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Figure 1E

Figure: Eigenfunctions on an ellipse, picture from
"Recent progress on QUE” by P. Sarnak
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k= 36.917 k= 37.408

FI1GURE 1.1. Left: one orbit of the circular billiard. Center and right: two
eigenmodes of that billiard, with their respective frequencies.

Figure: Eigenfunctions on a circle, picture from
"Chaotic vibrations and strong scars” by Anantharaman and
Nonnenmacher



Figure 1S

Figure: Eigenfunctions on the stadium, picture from
"Recent progress on QUE” by P. Sarnak



CHAOTIC VIBRATIONS

k= 39.045 k= 39.292

FiGure 1.2. Top left: one typical “ergodic” orbit of the “stadium”: it
equidistribues across the whole billiard. The three other plots feature eigen-
modes of frequencies k, ~ 39. Bottom left: a “scar” on the (unstable)
horizontal periodic orbit. Bottom right: a “bouncing ball” mode.

Figure: Eigenfunctions on the stadium, picture from
"Chaotic vibrations and strong scars” by Anantharaman and
Nonnenmacher



Figure 1B

Figure: Eigenfunctions on a dispersing Sinai billard, picture from
"Recent progress on QUE” by P. Sarnak



Figure 4a

Figure: Eigenfunctions on the modular surface, picture from
"Recent progress on QUE” by P. Sarnak



Figure 4b

Figure: Eigenfunctions on the modular surface, picture from
"Recent progress on QUE” by P. Sarnak



Conjecture 1.1 (Quantum Unique Ergodicity; Rudnick—Sarnak). Let I" be a
discrete subgroup of SLy(R) such that M = I'\H is compact. If {¢; | i € N}
are normalized eigenfunctions for A in C°° (M) with corresponding eigenval-
ues {\; | © € N} such that \; — oo as i — 0o, then

‘(}51‘2 dVOl]u w;)* dVOl]V[ (1.1)

as ¢ — 00.
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The same should hold for M = SL(Z)\H.
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|#5]* dvolyy — dvoly,
weak*

as i — oo for any sequence of Hecke—Maass cusp forms for which the Maass
eigenvalues \j — —o0 as i — o0.

Remarks: (1) This theorem also holds if M is a compact
arithmetic surface, [Lindenstraus 2006]

(2) In [Lindenstrauss, 2006] it is shown that any limit measure is
of the form cdvoly, for some ¢ < [0, 1].

(3) In [Soundararajan, 2010] it is shown that ¢ = 1, i.e. that
there is no escpace of mass.

(4) Watson has shown before the work of Lindenstrauss that
GRH implies the above theorem (with an optimal rate of
convergence).



Theorem (Lindenstrauss)

Let I' be a congruence lattice over Q, let X = I'\ SLp(R) and
let 1 be a probability measure satisfying the following
properties:

[I] wis invariant under the geodesic flow,
[Rl, wis Hecke p-recurrent for a prime p, and

[E] the entropy of every ergodic component of 4 is positive for
the geodesic flow.

Then p = my is the Haar measure on X.



Theorem (microlocal lift).

Let I < SL»(R) be a lattice, and let M = IN'\H. Suppose that (¢;)
is an L?-normalized sequence of eigenfunctions of A

in C>(M) N L2(M), with the corresponding eigenvalues \;
satisfying [\;| — oo as i — oo, and assume that the

weak*-limit ;2 of |¢;|? dvoly, exists. If ¢; denotes the sequence of
lifted functions defined later, then (possibly after choosing a
subsequence to achieve convergence) the weak™*-limit

of |$i]2 dmy has the following properties:

[L] Projecting zon X =T\Gto M =T\G/K gives .
[I] @ is invariant under the right action of A.

The measure 1 is called a microlocal lift of u, or a quantum limit
of ().



Proposition.

For m, w € slp(R) we have
mow —wom=[m,w]

where [m, w] = mw — wm is the Lie bracket, defined by the
difference of the matrix products. More concretely, this means

that
mx (W f)—wsx(mxf)=([m w])xf

forany f € C*(X).



