Y is a closed point, and the different
of ÔY,y/ÔX,f(y) is mi

y, where my is the maximal ideal of ÔY,y, then the coefficient of y in R is i.

The inertial degree of ÔY,y/ÔX,f(y) is called the ramification index at y.

Problem 5. Show that if the ramification index ey at y is prime to the characteristic of k,
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then the coefficient of y in R is ey − 1. (Use the theorem from Problem Set 2).

If k is Y → A1
k is an étale cover induced from a field extension L/k(x), then Y → P1 is

given by taking the normalization of P1 in L/k(x). It is étale, except perhaps at ∞.

Problem 6. Let h ∈ N\pN.

(a) Show that if L = k(x)[y]/(yp− y− xh), then L/k(x) is Galois with group Z/p, and gives
an étale Galois cover Y → A1

k.

(b) Let Y → P1
k be the corresponding projective cover. What is the genus of Y ?

Problem 7. Give the weakest condition you can on a finite group G that would prohibit
it from being the group of a Galois étale cover of A1

k.
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Problem Set 5: Adeles and Heights

Let K be a number field, and OK its ring of integers. For each prime ideal p ⊆ OK , the
localization of OK at p is a DVR, inducing a valuation vp on K, and thus an absolute value
by |x|p = (Np)−v(x), where Np is the order of K/p. Each embedding of K into R or pair of
complex conjugate embeddings into C also gives rise to an absolute value on K, by restricting
the standard absolute value. The collection of all these absolute values is called the set of places
of K (really, places are equivalence classes of absolute values, but this won’t matter for us).
The absolute values coming from embeddings into R or C are called archimedean places, and
the others above are called non-archimedean. Write VK for the set of places of K. If v ∈ V is
non-archimedean, corresponding to a prime p, write Ov for the completion of the localization of
OK at v, and write Kv = Frac(Ov). If v ∈ VK is real (resp. complex), write Ov = Kv = R (resp.
Ov = Kv = C).

Recall the definition of the adeles AK of K from [CS]:

AK =

{
(xv) ∈

∏
v∈VK

Kv : xv ∈ Ov for all but finitely many v ∈ VK

}
.

The adeles are clearly a ring, and have a topology given by taking a basis of neighborhoods of
zero to be of the form ∏

v∈VK

Uv,

where Uv is open and Uv = Ov for all but finitely many v ∈ VK . The adeles are a topological
ring under this topology.

For each complex place v, fix one of the complex conjugate embeddings K → Kv correspond-
ing to v. Then the embeddings K → Kv for each v give rise to an embedding K → AK .

Problem 1. (From [CS]) Show that K embeds discretely into AK . Hint: Use the fact that OK
embeds discretely into the product of the Kv for v archimedean.

Problem 2. Show that, as groups, we have AQ/Q ∼= S1×Ẑ. Are they isomorphic as topological
groups?

In fact, AK/K is always compact, but this is a little more involved.

Problem 3. Show that AK is not connected.

For each v ∈ VK , let | · |v be the absolute value corresponding to v.

Problem 4. (Product formula) Let x ∈ K×. Show that
∏

v∈VK
|x|nv

v = 1, where nv = 2
if v is complex, and nv = 1 otherwise. Here, for a non-archimedean valuation v, we have
|x|v = (Nv)−v(x), where Nv is the cardinality of the residue field of v. Hint: First assume
K = Q. Then, for arbitrary K, show that the product formula in Q for the norm N(x) gives
the product formula for x.

If x ∈ K× then the height Hk(x) is given by
∏

v∈VK
max(1, |x|v).

9



Problem 5. (From [CS]) If x = r/s, with r and s relatively prime integers and s 6= 0,
show that HQ(x) = max(|r|, |s|).
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Problem Set 6: Central Simple Algebras

If K is a field, then a central simple algebra (csa) over K is a finite associative (not neces-
sarily commutative) unital K-algebra with no nontrivial two-sided ideals, whose center is K.

Problem 1. Show that, for any n, Matn(K) is a csa over K.

Problem 2. Show that if D is a division algebra with center K, then D is a csa over K.

In fact, a theorem of Wedderburn states that all csa’s over K are of the form Matn(D), where
D is a division algebra with center K. Also, if Matn(D) ∼= Matn′(D′), then n = n′ and D ∼= D′.

If K is a field, and a, b ∈ K×, then we define the quaternion algebra A(a, b,K) to be the
central K-algebra with underlying vector space K⊕Ki⊕Kj⊕Kij subject to the multiplication
law i2 = a, j2 = b, and ij = −ji.

Problem 3. Show that A(a, b,K) is a central simple algebra.

By dimension count reasons, it is clear that A(a, b,K) is either a division algebra or isomorphic
to M2(K).

Problem 4. Let K = Qp. For which choices of A and B in K\K2 is A(a, b,K) a division
algebra? What about for K = R?

Problem 5. Let a, b ∈ Q×. Prove that A(a, b,R) is a division algebra iff A(a, b,Qp) is a
division algebra for an odd number of p. Hint: Use quadratic reciprocity. This is a special case
of the Brauer-Hasse-Noether Theorem.

Problem 6. Let D be a division algebra with center K, and let Dop be the opposite ring (same
underlying additive group, but ab in Dop is equal to ba in D). Show that D⊗KDop ∼= Matn(K),
where n = [D : K]. Hint: Consider the action of D⊗K Dop on A given by (a⊗ b)(c) = acb. You
may use without proof the fact that a tensor product of two csa’s over K is a csa over K.

Problem 7. For any quaternion algebra A(a, b,K) over any field, show that A ∼= Aop.

Recall that two csa’s A and B over K are Brauer equivalent if A = Matn(D) and B = Matn′(D)
for the same division algebra D. In light of Problem 6, the Brauer equivalence classes of csa’s
over K form an abelian group under tensor product, with the class of K as the identity element.
This group is called the Brauer group of K, and written Br(K). Note that each Brauer class
has exactly one element that is a division algebra.

Problem 8. Show that the Brauer group of an algebraically closed field is trivial.

Problem 9. Determine the Brauer group of any field Fq.
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Problem Set 7: Some Basic Scheme Theory

Of course, we cannot give a full introduction to scheme theory. We will just touch on a few
points that will be relevant to the lectures. Let A be a ring. The set of prime ideals of A is
denoted Spec A, and the topology on Spec A is given by taking closed sets to be those of the
form V (I) := {p ∈ Spec A | I ⊆ p} for all ideals I (it is not hard to verify that this is a topology).

Problem 1. Show that the closed points of Spec A are the maximal ideals.

Problem 2. Show that if A is a domain, then there exists a generic point η ∈ Spec A, i.e., the
closure of η is Spec A.

Problem 3. If A is a DVR, describe the topological space Spec A completely.

By the Nullstellensatz, if A is a finitely generated, reduced, algebra over an algebraically closed
field, the subspace of Spec A consisting of the maximal ideals is homeomorphic to the variety
with coordinate ring A in the Zariski topology. You can verify a few examples if you wish. The
standard topological results carry over (i.e., Spec A is irreducible iff A is a domain, etc.). The
dimension of Spec A is the Krull dimension of A, see [HH] for more details. The affine line over
a ring R is A1

R = Spec R[x]. See [HH] for how P1
R is formed by gluing two copies of A1

R. Note
that an affine scheme is the topological space Spec A, along with a sheaf of functions. We will
not give details now, except to say that the ring of regular functions on Spec A is A. The value
of a function a on Spec A at a point p is the element of A/p given by the reduction of a. For
A = C[x], for instance, it is a good idea to convince yourself that this is essentially the same
as the standard way of thinking about functions. The ring of rational functions on Spec A is
the total ring of fractions of A. If A is a domain, this is Frac(A). If A is a domain, the rings of
rational functions on A1

A and P1
A are both Frac(A)(x).

Problem 4. (From [HH]) Let k be a field, and let T be either k[[t]] or Zp. Describe the
topological spaces A1

T and P1
T in as much detail as you can. What are the closed subsets? To

make things easier at first, you might assume k algebraically closed. What are the dimensions
of these spaces?

Problem 5. For T = k[[t]] (resp. Zp), show that every closed point in P1
T lies in the zero

locus of the ideal (t) (resp. (p)) (note that both t and p are global functions on P1
T ). If X is the

zero locus of (t) (resp. (p)), show that X is isomorphic to P1
k (resp. P1

Fp
) and the complement of

X in P1
T is isomorphic to P1

k((t)) (resp. P1
Qp

). If you don’t know what isomorphism of schemes is,
then just show homeomorphism.

Let X ∈ Spec A, and let x ∈ X be a point corresponding to a prime ideal p. Then the lo-
cal ring of X at x, denoted OX,x, is the ring Ap. If X is a general scheme, and x ∈ X, then
there is an open subset Spec A ⊆ X containing x. Then x corresponds to a prime ideal p of
A, and OX,x = Ap. The completion of OX,x for the p-adic topology is called the complete local
ring of X at x, and is denoted OX,x.

Problem 6. Let T = k[[t]], with k algebraically closed, and let X = Spec T [x] = A1
T . For each
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point x of X, compute OX,x as explicitly as possible.

If some of the questions do not make much sense to people who have not yet seen scheme
theory, I am happy to discuss schemes more thoroughly.
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Problem Set 8: Fuchsian Groups and the Hyperbolic Plane

As in [CS], we write H := {z = x+ iy ∈ C | y > 0} for the hyperbolic plane. The metric on
H is |dz|/Im z, or in other words, the area element is (dx2 + dy2)/y2. The group PSL2(R) acts
on H via (

a b
c d

)
z =

az + b

cz + d
.

It is the isometry group of H.

Problem 1. (From [CS]) Let Γ ≤ PSL2(R) be a subgroup. Prove that Γ\H is Hausdorff iff Γ
is discrete in PSL2(R) (here PSL2(R) has the quotient topology from SL2(R), which has the
subspace topology from R4).

Problem 2. (From [CS]) Show that any cocompact Fuchsian group Γ (i.e., Γ\H is compact)
has a torsion-free subgroup of finite index.

One can also consider the unit disk model D of the hyperbolic plane, where D = {z ∈ C | |z| <
1}. The map f(z) = iz+1

z+i
gives an isomorphism H→ D, and D inherits the metric of H via f .

Problem 3. (From [CS]) Write the metric on D in terms of dz.

Problem 4. (From [CS]) Show that the isometry group of D is the projective unitary group
PU(1, 1) := {A ∈ PSL2(C) | tAhA = h}, where h is the Hermitian form on C2 with matrix(

1 0
0 −1

)
. Here, if γ =

(
a b
c d

)
∈ A, then γz = az+b

cz+d
.

Let Γ be a Fuchsian group. Then a fundamental domain for Γ is a subset ∆ ⊆ H such that, for
each z ∈ H, there exists a unique γ ∈ Γ such that γz ∈ ∆.

Problem 5. Let S be the set {z = x + iy ∈ H | |z| = 1 ∧ x > 0}. Show that the set
{z = x+ iy ∈ H | − 1

2
≤ x < 1

2
∧ |z| ≥ 1}\S is a fundamental domain for SL2(Z).

Problem 6. The group Γ0(N) is the set of all

(
a b
c d

)
∈ SL2(Z) such that c ≡ 0 (mod N).

Find a fundamental domain for Γ0(2).
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Problem Set 9: Basics on Stable Curves and p-adic Geometry

Let R be a DVR with fraction field K, and let X be a smooth K-curve. Then a smooth
model for X over R is a smooth map XR → Spec R of dimension 1 such that the generic fiber
is X. For instance, P1

R is a smooth model for P1
K . If a curve over K has a smooth model, it is

said to have good reduction.

Problem 1. Let R be a DVR, let P1
R be given by the gluing of Spec R[x] and Spec R[x−1],

and let z ∈ P1
R be the closed point on the special fiber corresponding to x = a, for some a in

the residue field k of R. Describe the set of points of the generic fiber that specialize to p, i.e.,
whose closures contain the point z. What about when z corresponds to the point “x =∞” (i.e.,
x−1 = 0)?

Problem 2. (From [HH]) Let R be any ring with a nonarchimedean absolute value (see [HH]).
Consider the set R{x} ⊆ R[[x]] consisting of power series whose coefficients approach 0 in the
topology of R.

(a) Show that R{x} is a ring.

(b) Show that f(x) ∈ R[[x]] lies in R{x} iff it converges for every |x| ≤ 0.

(c) Give a condition on the coefficients of f(x) ∈ R[[x]] that is equivalent to f(x) converging
for all |x| ≥ 0.

(d) If R = k[[t]], show that R{x} ∼= k[x][[t]].

(e) Let R = k[[t]] in the situation of Problem 1. Consider the ring RU of rational functions
on P1

R that are regular on U = Spec k[x] ⊆ Spec R[x] ⊆ P1
R. Show that the completion of

this ring with respect to the t-adic topology is equal to the ring in part (b) (equivalently, part
(d)–this is the ring R̂U in [HH]). State and prove something analogous when R = Zp.

In light of part (b), we often think of R{x} as the ring of R-valued analytic functions on
the closed unit disk. Note that, in the situation of Problem 1, the set of points that specialize
to U = Spec k[x] form (in some sense), a closed unit disk. Thus the set of analytic functions
on the closed unit disk is equal to the t-adic completion on RU . This is a simple case of the
equivalence between “rigid geometry” and “formal geometry.”

A semi-stable curve over a field k is a curve whose only singularities are ordinary double
points (i.e., the complete local ring of the singularity is of the form k[[x, y]]/(xy), as if the singu-
larity were the one at the intersection of the two axes in A2

k). If R is a DVR with fraction field
K, and X is a smooth K-curve, then a semi-stable model for X is flat map X → Spec R with
semi-stable special fiber. It is a famous theorem that every smooth K-curve has a semi-stable
model after base changing to a finite extension of K.

We will only discuss semi-stable models of P1
K , given by the standard gluing of Spec K[x]

and Spec K[x−1]. For simplicity, we will assume the residue field k of K is algebraically closed.
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Let P1
R be the smooth model form P1

K that is the standard gluing of R[x] and R[x−1].

Problem 3. Let π be a uniformizer of R. Consider the blow-up V of P1
R corresponding to

the ideal (π, x) ⊆ R[x].

(a) Show that the special fiber of V is isomorphic to two projective lines meeting at a point,
and the generic fiber of V is isomorphic to P1

K .

(b) Determine which K-points of the generic fiber specialize to which of the two components.
Do any K-points specialize to the singular point? Do any points of the generic fiber specialize
to the singular point?

(c) Instead, suppose we blew up the ideal (π2, x) ∈ R[x]. Now do any K-points specialize to
the singular point?

(d) Suppose we wanted to make a further blowup in part (c) such that the K-points corre-
sponding to (x− π2) and (x− π2 − π3) would specialize to different points. What ideal would
we blow up? Would we still have a semi-stable model of P1

K? Draw a diagram of the special
fiber and mark the specializations of (x), (x− π), (x− π2), (x− π2 − π3), and ( 1

x
).

Problem 4. Notation as above. Let {z1, . . . , zn} be a subset of K ∪ {∞}. Show that there
exists a semi-stable model of P1

K such that the points (x − zi) all specialize to different points
on the special fiber (here we take (x−∞) to be the ideal ( 1

x
)).

Problem 5. (Stable reduction theorem for the marked projective line). In the situation above,
if n ≥ 3, show that the semi-stable model can be chosen such that each irreducible component
of the special fiber has at least three marked points (meaning singular points or specializations
of an (x− zi)). Show that no irreducible component of the special fiber of such a model can be
contracted while preserving this property.

In fact, the model above is called the stable model of the marked curve P1
K marked by the

points (x − zi). It is unique up to unique isomorphism (for an appropriately defined notion of
isomorphism...we can discuss if you want details).
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Problem Set 10: Étale Morphisms and the Étale Topology

Problem 1. Let X be an irreducible variety over an algebraically closed field k. Show that if
Y is a connected k-variety with a morphism f : Y → X that is a topological cover (using the
Zariski topology), then f is an isomorphism.

The above problem shows that covering spaces for the Zariski topology are often not so
interesting! However, the theory of étale morphisms is much richer, and plays the role of
covering spaces (more specifically, local homeomorphisms) for algebraic geometry. We will not
give much exposition here. A good reference is James Milne’s notes on étale cohomology, which
can be found at

http://www.jmilne.org/math/CourseNotes/lec.html.

We will, however, give a definition of an étale morphism:

Definition: A local morphism f : A → B of local rings is unramified if f(mA)B = mB,
and if A/mA → B/mB is a finite, separable extension. A morphism f : Y → X of schemes is
étale if it is flat, of finite type, and for all points y ∈ Y , the map OX,f(y) → OY,y is unramified.

For those unfamiliar with schemes, the definition still works if “schemes” is replaced with “vari-
eties over an algebraically closed field.” One sees easily that isomorphisms and open immersions
are étale, and that compositions of étale morphisms are étale.

Problem 2. Let X be a K-scheme, for some field K. Let L/K be a finite, separable ex-
tension. Show that X ×K L→ X is étale.

Problem 3. Let f : Y → X be a finite, étale morphism of smooth C-varieties. Show that
f(C) : Y (C) → X(C) is a finite cover (for the complex topology). Hint: It is enough to show
that f(C) is a local homeomorphism with constant fiber cardinality. Now use the inverse func-
tion theorem, along with the the fact that the tangent space of a variety at a point p is the
dual of mp/m

2
p, where mp is the ideal of functions vanishing at that point. Note: One need not

assume smoothness, but then proof is harder.

Problem 4. Show that if X → Spec (Z) is a finite étale morphism, then X ∼=
∐n

i=1 Spec Z.

Problem 5. Give an example of a map f : Y → X of C-varieties that is not étale, but
such that the map f(C) : Y (C)→ X(C) on C-points is a cover for the complex topology.

Since topological covers in the Zariski topology are so rare, one instead uses étale morphisms to
define the fundamental group. Let X be a scheme. A finite morphism f : Y → X of connected
schemes is Galois if |Aut(Y/X)| = deg(f). If f : Y → X and g : Z → X are finite Galois étale
morphisms of schemes, then there is a finite Galois étale morphism h : W → X dominating
f and g (one can take W to be a connected component of Y ×X Z). Thus the finite Galois
étale morphisms Xi → X form an inverse system. So do the groups Gal(Xi/X), and we define
the fundamental group π1(X) to be lim←−i Gal(Xi/X), where Xi ranges over all finite covers. By
construction, it is a finite group.
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Problem 6. Show that if k is algebraically closed of characteristic zero, then π1(P1
k) and

π1(A1
k) are both trivial.

Problem 7. What is π1(A1
k\{0}), with k as above?

Problem 8. What is π1(Spec Fp)?

Recall that an open covering of a topological space X is a collection of open immersions
ui : Xi → X such that

⋃
i ui(Xi) = X. Note that open coverings satisfy the following three

axioms:

(i) id : X → X is an open covering.

(ii) If the collection ui : Xi → X is an open covering, and for each i, there is an open covering
uij : Xij → Xi, then the collection ui ◦ uij : Xij → X is an open covering.

(iii) If the collection ui : Xi → X is an open covering, and Y ⊆ X is any subset, then the
collection ui|Y : Xi ∩ Y → Y is an open covering.

Now, let X be a scheme. We call a collection of morphisms fi : Xi → X an étale covering if the
fi are all étale, and the union

⋃
i(fi(Xi)) = X. Clearly, a open covering for the Zariski topology

is also an étale covering.

Problem 9. Show that étale coverings satisfy the same axioms as above, where for axiom
(iii), we allow any morphism f : Y → X, replacing Xi ∩ Y by Xi ×X Y .

One says that étale coverings of X yield a Grothendieck topology, called the étale topology.
Of course, this is not really a topology, but it will allow us to define sheaves on the scheme X.
Let C be the category of étale schemes over X (that is, objects are étale morphisms f : Y → X,
and a morphism from (f : Y → X)→ (g : Z → X) is a map h : Y → Z such that g ◦ h = f—it
turns out that h will be étale). Then a contravariant functor

F : C → Sets

is called a sheaf (for the étale topology) if it satisfies the definition given on the first page of
[MS]. It turns out that instead of checking every étale covering, one need only check Zariski open
coverings, and coverings consisting of a single étale morphism V → U when both V and U are
affine. Note that this means that if V = Spec B and U = Spec A, then B is faithfully flat over A.

Problem 10. Show that the functor taking f : Y → X to Γ(Y,Oy) is a sheaf for the étale
topology. Hint: It is a Zariski sheaf essentially by definition. Show that the condition in [MS] for
single étale morphisms of affines is equivalent to showing that if B is a faithfully flat A-algebra,
then the sequence

0→ A→ B → B ⊗A B

is exact, where the last map sends b to 1⊗ b− b⊗ 1. To do this, first show that it is true when
A→ B admits a section, and then reduce to this case.
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