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Introduction to (A)QUE

1.1 (Arithmetic) Quantum Unique Ergodicity

In order to formulate the conjecture, we recall some notation (see [7, Chap. 9]
for a detailed treatment).

• The upper half-plane model for the hyperbolic plane is

H = {z = x+ iy ∈ C | y > 0}.

• The group SL2(R) acts transitively on H via Möbius transformations: the

matrix g =

(

a b
c d

)

acts via

g : z 7−→ g.z =
az + b

cz + d
.

• Any subgroup Γ 6 SL2(R) defines an associated quotient space M = Γ\H

under this action, and the quotient space inherits a measure volM from
the volume measure dvolM = 1

y2 dxdy on H, meaning that

∫

f(x+ iy) dvolM =

∫

f(x+ iy)
1

y2
dxdy.

This allows us to speak of function spaces like L2(M) = L2
volM

(M).
• A sequence of measures m1,m2, . . . is said to converge weak* to a mea-

sure m, denoted by mi −→
weak*

m as i→ ∞, if

∫

f dmi −→

∫

f dm

as i→ ∞ for any continuous function f with compact support.
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• The Laplacian on M is the operator

∆ = y2

(

∂2

∂x2
+

∂2

∂y2

)

,

and a function φ ∈ C∞(M)∩L2(M) is an eigenfunction for ∆ with eigen-
value λ if ∆φ = λφ. An eigenvalue is normalized if ‖φ‖2 = 1.

Conjecture 1.1 (QUE; Rudnick–Sarnak). Let Γ be a discrete subgroup of SL2(R)
such that M = Γ\H is compact. If {φi | i ∈ N} are normalized eigenfunc-
tions for ∆ in C∞(M) with corresponding eigenvalues {λi | i ∈ N} such
that λi → ∞ as i→ ∞, then

|φi|
2 dvolM −→

weak*
dvolM (1.1)

as i→ ∞.

The motivation for this conjecture comes from physical considerations, but
it has wide-ranging mathematical meaning. We address the motivation via a
series of questions.

1.1.1 Why is ∆ the differential operator studied?

(1) If ∇(f) denotes the total derivative of a function f ∈ C∞
c (M) (that is,

an infinitely differentiable function with compact support), then it can be
shown that ∆(f) is equal to −∇∗∇(f), where ∇∗ is the adjoint operator,
and ∇ is the closed operator defined by ∇. This slightly mysterious ob-
servation suggests that ∆ is a natural operator, and that its eigenvalues
are negative.

(2) The operator ∆ is the restriction of the Casimir operator ω, which is a
differential operator of degree two on SL2(R) with unique invariance prop-
erties. In fact ω restricted to the space of functions on H = SL2(R)/ SO(2)
coincides with ∆ ( this will be discussed in detail in the course and the
notes). Here SO(2) denotes the special orthogonal group of matrices of

the form

(

cos θ sin θ
− sin θ cos θ

)

= kθ.

(3) In Schrödinger’s quantum theory, the motion of a free (spinless, non-
relativistic) quantum particle, moving in the absence of external forces
on M , satisfies the equation

i
∂ψ

∂t
= ∆ψ.

This defines a unitary evolution, meaning that ‖ψ(·, t)‖L2(volM ) is inde-
pendent of t – so without loss of generality we may normalize and assume
that ‖ψ(·, t)‖L2(volM ) = 1. The Born interpretation gives an empirical
meaning to the “wave function” ψ by interpreting |ψ|2 as the distribution
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of the position of the particle in the sense of probability. The eigenfunc-
tion equation ∆ψ = λψ corresponds to studying a particle with a given
energy −λ. Thus the QUE conjecture concerns itself with the high-energy
limit (also called the semi-classical limit). In fact the QUE conjecture im-
plies a strengthening of the uncertainty principle: If ψ has a given large
energy, then not only is the position of the particle uncertain, it is in fact
almost equidistributed.

1.1.2 Why are there eigenfunctions?

(1) If M is compact, then the operator (I − ∆)−1 is a compact operator
on L2(M). It follows that L2(M) is spanned by the eigenfunctions of ∆,
and for every λ ∈ R the corresponding eigenspace

{φ | ∆φ = λφ} (1.2)

is finite-dimensional.
(2) If M is not compact, then (I−∆)−1 is not a compact operator. In this case

there may in general not be any eigenfunctions at all. However, if Γ =
SL2(Z) (or a congruence subgroup, defined below), then one can again
show that ∆ has infinitely many eigenfunctions in C∞(M) ∩L2(M), and
that the eigenspaces (1.2) are once again finite-dimensional. Rudnick and
Sarnak also conjectured that in this case (1.1) should hold.

1.1.3 What other reasons are there to study eigenfunctions of ∆?

Apart from the quantum-mechanical interpretation in Section 1.1.1(4), the
eigenfunctions of the Laplacian arise in many parts of mathematics.

(1) On compact quotients, they give the most canonical orthonormal basis
of L2(M). This is part of the theory of harmonic analysis (the appropriate
generalization of Fourier analysis) on M .

(2) The eigenfunctions, which are also called Maass cusp forms, are intimately
related to L-functions in number theory.

1.1.4 The Result

Conjecture 1.1 is, in full generality, open. However, there are some important
cases for which it is known. In order to describe these, we need to make a few
more definitions. We call Γ a congruence lattice over Q if either

• Γ is a congruence subgroup of SL2(Z), meaning that

Γ ⊇ {γ ∈ SL2(Z) | γ ≡ I2 mod N}

for some N > 1; or
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• Γ is a lattice derived from a Eichler order in an R-split quaternion division
algebra over Q.

The first type has the advantage of being quite concrete, and includes familiar
examples like Γ = SL2(Z); the second type has the advantage that in those
cases the lattice is uniform, meaning that the quotient space Γ\H is compact.
In either case, it is possible (and we will do this later) to define a collection
of additional operators {Tn}, called Hecke operators, which commute with ∆
and with each other. These operators therefore act on the finite-dimensional
eigenspaces (1.2), and are simultaneously diagonalizable. A Hecke–Maass cusp
form is a joint eigenfunction φ ∈ C∞(M) ∩ L2(M) of ∆ and of all the Hecke
operators Tn for n > 2.

Lindenstrauss [10] and Soundarajan [15] together have shown the follow-
ing, which we refer to as arithmetic quantum unique ergodicity (AQUE).

Theorem 1.2. Let M = Γ\H, with Γ a congruence lattice over Q. Then

|φi|
2 dvolM −→

weak*

dvolM

as i → ∞ for any sequence of Hecke–Maass cusp forms for which the Maass
eigenvalues λi → −∞ as i→ ∞.

We briefly summarize some of the history leading up to this result. In 2001
Watson [16] showed this under the assumption of the Generalized Riemann
Hypothesis (GRH), also obtaining under this assumption the optimal rate of
convergence. In 2006 Lindenstrauss [10] obtained the result unconditionally,
using ergodic methods, for lattices derived from Eichler orders and (almost) for
congruence subgroups of SL2(Z). For the latter case, Lindenstrauss showed
that any weak*-limit is of the form c dvolM for some c ∈ [0, 1] – in other
words escape of mass to infinity was not ruled out. In 2009 Soundarajan [15]
established, in a short paper of ten pages, that any weak*-limit is a probability
measure – that is, escape of mass is not possible. Combined with [10], this
proved Theorem 1.2.

1.2 Introduction to (Measure Rigidity of) the Geodesic
Flow

Recall that the unit tangent bundle T1H of the hyperbolic plane is isomorphic

to PSL2(R) = SL2(R)/{±I2}, by identifying the matrix g =

(

a b
c d

)

with the

point
(

g.i,
1

(cz + d)2
i

)

∈ T1H.

Under this isomorphism, the geodesic flow (which, by definition, follows the
geodesic determined by the arrow (z, v) ∈ T1H with unit speed, as illustrated
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in Figure 1.1) corresponds on PSL2(R) to right-multiplication by

(

et/2

e−t/2

)

for t ∈ R (see [7, Chap. 9] for a detailed treatment).

z

v

ℓ

Fig. 1.1. The unique geodesic ℓ defined by a pair (z,v).

This flow (that is, action of R) naturally descends to the quotient

SL2(Z)\ SL2(R),

or to any other quotient Γ\ SL2(R). Recall that, by definition, Γ is a lat-
tice if X = Γ\ SL2(Z) supports an SL2(R)-invariant probability measure mX ,
which we always assume. The measure mX is also called the Haar measure
of X and, if projected to M = X/ SO(2), gives the normalized volume mea-
sure volM .

It is interesting to note that there are dense orbits of the geodesic flow
onX . In fact, for almost every starting point x ∈ X the orbit is equidistributed
with respect to mX , meaning that

1

T

∫ T

0

f

(

x

(

et/2

e−t/2

))

dt −→

∫

X

f dmX

as T → ∞ for any f ∈ Cc(X). This is a consequence of the ergodicity of mX

with respect to the geodesic flow and Birkhoff’s pointwise ergodic theorem.
We mention these important but basic concepts from ergodic theory only in
passing, as they will not be used in these lectures (see [7, Th. 2.30] for the
pointwise ergodic theorem, [7, Sect. 4.4.2] for a discussion of generic points, [7,
Sect. 9.5] for an account of Hopf’s proof of ergodicity for the geodesic flow,
and [7, Sect. 11.3] for an explanation of the ‘Mautner phenomena’ and ergod-
icity of the geodesic flow).

It is also interesting to note that there are many periodic orbits for the
geodesic flow. For example, the matrix

γ =

(

1 1
1 2

)

∈ SL2(Z)

is diagonalizable by some k ∈ SO(2) and has positive eigenvalues, so that

SL2(Z)k

(

et0/2

e−t0/2

)

= SL2(Z)γk = SL2(Z)k
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for some t0 > 0, showing that SL2(Z)k is periodic (as illustrated in Figure 1.2,
where the usual fundamental domain for SL2(Z)\H is used; the details behind
this form of illustration may be found in [7, Ch. 9]).

Fig. 1.2. A periodic orbit for the geodesic flow on SL2(Z)\SL2(R).

Clearly the periodic orbit is itself isomorphic to R/t0Z, and the flow on the
orbit corresponds under this isomorphism to translation on R/t0Z. This gives
rise to another type of invariant ergodic probability measure on Γ\ SL2(R),
namely the one-dimensional Lebesgue measure supported on a periodic orbit.

Taking convex combinations of mX and one-dimensional Lebesgue mea-
sures on periodic orbits gives rise to many other invariant measures. However,
these are not ergodic if they are proper convex combinations. One (of several)
definitions of ergodicity for an invariant measure is extremality in the convex
set of invariant probability measures. This implies, by Choquet’s theorem,
that any invariant probability measure on X is a convex combination∗ of in-
variant ergodic probability measures. Hence we would like to know if mX as
above and the periodic one-dimensional Lebesgue measures on periodic orbits
are the only invariant ergodic probability measures for the geodesic flow. This
turns out to be very far from the truth; indeed for every d ∈ [1, 3] there are
many invariant ergodic probability measures for which the support† of the
measure has Hausdorff dimension d.

We speak of rigidity of invariant measures for some group action if it is
possible to give a complete classification of the invariant probability measures,
and if the ergodic measures show a rich algebraic structure. This is, by the
discussion, manifestly not the case for the geodesic flow. However, as the fol-
lowing theorem due to Lindenstrauss [10] shows, it is possible to give some

∗ This convex combination is really an integral over an entire probability space of
ergodic measures; see [7, Ch. 6] for a detailed treatment.

† The support of a measure µ is the smallest closed set A with µ(A) = 1.
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(mild, and often checkable) additional conditions that characterize the Haar
measure mX . This theorem built on earlier work of Rudolph [13], Host [8]
and others on the unpublished conjecture of Furstenberg concerning mea-
sures on R/Z invariant under x 7→ 2x (mod 1) and x 7→ 3x (mod 1), and of
Katok and Spatzier [9] and of Einsiedler and Katok [3] on invariant measures
for higher-rank diagonalizable flows in the direction of conjectures of Fursten-
berg, Katok and Spatzier, and Margulis. More surprising is that in [10] ideas
from Ratner’s work [11] on unipotent flows were also used, an unexpected
connection because on the face of it the measures have very little structure
with respect to the unipotent horocycle flow.

Theorem 1.3 (Lindenstrauss). Let Γ be a congruence lattice over Q,
let X = Γ\ SL2(R) and let µ be an probability measure satisfying the following
properties:

[I] µ is invariant under the geodesic flow,
[R]p µ is Hecke-p-recurrent for a prime p, and
[E] the entropy of every ergodic component of µ is positive for the geodesic

flow.

Then µ = mX is the Haar measure on X.

The conditions are labeled [I] for invariance, [R]p for recurrence and [E] for
entropy. The method behind the theorem is more general, and has lead to a
number of further applications: Einsiedler, Katok and Lindenstrauss [4] ap-
plied this to obtain a partial result towards Littlewood’s conjecture on simul-
taneous Diophantine approximation for pairs of real numbers, and Einsiedler,
Lindenstrauss, Michel and Venkatesh [5] an application to the distribution of
periodic orbits for the full diagonal flow on SL3(Z)\ SL3(R).

Finally, we note that conjecturally invariance [I] and recurrence [R]p (for
all primes p) should be sufficient to obtain the conclusion of Theorem 1.3.
However, this is out of reach with current techniques in ergodic theory.

1.3 Outline of course

For us, Theorem 1.3 will be used as a black box; we refer to the lecture
notes of the Pisa Summer School in the Clay Mathematical Proceedings by
Einsiedler and Lindenstrauss [2] for an introduction to the ideas and results
needed in the proof. Instead we will focus on explaining the three assumptions
in Theorem 1.3, and how they may be proved in order to deduce Theorem 1.2.

For this we will be discussing diverse topics. For the discussion of the
microlocal lift which will prove invariance, we will introduce and explain the
notion of the universal enveloping algebra of the Lie algebra of SL2(R). For
establishing recurrence and positive entropy, we have to introduce the Hecke
operators as the analogue of the Laplace operator on regular trees.
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1.4 Problems

• Show that the Casimir operator ω generates the center of the universal
enveloping algebra.

• Show that on a compact quotient M = Γ\H there is a sequence of smooth
Maass forms that form an orthonormal eigenbasis of L2(M).

• Show that on M = SL2(Z)\H there are infinitely many Maass cusp forms.
• Show that equidistribution of large closed orbits of the subgroup {(g, g) :

g ∈ SL2(R)} ⊆ SL2(R)× SL2(R) in
(

SL2(Z)\ SL2(R)
)2

implies that (with
the normalization discussed in the lectures) the eigenvalues of the Hecke
operators Tn go to zero as n→ ∞.
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