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Classical Heegner points

Let E/Q be an elliptic curve and

f = fE =
∑
n≥1

anqn ∈ S2(Γ0(N)) with L(E , s) = L(f , s).

Then E(C) ∼ C/Λf , Λf = 2πi
∫

H1(X0(N),Z) f (z)dz.

The modular parametrization is

ϕ : X0(N) −→ E
∞ 7→ 0
τ 7→ Pτ := 2πi

∫ τ
∞ f (z)dz

=
∑

n≥1
an
n e2πin·τ
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Classical Heegner points

If τ ∈ P1(Q) is a cusp: Pτ ∈ E(Q)tors.

If τ ∈ H ∩ K , where K is imaginary quadratic: Pτ ∈ E(K ab).

Put
Oτ = {γ =

(
a b
c d

)
: N | c, γ ·

(
τ
1

)
= λ

(
τ
1

)
} ⊂ M0(N) ⊆ M2(Z).

Oτ is an order in K in which all p | N split or ramify, and

Pτ ∈ E(HOτ ),

where Gal(HOτ /K ) ' Pic(Oτ ).
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Heegner hypothesis: all p | N split in K .

⇒ ords=1L(E/K , s) is odd.

Theorem (Gross-Zagier)

L′(E/K ,1)/ΩE
·

= height (PK ) where PK = TrHOτ /K (Pτ ).

Corollary

PK ∈ E(K ) has infinite order if and only if L′(E/K ,1) 6= 0.

Theorem (+Kolyvagin)

If ran(E/K ) = 1, BSD holds true for E/K .

Corollary

If ran(E/Q) ≤ 1, BSD holds true for E/Q.
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Heegner points on Shimura curves

What about BSD when ords=1L(E/K , s) is odd but K fails to
satisfy H.H.?

Assume (DK ,N) = 1. Factor N = N+ · N− into split and inert
primes.

If N− = p1 · ... · p2r ⇒ ords=1L(E/K , s) is odd.

Replace X0(N) by Shimura curve X N−
0 (N+) made from the

quaternion algebra ramified at N−.

We still have ϕ : X N−
0 (N+) 99K E , [τ ] 7→ Pτ ∈ E(HOτ ). All works

nicely thanks to Zhang.
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Heegner points on Shimura curves

The theory of Heegner points provides a good approach for
constructing points on E/Q, rational over abelian extensions H
of imaginary quadratic fields K .

This method allows to prove BSD for the base change of E/Q to
subfields of H provided the analytic rank is morally 0 or 1.

And generalizes well to modular elliptic curves E/F over a
totally real number field F and totally imaginary quadratic K/F
provided [F : Q] is odd or ∃℘ || N.

What can we say if any of these fails? How do we construct
points on E over other fields?
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Heegner points as divisors on the curve

The jacobian of X is Pic0(X ) = Div0(X )/ ∼rat.

The Abel-Jacobi map is

E(C) = Pic0(E)(C)
AJ
∼−→ C/ΛE

P 7→
∫ P

0 ωE ,

and

Pic0(X )(C)
AJ
∼−→ (H1,0)∨/H1(X ,Z) ' Cg/Λ

D 7→
∫

D 7→ (
∫

D ω1, ...,
∫

D ωg)

H1,0 := H0(XC,Ω
1).
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Heegner points as divisors on the curve

For X = X0(N) the modular parametrization factors as:

ϕ : X
i
↪→ Pic0(X )

πf
� E

P 7→ (D) = (P −∞) 7→ πf (D) = ϕ(P)

Over the complex numbers, via AJ, this looks

ϕC : Γ0(N)\H∗ i
↪→ (H1,0)∨/H1(X ,Z)

πf
� C/Λf

[τ ] 7→ (
∫ τ
∞ f dq

q , ...,
∫ τ
∞ fg dq

q ) 7→
∫ τ
∞ f (q)dq/q

For non-split Shimura curves X N−
0 (N+) there is no choice of a

base point∞ ∈ X (Q) and it is more natural to simply consider

Pic0(X )
πf
� E .
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Cohomology in higher dimension

Replace Shimura curve X by a variety V/F , char(F ) = 0, of
dimension d ≥ 1.

The algebraic de Rham cohomology groups

Hn
dR(V ), 0 ≤ n ≤ 2d

are F -vector spaces of finite dimension with:

• The Hodge filtration, Fil0 = Hn
dR(V ) ⊇ Fil1 ⊇ ... ⊇ FilN = {0}.

• The alternate Poincaré pairing, 〈, 〉 : Hn
dR(V )× H2d−n

dR (V )→F .

For curves: Fil0 = H1
dR(X ) = ΩII(X )/dF (X ) ⊃ Fil1 = Ω1(X ).
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Comparison theorems

For any prime p, the p-adic étale cohomology groups

Hn
et (VF̄ ,Qp), 0 ≤ n ≤ 2d ,

are finite dim’l Qp-vector spaces with an action of Gal(F̄/F ).

F = Qp : If V/Qp has good reduction,

Dcris(H i
et (VQ̄p

,Qp)) := (H i
et (VQ̄p

,Qp)⊗ Bcris)GQp ' H i
dR(V/Qp).

F = C: Hn
dR(V/C) = Hn

Betti(V (C),Z)⊗ C ' ⊕i+j=nH i,j(V/C)

〈ω1, ω2〉 = 1
(2πi)d

∫
V (C) ω1 ∧ ω2.
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Cycles in higher dimension

Replace Pic0(X ) = CH1(X )0 by the Chow group CHc(V )0 :

CHc(V ) = {Algebraic Cycles ∆ of codimension c on V}/ ∼rat

0→CHc(V )0→ CHc(V )
cl→H2d−2c(V (C),C) ' H2c

dR(VC),
∆ 7→ [∆].

Q⊗ CHc(VC)
cl→Hc,c(VC) ∩ H2c(V (C),Q).

Hodge conjecture: cl is surjective.
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Higher dimension

The complex Abel-Jacobi map

AJC : CH1(X )0 −→ (H1,0)∨/H1(X ,Z), D 7→
∫

D

generalizes:

Jc(V ) =
Fild−c+1H2d−2c+1

dR (VC)∨

H2d−2c+1(V ,Z) ,

Fild−c+1H2d−2c+1
dR (VC) = ⊕i≥d−c+1 H i,2d−i(V ).

AJC : CHc(V )0(C) −→ Jc(V ), ∆ 7→
∫
∂−1∆.

∆̃ = ∂−1∆ is a 2(d − c) + 1-differentiable chain on the real
manifold V (C) with boundary ∆.
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What do we need from V/Q in order to construct a point on an elliptic curve?

Want that for some c ≥ 1 :

Vp(E) = H1
et (EQ̄,Qp)(1)

Gal(Q̄/Q)
↪→ H2d−2c+1

et (VQ̄,Qp)(d + 1− c).

Tate: there is Π? ∈ CHd+1−c(V × E)(Q) inducing

CHc(V )0(C)
AJC→ Jc(V )

π? ↓ ↓ πC

E(C)
AJC→ C/ΛE ,

∆ ∈ CHc(V )0 7→ π∗V ∆ 7→ π∗V ∆ ·Π? 7→ P∆ := πE ,∗(π
∗
V ∆ ·Π?) ∈ E
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Chow-Heegner points

Thus also want "non-trivial looking" null-homologous cycles

∆ ∈ CHc(V )0(K )

over our favorite number field.

Like Heegner divisors D = ([τ ]−∞) ∈ CH1(X0(N))0(HOτ ).

Shimura varieties associated to a reductive group G/Q host
special cycles.
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Example 1: modular and Shimura curves

E/Q of conductor N and V = X0(N) or X N−
0 (N+).

For c = 1, Vp(E)
Gal(Q̄/Q)
' Vf ↪→ Vp(J0(N)) ' H1

et (VQ̄,Qp)(1).

Tate proved by Faltings: there is a Hecke correspondence
Π ∈ CH1(V × E)(Q) inducing

CH1(V )0(C)
AJC→ Jac(V )

π ↓ ↓ πC

E(C)
AJC→ C/ΛE ,

D = ([τ ]−∞) ∈ CH1(V )0 7→ PD ∈ E .
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Example 2: Kuga-Sato varieties

The universal elliptic curve is

π : V1 � X1(N)

with generic fiber π∗(x) = Ex , an elliptic curve with a N-torsion
point tx .

V1(C) = Z2 o Γ1(N)\C×H∗ = {(P, (E , t))}, where P ∈ E(C).

For r ≥ 1,

Vr (C) = Z2r o Γ1(N)\Cr ×H∗ = {(P1, ...,Pr , (E , t))}.
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Example 2: Kuga-Sato varieties

The approach of M. Bertolini, H. Darmon and K. Prasanna:

Sr+2(Γ1(N)) ' εH r+1,0
par (Vr ), f (q) 7→ f (q)dz1...dzr dq/q.

Let E/Q be an elliptic curve with CM by K = Q(
√
−D).

Say D = 11,19,43,67,163, so Q⊗ E(Q) = Q · PE .

There is a projector ε ∈ Corr(E r+1) = CHr+1(E r+1 × E r+1):

εH r+1
et (E r+1

Q̄ )(r + 1)
GK
↪→ εH r+1

et (Vr ,Q̄)(r + 1)

Tate?⇒ Π? ∈ CHr+1(E r+1 × Vr )(K )
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Example 2: Kuga-Sato varieties

Xr := E r × Vr

,

Π? ∈ CHr+1(E r+1 × Vr )(K ) = CHr+1(E × Xr )(K );

CHr+1(Xr )0(C)
AJC−→ J r+1(Xr )

π? ↓ ↓ πC

E = CH1(E)0(C)
AJC−→ C/ΛE .

Xr has dimension 2r + 1 and hosts Heegner cycles of
codimension r + 1.
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Example 2: Kuga-Sato varieties

Like ∆r = diag(E r ) ⊂ E r × E r ⊂ E r × Vr .

P?
r := π?(∆r )

?
∈ E(K ), the Chow-Heegner point.

Pr ,C := πC AJC(∆r ) = Ω−r
E

(2πi)r+1

(τ−τ̄)r

∫ τ
i∞(z − τ̄)r fE (z)dz ∈ C/ΛE

Numerically found that for odd r :

Pr ,C =
√
−D ·mr · PE , m2

r =
2r !(2π

√
D)r

Ω2r+1
E

L(ψ2r+1
E , r + 1) ∈ Z.

And proved a p-adic étale version of this.
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Ω2r+1
E

L(ψ2r+1
E , r + 1) ∈ Z.

And proved a p-adic étale version of this.
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Example 3: triple products

Let E/Q be an arbitrary elliptic curve, of conductor N.

Let V/Q = Vr × Vr × X , X = X0(N) or X N−
0 (N+).

Π = diag(Vr )× diag(X ) ∈ CHr+2(V 2
r × X 2) = CHr+2(V × X ).

It yields

π : CHr+2(V )0 → Pic0(X )
πf→ E

∆ 7→ P∆ =
∑

(P,P,Q)∈∆ πf (Q)
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Example 3: triple products

dim(V ) = 2r + 3 and there are several natural choices for

∆ ∈ CHr+2(V )0.

For r = 0, the most natural one is Gross-Kudla-Schoen’s

∆ = ∆123 −∆12 −∆23 −∆13 + ∆1 + ∆2 + ∆3 ∈ CH2(X 3)0

For r ≥ 1, ∆r := (ε, ε, Id)(∆{1,2,3} −∆{1,2}) ∈ CHr+2(V )0
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Example 3: triple products

Theorem (Darmon-R-Sols) Pr := P∆r ∈ E(Q) satisfies

Pr = nr P0, nr ∈ Z,

with P0 = πE ,∗(KX ), where KX ∈ Pic(X ) is the canonical divisor.

In addition,
P0 =

∑
Pg

where g runs through the set of eigenforms on X .

Theorem (Yuan-Zhang-Zhang) Pg 6= 0 in Q⊗ E(Q)⇔

ords=1L(E , s) = 1 and L(E ⊗ sym2(g),2) 6= 0.
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