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Victor described variants of the Heegner point construction based
on higher dimensional algebraic cycles: the so-called
Chow-Heegner points.

Our last two lectures, and the student projects will focus
exclusively on Chow-Heegner points attached to diagonal cycles on
triple products of modular curves and Kuga-Sato varieties.

Goal of this morning’s lecture: indicate how these ostensibly

very special constructions fit into the “broader landscape” of
Stark-Heegner points.
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Summary of the first lecture

Victor described variants of the Heegner point construction based
on higher dimensional algebraic cycles: the so-called
Chow-Heegner points.

Our last two lectures, and the student projects will focus
exclusively on Chow-Heegner points attached to diagonal cycles on
triple products of modular curves and Kuga-Sato varieties.



Summary of the first lecture

Victor described variants of the Heegner point construction based
on higher dimensional algebraic cycles: the so-called
Chow-Heegner points.

Our last two lectures, and the student projects will focus
exclusively on Chow-Heegner points attached to diagonal cycles on
triple products of modular curves and Kuga-Sato varieties.

Goal of this morning’s lecture: indicate how these ostensibly
very special constructions fit into the “broader landscape” of
Stark-Heegner points.



otherwise the les experienced participants might feel like the
protagonists in the tale of the elephant and the six blind men!
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What is a Stark-Heegner point?




What is a Stark-Heegner point?

[ J
Executive summary: Stark-Heegner points are points on elliptic
varieties.

curves arising from (not necessarily algebraic) cycles on modular




A prototypical example: points arising from ATR cycles

Motivation. Thanks to Heegner points, we know:
ords—1 L(E,s) <1 = rank(E(Q)) = ords=1 L(E,s),

for all elliptic curves E/Q. (Gross-Zagier, Kolyvagin.)



A prototypical example: points arising from ATR cycles

Motivation. Thanks to Heegner points, we know:
ords—1 L(E,s) <1 = rank(E(Q)) = ords=1 L(E,s),
for all elliptic curves E/Q. (Gross-Zagier, Kolyvagin.)

By work of Zhang and his school, exploiting Heegner points on
Shimura curves, similar results are known for many elliptic curves
over totally real fields...



A prototypical example: points arising from ATR cycles

Motivation. Thanks to Heegner points, we know:
ords—1 L(E,s) <1 = rank(E(Q)) = ords=1 L(E,s),
for all elliptic curves E/Q. (Gross-Zagier, Kolyvagin.)

By work of Zhang and his school, exploiting Heegner points on
Shimura curves, similar results are known for many elliptic curves
over totally real fields...

but not for all of them!!



F = a real quadratic field;

E = elliptic curve of conductor 1 over F;

X : Gal(K/F) — +£1 = quadratic character of F.

Question: Show that

ords—1 L(E/F,x,s) <1 = rank(EX(F)) = ords—1 L(E/F, x,s).
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The mysterious elliptic curves

F = a real quadratic field;

E = elliptic curve of conductor 1 over F;

x : Gal(K/F) — +1 = quadratic character of F.
Question: Show that

ords—1 L(E/F,x,s) <1 = rank(EX(F)) = ords=1 L(E/F, x,s).



L(E/F,x,1) #0 = #EX(F) < co.

Yu Zhao's PhD thesis (defended March 10, 2011):
Theorem (Rotger, Zhao, D)

If E is a Q-curve, i.e., is isogenous to its Galois conjugate, then

ords—1 L(E/F,x,s) =1 = rank(EX(F)) =1

We have no idea how to produce a point on EX(F) in general!

Logan, D, (2003): We can nonetheless propose a conjectural
formula to compute it in practice, via ATR cycles.
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The mysterious elliptic curves

Theorem (Matteo Longo)

L(E/F,x,1) #0 = #EX(F) < 0.

Yu Zhao's PhD thesis (defended March 10, 2011):
Theorem (Rotger, Zhao, D)
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We have no idea how to produce a point on EX(F) in general!



The mysterious elliptic curves

Theorem (Matteo Longo)

L(E/F,x,1) #0 = #EX(F) < 0.

Yu Zhao's PhD thesis (defended March 10, 2011):
Theorem (Rotger, Zhao, D)

If E is a Q-curve, i.e., is isogenous to its Galois conjugate, then

ords—1 L(E/F,x,s) =1 = rank(EX(F)) = 1.

We have no idea how to produce a point on EX(F) in general!

Logan, D, (2003): We can nonetheless propose a conjectural
formula to compute it in practice, via ATR cycles.



Let Y be the (open) Hilbert modular surface attached to E/F:

Y(C) = SLy(Op)\(H1 x Ha).

Let v € SL2(OF), with a (unique) fixed point 7 € Hj.

Then the field K generated by the eigenvalues of v is an ATR
extension of F.

To each ~, we will attach a cycle A, C Y(C) of real dimension
one which “behaves like a Heegner point”.
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Let Y be the (open) Hilbert modular surface attached to E/F:

Y(C) = SLy(Op)\(H1 x Ha).

Let v € SLy(OF), with a (unique) fixed point 71 € H;.

Then the field K generated by the eigenvalues of v is an ATR
extension of F.

To each ~, we will attach a cycle A, C Y(C) of real dimension
one which “behaves like a Heegner point”.
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ATR cycles

Let Y be the (open) Hilbert modular surface attached to E/F:

Y(C) = SL2(OF)\(H1 X Hz).

Let v € SL2(OF), with a (unique) fixed point 71 € Hj.

Then the field K generated by the eigenvalues of v is an ATR
extension of F.



ATR cycles

Let Y be the (open) Hilbert modular surface attached to E/F:

Y(C) = SL2(OF)\(H1 X Hz).

Let v € SL2(OF), with a (unique) fixed point 71 € Hj.

Then the field K generated by the eigenvalues of v is an ATR
extension of F.

To each ~, we will attach a cycle A, C Y(C) of real dimension
one which “behaves like a Heegner point”.



71 := fixed point of v O H;;

72,74 := fixed points of v () (Hz UR);
{m1} x geodesic(mr — 7%).

.Tl

T2

y

N

A, =T,/() € Y(C).

Key fact: The cycles A, are null-homologous.
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71 := fixed point of v O Hy;

T2, T 1= fixed points of v O (H2 UR);
Y, = {m1} x geodesic(m — 73).
.Tl

‘//\ :

L S —
T2

A

N

Ay =T1,/{y) C Y(C).

Key fact: The cycles A, are null-homologous.
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71 := fixed point of v O Hy;

72,74 := fixed points of v O (H2 UR);

Y, = {m1} x geodesic(m — 735).

Ay =T75/{7) € Y(C).

Key fact: The cycles A, are null-homologous.
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71 := fixed point of v O Hy;

72,74 := fixed points of v O (H2 UR);

Y, = {m1} x geodesic(m — 735).

Ay =T75/{7) € Y(C).

Key fact: The cycles A, are null-homologous.
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Oda’s conjecture on periods

For any closed 2-form w¢ € ¢, let Ag denote its set of periods,
as in Kartik's lectures:

Ae = { / w6, 7€ H(X(C).2)).}




as in Kartik's lectures:

For any closed 2-form wg € Qg, let Ag denote its set of periods,

Ae =1 / we, 7 € Hy(X(C), Z)).}
Y

For a suitable choice of w¢g, we have C/Ng ~ E(C). l
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PI(6) = AA)we)i= | we € Clhe=E(C),

~

Ftrace—: = (MM 1) U« U (Fypl 7).

The points P,?/(G) belongs to E(H) ® Q, where H is a specific ring
class field of K. They are conjugate to each other under
Gal(H/K), and the point P} (G) := P. (G)+---+ P’ (G) is of
infinite order if and only if L'(E/K,1) # 0.
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Points attached to ATR cycles

PIG) = MA)we) = [ we € C/Ag= E(C).

Mtrace—e = (Ml 1) U~ U (Tl H).

Conjecture (Logan, D, 2003)

The points P;j(G) belongs to E(H) ® Q, where H is a specific ring
class field of K. They are conjugate to each other under

Gal(H/K), and the point P} (G) := 'D'?yl(G) +--+ 'Dw?h(G) is of
infinite order if and only if L'(E/K,1) # 0.




ATR points are defined over abelian extensions of a quadratic ATR
extension K of a real quadratic field F.

There is a second setting, equally fraught with mystery, involving

an elliptic curve E/Q over Q and class fields of real quadratic
fields.

Simplest case: E/Q is of prime conductor p, and K is a real
quadratic field in which p is inert.

Hp =P1(Cp) — P1(Qp)
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Stark-Heegner points attached to real quadratic fields

ATR points are defined over abelian extensions of a quadratic ATR
extension K of a real quadratic field F.

There is a second setting, equally fraught with mystery, involving
an elliptic curve E/Q over Q and class fields of real quadratic
fields.



Stark-Heegner points attached to real quadratic fields

ATR points are defined over abelian extensions of a quadratic ATR
extension K of a real quadratic field F.

There is a second setting, equally fraught with mystery, involving
an elliptic curve E/Q over Q and class fields of real quadratic
fields.

Simplest case: E/Q is of prime conductor p, and K is a real
quadratic field in which p is inert.

Hp = IED1(Cp) - IEDI(QP)



ATR cycles

F real quadratic

Real quadratic points

00g, 001
E/F of conductor 1
SL2(Op)\(H x H)
K/F ATR

ATR cycles

p, 0O

E/Q of conductor p

SL2(Z[1/p)\(Hp x H)

K/Q real quadratic, with p inert

Cycles in SLo(Z[1/p])\(Hp x H).
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ATR cycles

F real quadratic

Real quadratic points

00g, 001
E/F of conductor 1
SL2(Op)\(H x H)
K/F ATR

ATR cycles

p, 0O

E/Q of conductor p

SL2(Z[1/p)\(Hp x H)

K/Q real quadratic, with p inert

Cycles in SLo(Z[1/p])\(Hp x H).
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ATR cycles

F real quadratic

Real quadratic points

000, 01
E/F of conductor 1

SL2(Of)\(H x H)
K/F ATR

ATR cycles

Q
P, o0

E/Q of conductor p

SL2(Z[1/p)\(Hp x H)

K/Q real quadratic, with p inert

Cycles in SLo(Z[1/p])\(Hp x H).
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ATR cycles

F real quadratic

Real quadratic points

000, 001
E/F of conductor 1
SL2(Of)\(H x H)
K/F ATR

ATR cycles

Q
P, o0

E/Q of conductor p

SL2(Z[1/p)\(Hp x H)

K/Q real quadratic, with p inert

Cycles in SLo(Z[1/p])\(Hp x H).

«O>r «Fr «=>»

«E)»

DA



ATR cycles

F real quadratic

Real quadratic points

000, O01

E/F of conductor 1

SL2(C)F)\(H X H)

Q
p, 00

E/Q of conductor p

SL2(Z[1/p\(Hp x H)
K/F ATR K/Q real quadratic, with p inert
ATR cycles Cycles in SLo(Z[1/p])\(Hp x H).
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ATR cycles

F real quadratic

Real quadratic points

000, O01
E/F of conductor 1
SL2(Op)\(H x H)
K/F ATR

ATR cycles
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ATR cycles

F real quadratic

Real quadratic points

00p, 001
E/F of conductor 1
SL2(Op)\(H x H)
K/F ATR

ATR cycles

Q
p, 00

E/Q of conductor p

SL2(Z[1/p)\(Hp x H)

K /Q real quadratic, with p inert

Cycles in SLo(Z[1/p])\(Hp x H).
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ATR cycles

Real quadratic points
F real quadratic

Q
000, X1

p, 00
E/F of conductor 1

E/Q of conductor p
SLy(Of)\(H x H) SLo(Z[1/p])\(Hp x H)
K/F ATR Q
ATR cycles

/Q real quadratic, with p inert
Cycles in SLo(Z[1/p])\(Hp x H).
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A dictionary between the two settings

ATR cycles

Real quadratic points

F real quadratic

000, O01

E/F of conductor 1

SL2(OF)\(H x H)

Q

p, 00
E/Q of conductor p

SLo(Z[1/p)\(Hp x H)




A dictionary between the two settings

ATR cycles

Real quadratic points

F real quadratic

000, O01

E/F of conductor 1

SL2(OF)\(H x H)

K/F ATR

Q

p, 00
E/Q of conductor p

SLo(Z[1/p)\(Hp x H)




A dictionary between the two settings

ATR cycles Real quadratic points
F real quadratic Q
0G0, 001 p, 00
E/F of conductor 1 E/Q of conductor p
SL>(Op)\(H x H) SLo(Z[1/p)\(Hp x H)
K/F ATR K /Q real quadratic, with p inert




A dictionary between the two settings

ATR cycles Real quadratic points
F real quadratic Q
0G0, 001 p, 00
E/F of conductor 1 E/Q of conductor p
SL>(Op)\(H x H) SLo(Z[1/p)\(Hp x H)
K/F ATR K /Q real quadratic, with p inert
ATR cycles




A dictionary between the two settings

ATR cycles Real quadratic points
F real quadratic Q
0G0, 001 p, 00
E/F of conductor 1 E/Q of conductor p
SL>(Op)\(H x H) SLo(Z[1/p)\(Hp x H)
K/F ATR K /Q real quadratic, with p inert
ATR cycles Cycles in SLo(Z[1/p])\(Hp x H).




From ATR extensions to real quadratic fields

One can develop the notions in the right-hand column to the
extent of

@ Attaching to f € S3(Io(p)) a “Hilbert modular form” G on
SLo(Z[1/pD\(Hp x H).



From ATR extensions to real quadratic fields

One can develop the notions in the right-hand column to the
extent of

@ Attaching to f € S3(Io(p)) a “Hilbert modular form” G on
SL>(Z[1/pD\(Hp x H).
@ Making sense of the expression

/ we € KX/q"=E(Kp)
1A,

for any “p-adic ATR cycle” A,.



From ATR extensions to real quadratic fields

One can develop the notions in the right-hand column to the
extent of

@ Attaching to f € S3(Io(p)) a “Hilbert modular form” G on

SL>(Z[1/pD\(Hp x H).
@ Making sense of the expression

/ we € KX/q"=E(Kp)
1A,

for any “p-adic ATR cycle” A,.

The resulting local points are defined (conjecturally) over ring class
fields of K. They are prototypical “Stark-Heegner points” ...



Computing Stark-Heegner points attached to real
quadratic fields

There are fantastically efficient polynomial-time algorithms for

calculating Stark-Heegner points, based on the ideas of Glenn
Stevens and Rob Pollack. (Cf. their AWS lectures.)

—sz)




Drawback of Stark-Heegner vs Chow-Heegner points

They are completely mysterious and the mecanisms underlying
their algebraicity are poorly understood.
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They are completely mysterious and the mecanisms underlying
their algebraicity are poorly understood.
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New cases of the BSD conjecture?

Theorem (Bertolini, Dasgupta, D + Longo, Rotger, Vigni)

Assume the conjectures on Stark-Heegner points attached to real
quadratic fields (in the stronger, more precise form given in Samit
Dasgupta’s PhD thesis). Then

L(E/K,x,1) #0 = (E(H)® C)X =0,

for all x : Gal(H/K) — C* with H a ring class field of the real
quadratic field K.




New cases of the BSD conjecture?

Theorem (Bertolini, Dasgupta, D + Longo, Rotger, Vigni)

Assume the conjectures on Stark-Heegner points attached to real
quadratic fields (in the stronger, more precise form given in Samit
Dasgupta’s PhD thesis). Then

L(E/K,x,1) #0 = (E(H)® C)X =0,

for all x : Gal(H/K) — C* with H a ring class field of the real
quadratic field K.

Question. Can we control the arithmetic of E over ring class fields
of real quadratic fields without invoking Stark-Heegner points?




Let 1 > rn > r3 be integers, with rn < r» + r3.

r7r1+r2+r3
B 2

o o B
V=ETxE?xED,

dimV =2r + 3.

A=E"CV.

A € CH™2(V).

cl(A) =0 in HY ™ (Vi, Q)(r + 2)%e.

Ade(B) € HY(Q, H2P3(Vig, Qo)(r +2)-
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Let 1 > rn > r3 be integers, with rn < r» + r3.

r_n+m+m

2
\/:

oh w of ok
EN x E?xED,

A=E"CV.

A € CH™2(V).

cl(A) =0 in HX4(V5, Qp)(r 4 2)%e.

Ale(B) € HY(Q, H2P3(Vi, Qo)(r +2):
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Let 1 > rn > r3 be integers, with rn < r» + r3.

n—+nmn+r
- 2
V=ETxE?xER,

dimV =2r +3.
A=E"

c V.
A € CH™2(V).

cl(A) =0 in HZ4(

‘r\
s Wy

MU+@Q

Vi, ¢

Ale(B) € HY(Q, H2P3(Va, Qo)(r +2).
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MU+@Q

Vi, ¢
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Let 1 > rn > r3 be integers, with rn < r» + r3.

n—+nmn+r
- 2
V=ETxE?xER,

dimV =2r +3.
A=E CV.

A€ CH™2(V).

cl(A) =0 in HY (Vi Q¢)(r +2)%.
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Let 1 > rn > r3 be integers, with rn < r» + r3.

n—+nmn+r
- 2
V=ETxE?xER,

dimV =2r +3.
A=E CV.

A€ CH™2(V).

cl(A) =0 in HY (Vi Q)(r +2)%.

Ale(A) € HYQ, HY 3 (V5, Q) (r + 2)).
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Diagonal cycles on triple products of Kuga-Sato varieties

Let 1 > r» > r3 be integers, with rn < r» + r3.

n—+nmn+r
2

V=EMxE?xEs, dimV=2r+3.
A=E&" CV.
A € CH™2(V).
cl(A) =0 in HZ (Vg Qo)(r +2)%.

Adet(D) € HY(Q, HE (Vg Qo)(r +2)).



Let f, g, h be modular forms of weights 1 +2, n +2 and r3 +2

By taking the (f, g, h)-isotypic component of the class AJet(A),
we obtain a cohomology class
x(f,g,h) € Hl(@_ Vi @ Vg @ Vi(r +2))

Its behaviour is related to the central critical derivative

U'(fog®hr+2).

We don't “really care” about these rather recundite L-series with
Euler factors of degree 8...
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Diagonal cycles and L-series

Let f, g, h be modular forms of weights r; +2, n 4+ 2 and r3 + 2.

By taking the (f, g, h)-isotypic component of the class Alet(A),
we obtain a cohomology class

w(f, g, h) € HY(Q, Vr ® V; @ Vi(r +2))
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By taking the (f, g, h)-isotypic component of the class Alet(A),
we obtain a cohomology class

w(f, g, h) € HY(Q, Vr ® V; @ Vi(r +2))
Its behaviour is related to the central critical derivative

L'(f®g®hr+2).



Diagonal cycles and L-series

Let f, g, h be modular forms of weights r; +2, n 4+ 2 and r3 + 2.

By taking the (f, g, h)-isotypic component of the class Alet(A),
we obtain a cohomology class

w(f, g, h) € HY(Q, Vr ® V; @ Vi(r +2))
Its behaviour is related to the central critical derivative
L'(f®g®hr+2).

We don't “really care” about these rather recundite L-series with
Euler factors of degree 8...



From Rankin triple products to Stark-Heegner points

The position of the Stark-Heegner points are controlled by the
central critical values L(E/F,x,1), as x ranges over ring class
characters of the real quadratic field F.



From Rankin triple products to Stark-Heegner points

The position of the Stark-Heegner points are controlled by the
central critical values L(E/F,x,1), as x ranges over ring class
characters of the real quadratic field F.

Write x = x1x2, where x1 and x> are characters of signature
(1,—1), so that
Vi=hdZxi, Vo=IndExo

are odd two-dimensional representations of Q.



From Rankin triple products to Stark-Heegner points

The position of the Stark-Heegner points are controlled by the
central critical values L(E/F,x,1), as x ranges over ring class
characters of the real quadratic field F.

Write x = x1x2, where x1 and x> are characters of signature
(1,—1), so that
Vi=hdZxi, Vo=IndExo

are odd two-dimensional representations of Q.
Hecke: There exists modular forms g and h of weight one, such
that

[_(g,S): L(V175)7 L(h,S):L(VQ,S).
Furthermore,

L(f®g®h1)=LE/F,x,1)L(E/F,x1x5,1).



A slight extension of what we learned in Rob's lecture:
Theorem (Hida)

There exist g-series with coefficients in A(U),

such that

g(l) =g,

, h(1) = h,
and g = g(k) and hy := h(k) are (normalised) eigenforms for
almost all k € Z=1.
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Hida families

A slight extension of what we learned in Rob's lecture:
Theorem (Hida)
There exist g-series with coefficients in A(U),

o0

g = Z b,(k)q", h= ch(k)qna
n=1 n=1

such that
g(l) =8, h(l) = h’

and gi := g(k) and hy := h(k) are (normalised) eigenforms for
almost all k € Z=1.




Philosophy: The natural p-adic invariants attached to (classical)

modular forms varying in p-adic families should also vary in p-adic
families.

Example: The Serre-Deligne representation V, of Gg attached to
a classical eigenform g.

There exists a N-adic representation Vg of Gg satisfying

Vg ®ey, Qp = V,,  for almost all k € 7>2.
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The theme of p-adic variation

Philosophy: The natural p-adic invariants attached to (classical)
modular forms varying in p-adic families should also vary in p-adic
families.

Example: The Serre-Deligne representation V, of Gg attached to
a classical eigenform g.



The theme of p-adic variation

Philosophy: The natural p-adic invariants attached to (classical)
modular forms varying in p-adic families should also vary in p-adic
families.

Example: The Serre-Deligne representation V, of Gg attached to
a classical eigenform g.

Theorem
There exists a \-adic representation Vg of Gg satisfying

Vg Qev, Qp = Vg,  for almost all k € B




For each k € Z>1, consider the cohomology classes

ki = k(F, 8k, i) € HY(Q, Vi @ Vg, ® Vi, (1)).
Conjecture

There exists a “big” cohomology class r € H(Q, V¢ @ Vg @ V(1))
such that k(k) = ky for almost all k € 722

Remark: This is in the spirit of work of Ben Howard on the “big"
cohomology classes attached to Heegner points.

Question: What relation (if any!) is there between the class

k(1) € H'(K, V,(E)(x))
and Stark-Heegner points attached to (E/K,))?
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For each k € Z>1, consider the cohomology classes

ki = k(F, 8k, i) € HY(Q, Vi @ Vg, ® Vi, (1)).

There exists a “big” cohomology class k € HY(Q, Vf ® Vg ® Vi(1))
such that k(k) = ky for almost all k € 772,
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Diagonal cycles and their p-adic deformations

For each k € Z>1, consider the cohomology classes

ki = k(F, gk, i) € HY(Q, Vi @ Vg, ® Vi, (1))

Conjecture

There exists a “big” cohomology class k € H'(Q, V¢ ® Vg ® V(1))
such that r(k) = Kk for almost all k € 722

Remark: This is in the spirit of work of Ben Howard on the “big"
cohomology classes attached to Heegner points.



Diagonal cycles and their p-adic deformations

For each k € Z>1, consider the cohomology classes

ki = k(F, gk, i) € HY(Q, Vi @ Vg, ® Vi, (1))

Conjecture

There exists a “big” cohomology class k € H'(Q, V¢ ® Vg ® V(1))
such that r(k) = Kk for almost all k € 722

Remark: This is in the spirit of work of Ben Howard on the “big"
cohomology classes attached to Heegner points.

Question: What relation (if any!) is there between the class
k(1) € HY(K, Vo(E)(x))
and Stark-Heegner points attached to (E/K, x)?



Our goal for the AWS

Before seriously attacking the study of p-adic deformations of
diagonal cycles and their (eventual) connection with Stark-Heegner
points, it is natural to make a careful study of diagonal cycles and
their arithmetic properties.
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Our goal for the AWS

Before seriously attacking the study of p-adic deformations of
diagonal cycles and their (eventual) connection with Stark-Heegner
points, it is natural to make a careful study of diagonal cycles and
their arithmetic properties.

Because of our predilection for the BSD conjecture—and because
elliptic curves are most amenable to computer calculation—-we are
interested in settings where these diagonal cycles give rise to
Chow-Heegner points on elliptic curves, as described in Victor's
first lecture.

The calculation of these Chow-Heegner points will be the focus of
the last two lectures by Victor and me, and of the AWS student
projects.



