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§1. The General QUE Conjecture

In Figure 1 the domains ΩE, ΩS and ΩB are an ellipse, a stadium and a “Barnett” billiard
table respectively. Superimposed on these are the densities of a consecutive sequence of high
frequency eigenfunctions (“states”, “modes”) of the Laplacian. That is they are solutions to





!φj + λjφj = 0 in Ω .

φ
∣∣
∂Ω

= 0 (Dirichlet boundary conditions),

∫

Ω

|φj|2 dxdy = 1 .

(0)

Here ! = divgrad = ∂2

∂x2 + ∂2

∂y2 , λ1 < λ2 ≤ λ3 . . . are the eigenvalues and the eigenfunctions

are normalized to have unit L2-norm. The sequences are of 12 consecutive modes around
the 5600th eigenvalue. They are ordered from left to right and then down and the grayscale
represents the probability density |φ|2, with zero white and larger values darker.

Figure 1E

Figure: Eigenfunctions on an ellipse, picture from
”Recent progress on QUE” by P. Sarnak
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Figure 1.1. Left: one orbit of the circular billiard. Center and right: two
eigenmodes of that billiard, with their respective frequencies.

there is a conserved quantity in addition to the kinetic energy. For instance, in a circular
billiard the angular momentum of the particle is conserved. The classical trajectories are
then very “regular” (see Figure 1.1). The same regularity is observed in the eigenfunctions
and can be explained by the existence of a non-trivial differential operator commuting
with the Laplacian. As soon as an integrable billiard is slightly deformed, the symmetry
is broken: the geodesic flow is no longer integrable; it becomes chaotic in some regions of
phase space. We do not have any approximate formula at hand to describe the eigenmodes.
The extreme situation consists of fully chaotic billiards, like the “stadium” displayed in
Figure 1.2 (the word “chaotic” is a fuzzy notion; the results we present below will always
rely on precise mathematical assumptions).

We mention that the most recent numerical methods (the boundary operator and the
“scaling method”) allow one to compute a few tens of thousands of eigenmodes for 2-dimen-
sional billiards, at most a few thousands in 3 dimensions and much less if the metric is not
Euclidean. The difficulty stems from the fact that a mode of frequency kn ! 1 oscillates
on a scale ∼ 1/kn (the wavelength); one thus needs a finer and finer mesh when increasing
the frequency2. On the other hand, the analytical methods and results we present below
are especially fitted to describe these high-frequency modes.

1.1. Semiclassical methods. In the general case of a Riemannian manifold, the classical
dynamics (away from the boundaries) consists of the Hamiltonian flow gt on the cotangent
bundle3 T ∗X , generated by the free motion Hamiltonian

(1.2) H(x, ξ) =
|ξ|2
2

, (x, ξ) ∈ T ∗X.

The flow on the energy layer H−1(1/2) = S∗X = {(x, ξ) : |ξ| = 1} is simply the geodesic
flow on the manifold (with reflections on the boundary in the case ∂X $= 0).

2The code used to compute the stadium eigenmodes featured in this article was written and provided
by Eduardo Vergini [23].

3This bundle is often called “phase space”. It consists of the pairs (x, ξ), where x ∈ X and ξ ∈ Rd is
the coordinate of a covector based at x, representing the momentum of the particle.
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Figure: Eigenfunctions on a circle, picture from
”Chaotic vibrations and strong scars” by Anantharaman and
Nonnenmacher
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Figure 1S

Figure 1B

Figure: Eigenfunctions on the stadium, picture from
”Recent progress on QUE” by P. Sarnak
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Figure 1.2. Top left: one typical “ergodic” orbit of the “stadium”: it
equidistribues across the whole billiard. The three other plots feature eigen-
modes of frequencies kn ≈ 39. Bottom left: a “scar” on the (unstable)
horizontal periodic orbit. Bottom right: a “bouncing ball” mode.

The high-frequency regime allows us to use the tools of semiclassical analysis. Indeed,
the Helmholtz equation (1.1) can be interpreted as a stationary Schrödinger equation:
taking !n = k−1

n as an “effective Planck’s constant”, the eigenmode ψn satisfies

(1.3) − !2
n∆

2
ψn =

1

2
ψn.

The operator −!2∆
2

on the left-hand side is the quantum Hamiltonian governing the dy-
namics of a particle moving freely inside the cavity; it is the quantization of the classical
Hamiltonian (1.2). The above equation describes a quantum particle in a stationary state
of energy E = 1/2 (in this formalism, the energy is fixed but Planck’s “constant” is the
running variable). The high-frequency limit kn → ∞ exactly corresponds to the semi-
classical regime ! = !n → 0. In the following, the eigenmode will be denoted by ψn or
ψ!.

The correspondence principle provides a connection between the Schrödinger propagator,

namely the unitary flow U t = eit! ∆
2 acting on L2(X) and the geodesic flow gt acting on

the phase space T ∗X . The former “converges” towards the latter in the semiclassical limit
! → 0, in a sense made explicit below. The aim of semiclassical analysis is to exploit
this correspondence and use our understanding of the geodesic flow in order to extract
properties of the Schrödinger flow.

To analyse the eigenmodes we need to observe them by using quantum observables. For
us, an observable is a real function A ∈ C∞(T ∗X) that will be used as a test function to
measure the phase space localization of a wavefunction. One can associate to this function
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Figure: Eigenfunctions on the stadium, picture from
”Chaotic vibrations and strong scars” by Anantharaman and
Nonnenmacher
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Figure 1S

Figure 1B

Figure: Eigenfunctions on a dispersing Sinai billard, picture from
”Recent progress on QUE” by P. Sarnak
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linear operators on L2(M) which commute with each other and with !. For example if Y is
the modular surface then for n ≥ 1, the Hecke operator Tn is defined by

Tnψ(z) =
∑

ad = n
b mod d

ψ

(
az + b

d

)
. (6)

One checks that if ψ(γz) = ψ(z) for γ ∈ PSL2(Z), then Tnψ is also PSL2(Z) invariant (see
[Se1]).

The Tn’s are normal operators and hence this whole ring of Hecke operators together with
! can be simultaneously diagonalized. If as is expected and is confirmed by numerical experi-
ments, the Laplace spectrum of Y is simple, then any eigenfunction φ of! is automatically an
eigenfunction of the full Hecke ring. In any case in this arithmetic setting we always assume
that φ is an eigenfunction of the Hecke ring. As discussed above one can always choose an
orthonormal basis of such eigenfunctions. More generally, when we refer to arithmetic QUE
we are assuming that our states are always Hecke eigenstates. This is the means by which
we circumvent the issue of the unlikely, but potentially possible, high multiplicities m(λ). It
is known that the multiplicities of the spaces of such joint Hecke eigenfunctions is small and
in particular for Y it is one. These eigenfunctions are called Maass forms and they are basic
objects in modern number theory. As such, one might expect and it is certainly the case,
that this theory can be used to study the QUE question as well as many other interesting
questions associated with the high frequency states for arithmetic manifolds (see[Sa1], [Sa2],
[Mark], [Zel3]). Figure 4 depicts the densities of a sequence of Maass forms on Y with shading
and frequences similar to those in Figure 1. The densities are less regular than those of the
Barnett stadium.

Figure 4a

Figure: Eigenfunctions on the modular surface, picture from
”Recent progress on QUE” by P. Sarnak
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Figure 4b

The first results on QUE were obtained in [L-S1] and [Ja] where it is established for the
continuous spectrum for a non-compact arithmetic surface. According to our terminology
these are surfaces Γ\H where Γ is a congruence (see [P-R]) subgroup of SL2(Z) and in partic-
ular for Y . A key point in the analysis is an explicit relation between µφ(f) (where φ and f
are Hecke eigenforms and f is possibly a holomorphic such form, see below) and special val-
ues of related Rankin-Selberg L-functions on their critical lines. One of the primary reasons
for studying automorphic forms is that they give rise to families of L-functions generalizing
Riemann’s zeta function and having properties similar to it. Via this relation the QUE prob-
lem becomes one of estimating from above the corresponding special value. The “convexity”
bound for such values is what one gets from a simple complex analytic interpolation and it
falls just short of what is needed. For example, for the Riemann zeta function

ζ(s) =
∞∑

n=1

n−s =
∏

p

(1− p−s)−1 , (7)

the convexity bound on the critical line s = 1
2

+ it, is (see [Ti])

ζ(
1

2
+ it) = O

(
(|t| + 1)1/4

)
. (8)

The improvement or “subconvex” bound that is needed, is that there is δ > 0 such that

ζ(
1

2
+ it) = O((|t| + 1)1/4−δ) . (9)

For reasons such as the one at hand supplying such subconvex bounds for various automorphic
L-functions has become a central problem in the theory of L-functions ([Fr], [I-S]). There is
no doubt about the truth of subconvexity since it and optimally sharp bounds follow from

Figure: Eigenfunctions on the modular surface, picture from
”Recent progress on QUE” by P. Sarnak



2 1 Introduction to (A)QUE

1.1 (Arithmetic) Quantum Unique Ergodicity

In order to formulate the conjecture, we recall some notation (see [12, Chap. 9]
for a detailed treatment).

• The upper half-plane model for the hyperbolic plane is

H = {z = x + iy ∈ C | y > 0}.
• The group SL2(R) acts transitively on H via Möbius transformations: the

matrix g =
(

a b
c d

)
acts via

g : z "−→ g · z =
az + b

cz + d
.

• Any subgroup Γ ! SL2(R) defines an associated quotient space M = Γ\H
under this action, and the quotient space inherits a measure volM from
the volume measure dvolM = 1

y2 dxdy on H, meaning that
∫

M

f(x + iy) dvolM =
∫

F

f(x + iy)
1
y2

dxdy,

where F ⊆ M is a fundamental domain for the action of Γ on H. This
allows us to speak of function spaces like L2(M) = L2

volM
(M).

• A sequence of measures m1, m2, . . . is said to converge weak* to a mea-
sure m, denoted by mi −→

weak*
m as i →∞, if

∫
f dmi −→

∫
f dm

as i→∞, for any continuous function f with compact support.
• The Laplacian on M is the operator

∆ = y2

(
∂2

∂x2
+

∂2

∂y2

)
,

and a function φ ∈ C∞(M)∩L2(M) is an eigenfunction for ∆ with eigen-
value λ if ∆φ = λφ. An eigenvalue is normalized if ‖φ‖2 = 1.

Conjecture 1.1 (Quantum Unique Ergodicity; Rudnick–Sarnak). Let Γ be a
discrete subgroup of SL2(R) such that M = Γ\H is compact. If {φi | i ∈ N}
are normalized eigenfunctions for ∆ in C∞(M) with corresponding eigenval-
ues {λi | i ∈ N} such that λi →∞ as i →∞, then

|φi|2 dvolM −→
weak*

dvolM (1.1)

as i →∞.

The motivation for this conjecture comes from physical considerations, but
it has wide-ranging mathematical meaning. We address the motivation via a
series of questions.

The same should hold for M = SL2(Z)\H.



2 1 Introduction to (A)QUE

1.1 (Arithmetic) Quantum Unique Ergodicity

In order to formulate the conjecture, we recall some notation (see [12, Chap. 9]
for a detailed treatment).

• The upper half-plane model for the hyperbolic plane is

H = {z = x + iy ∈ C | y > 0}.
• The group SL2(R) acts transitively on H via Möbius transformations: the
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(2) If M is not compact, then (I−∆)−1 is not a compact operator. In this case
there may in general not be any eigenfunctions at all. However, if Γ =
SL2(Z) (or a congruence subgroup, defined below), then one can again
show that ∆ has infinitely many eigenfunctions in C∞(M) ∩L2(M), and
that the eigenspaces (1.2) are once again finite-dimensional. Rudnick and
Sarnak also conjectured that in this case (1.1) should hold.

1.1.3 What other reasons are there to study eigenfunctions of ∆?

Apart from the quantum-mechanical interpretation in Section 1.1.1(3), the
eigenfunctions of the Laplacian arise in many parts of mathematics.

(1) On compact quotients, they give the most canonical orthonormal basis
of L2(M). This is part of the theory of harmonic analysis (the appropriate
generalization of Fourier analysis) on M .

(2) The eigenfunctions, which are also called Maass cusp forms, are intimately
related to L-functions in number theory.

1.1.4 The Result

Conjecture 1.1 is, in full generality, open. However, there are some important
cases for which it is known. In order to describe these, we need to make a few
more definitions. We call Γ a congruence lattice over Q if either

• Γ is a congruence subgroup of SL2(Z), meaning that

Γ ⊇ {γ ∈ SL2(Z) | γ ≡ I2 mod N}
for some N ! 1; or

• Γ is a lattice derived from a Eichler order in an R-split quaternion division
algebra over Q.

The first type has the advantage of being quite concrete, and includes familiar
examples like Γ = SL2(Z); the second type has the advantage that in those
cases the lattice is uniform, meaning that the quotient space Γ\H is compact.
In either case, it is possible to define a collection of additional operators {Tn},
called Hecke operators, which commute with ∆ and with each other. These
operators therefore act on the finite-dimensional eigenspaces (1.2), and are
simultaneously diagonalizable. A Hecke–Maass cusp form is a joint eigenfunc-
tion φ ∈ C∞(M) ∩ L2(M) of ∆ and of all the Hecke operators Tn for n ! 2.

Lindenstrauss [18] and Soundarajan [29] together have shown the follow-
ing, which we refer to as arithmetic quantum unique ergodicity (AQUE).

Theorem 1.2. Let M = Γ\H, with Γ a congruence lattice over Q. Then

|φi|2 dvolM −→
weak*

dvolM

as i → ∞ for any sequence of Hecke–Maass cusp forms for which the Maass
eigenvalues λi → −∞ as i→∞.

Remarks: (1) This theorem also holds if M is a compact
arithmetic surface, [Lindenstraus 2006]
(2) In [Lindenstrauss, 2006] it is shown that any limit measure is
of the form c dvolM for some c ∈ [0,1].
(3) In [Soundararajan, 2010] it is shown that c = 1, i.e. that
there is no escpace of mass.
(4) Watson has shown before the work of Lindenstrauss that
GRH implies the above theorem (with an optimal rate of
convergence).
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operators therefore act on the finite-dimensional eigenspaces (1.2), and are
simultaneously diagonalizable. A Hecke–Maass cusp form is a joint eigenfunc-
tion φ ∈ C∞(M) ∩ L2(M) of ∆ and of all the Hecke operators Tn for n ! 2.

Lindenstrauss [18] and Soundarajan [29] together have shown the follow-
ing, which we refer to as arithmetic quantum unique ergodicity (AQUE).

Theorem 1.2. Let M = Γ\H, with Γ a congruence lattice over Q. Then

|φi|2 dvolM −→
weak*

dvolM

as i → ∞ for any sequence of Hecke–Maass cusp forms for which the Maass
eigenvalues λi → −∞ as i→∞.

Remarks: (1) This theorem also holds if M is a compact
arithmetic surface, [Lindenstraus 2006]
(2) In [Lindenstrauss, 2006] it is shown that any limit measure is
of the form c dvolM for some c ∈ [0,1].
(3) In [Soundararajan, 2010] it is shown that c = 1, i.e. that
there is no escpace of mass.
(4) Watson has shown before the work of Lindenstrauss that
GRH implies the above theorem (with an optimal rate of
convergence).



Theorem (Lindenstrauss)

Let Γ be a congruence lattice over Q, let X = Γ\SL2(R) and
let µ be a probability measure satisfying the following
properties:

[I] µ is invariant under the geodesic flow,
[R]p µ is Hecke p-recurrent for a prime p, and

[E] the entropy of every ergodic component of µ is positive for
the geodesic flow.

Then µ = mX is the Haar measure on X .



Theorem (microlocal lift).

Let Γ 6 SL2(R) be a lattice, and let M = Γ\H. Suppose that (φi)
is an L2-normalized sequence of eigenfunctions of ∆
in C∞(M) ∩ L2(M), with the corresponding eigenvalues λi
satisfying |λi | → ∞ as i →∞, and assume that the
weak*-limit µ of |φi |2 dvolM exists. If φ̃i denotes the sequence of
lifted functions defined later, then (possibly after choosing a
subsequence to achieve convergence) the weak*-limit µ̃
of |φ̃i |2 dmX has the following properties:
[L] Projecting µ̃ on X = Γ\G to M = Γ\G/K gives µ.
[I] µ̃ is invariant under the right action of A.

The measure µ̃ is called a microlocal lift of µ, or a quantum limit
of (φi).



Proposition.

For m,w ∈ sl2(R) we have

m ◦ w − w ◦m = [m,w ]

where [m,w ] = mw − wm is the Lie bracket, defined by the
difference of the matrix products. More concretely, this means
that

m ∗ (w ∗ f )− w ∗ (m ∗ f ) = ([m,w ]) ∗ f

for any f ∈ C∞(X ).


