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The purpose of these notes is to study rings of rank n:

Definition 1 A ring of rank n is a commutative, associative ring with identity that is free
of rank n as a Z-module.

That is, a ring of rank n is a ring (commutative, associative, with unit) whose underlying
additive group is isomorphic to Zn.

The prototypical examples of rings of rank n are, of course, orders in degree n number
fields. The class of all such examples consists precisely of those rings of rank n that are
integral domains.

However, there are many interesting examples of rings of rank n that are not integral
domains. For example, there are degenerate rings such as Z[x]/(xn) or
Z[x1, . . . , xn−1]/(x1, . . . , xn−1)

2. One may also construct rings of rank n by taking (any
rank n subring of) a direct sum of k rings having ranks n1, . . . , nk respectively, where
n1 + · · ·+ nk = n. For instance, Z⊕n is a nice example of a ring of rank n.

More generally, we may consider rings of rank n over any base ring T : a ring of rank

n over T is any ring that is locally free of rank n as a T -module.

Concerning terminology, we refer to rings of rank 2, 3, 4, 5, or 6 as quadratic, cubic,
quartic, quintic, or sextic rings respectively.

In these notes, we wish to classify rings of small rank n, where by “small” we mean
“at most 5”.
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We begin with the simplest possible case, namely n = 1.∗

1 n = 1

Theorem 1 The only ring of rank 1 is Z. (Prove this!)

2 n = 2

So n = 1 was pretty easy. The case n = 2 is actually not that much more difficult:

Any quadratic ring S has a basis of the form 〈1, τ〉. To specify the ring structure on
S, we only need to know τ · τ , i.e.,

τ 2 = bτ + c (1)

for some b, c ∈ Z. The discriminant D of this quadratic is b2 + 4c. Now the basis 〈1, τ〉 of S
is not unique; τ may be negated, or translated by any integer. Via such a transformation,
b ∈ Z can be transformed into any integer of the same parity. Thus, by translating τ by
an appropriate integer, we may assume b = 0 or 1. Note that the value of the discriminant
D = b2 + 4c will not change under such a transformation.

Therefore, for any quadratic ring, we can choose a basis 〈1, τ〉 such that either

τ 2 = c or τ 2 = τ + c, (2)

where c is some integer; these quadratics have discriminants

4c or 4c + 1, (3)

respectively.

Conversely, given any discriminant D of the form 4c or 4c + 1, we may construct a
quadratic ring S = S(D) with basis 〈1, τ〉 where τ satisfies either the first or second equation
in (2) respectively. This integer D is called the discriminant Disc(S) of the quadratic ring S.

We conclude that quadratic rings S (up to isomorphism) are in one-to-one corre-
spondence with the set D := {D ∈ Z : D ≡ 0 or 1 (mod 4)} via the discriminant map
S 7→ Disc(S). We summarize this in the following

Theorem 2 Isomorphism classes of quadratic rings S are in canonical bijection with ele-

ments of the set D = {D ∈ Z : D ≡ 0 or 1 (mod 4)} of discriminants. Under this bijection,

a quadratic ring S corresponds to Disc(S) ∈ D, and an element D ∈ D corresponds to the

quadratic ring S(D) := Z[D+
√

D
2

].

∗Actually, I guess the “zero ring”, in which there is just one element, namely 1 = 0, is a ring of rank 0,

and this clearly is the only ring of rank 0. So perhaps THIS is the simplest possible case!
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Thus, we see that quadratic rings are uniquely specified, up to isomorphism, by their
“discriminants”.

The discriminant is, in fact, a well-defined invariant for any ring R of rank n, as
follows. To any ring of rank n we may attach the trace function Tr : R → Z, which assigns

to an element α ∈ R the trace of the endomorphism R ×α−→R. The discriminant Disc(R)
of such a ring R is then defined as the determinant det(Tr(αiαj)) ∈ Z, where {αi} is any
Z-basis of R.

It is a classical fact, due to Stickelberger, that a ring having finite rank as a Z-module
must have discriminant congruent to 0 or 1 (mod 4). We have already seen this in the case
of rank 2: such a ring must have Z-basis of the form < 1, τ >, where τ satisfies a quadratic
τ 2 + rτ + s = 0 with r, s ∈ Z. The discriminant of this ring is then computed to be r2 − 4s,
which is congruent to 0 or 1 modulo 4.

The discriminant is THE fundamental invariant of rings of rank n. It, in some sense,
measures the “size” of the ring. In the case n = 2, the discriminant also completely char-
acterizes the ring. For higher n, however, it is NOT a complete invariant; for example, it
is easy to come up with nonisomorphic rings of rank 3 having the same discriminant. (Try
this!)

Thus the classification of rings of rank > 2 requires additional information.

We end this section with some simple exercises for the case n = 2:

Exercise 1 What D ∈ D corresponds to the quadratic ring Z⊕Z? What about Z[x]/(x2)?

Exercise 2 Which quadratic rings are integral domains? (That is, for which D ∈ D is S(D)
an integral domain?)

Exercise 3 Show that every quadratic ring S(D) has automorphism group isomorphic to
C2.
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3 n = 3

The case n = 3, in the case of integral domains, was beautifully handled by Delone and
Faddeev [5] in their classical work on cubic irrationalities; their work was recently refined to
general cubic rings by Gan, Gross, and Savin [6]. In this section, we discuss this classification.

3.1 Cubic rings and binary cubic forms

Just as quadratic rings are parametrized by elements of D, the theorem of Delone–Faddeev–
Gan–Gross–Savin states that cubic rings are parametrized by GL2(Z)-equivalence classes of

integral binary cubic forms.

More precisely, an integral binary cubic form is a homogeneous polynomial of degree
3 in two variables with integer coefficients, i.e., it is of the form

f(x, y) = ax3 + bx2y + cxy2 + dy3

where a, b, c, d ∈ Z. The group GL2(Z) acts on integral binary cubic forms in the so-called
“twisted” way; namely, an element γ ∈ GL2(Z) acts on a binary cubic form f(x, y) by

(γ · f)(x, y) =
1

det(γ)
· f((x, y) · γ).

The theorem of Delone–Faddeev–Gan–Gross–Savin then states:

Theorem 3 ([5],[6]) There is a canonical bijection between isomorphism classes of cubic

rings and the set of GL2(Z)-equivalence classes of integral binary cubic forms. Under this

bijection, the discriminant of a cubic ring is equal to the discriminant of the corresponding

binary cubic form.

Proof: Given a cubic ring R, let 〈1, ω, θ〉 be a Z-basis for R. Translating ω, θ by the appro-
priate elements of Z, we may assume that ω · θ ∈ Z. A basis satisfying the latter condition
is called normal. If 〈1, ω, θ〉 is a normal basis, then there exist constants a, b, c, d, ℓ, m, n ∈ Z

such that
ωθ = n
ω2 = m + bω − aθ
θ2 = ℓ + dω − cθ.

(4)

To the cubic ring R, we associate the binary cubic form f(x, y) = ax3 + bx2y + cxy2 + dy3.

Conversely, given a binary cubic form f(x, y) = ax3 + bx2y + cxy2 + dy3, form a
potential cubic ring having multiplication laws (4). The values of ℓ, m, n are subject to the
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associative law relations ωθ · θ = ω · θ2 and ω2 · θ = ω · ωθ, which when multiplied out using
(4), yield a system of equations that possess a unique solution for n, m, ℓ, namely

n = −ad
m = −ac
ℓ = −bd.

(5)

If follows that any binary cubic form f(x, y) = ax3 + bx2y + cxy2 + dy3, via the recipe (4)
and (5), leads to a unique cubic ring R = R(f).

Lastly, one observes by an explicit calculation that changing the Z-basis 〈ω, θ〉 of R/Z

by an element γ ∈ GL2(Z), and then renormalizing the basis in R, transforms the corre-
sponding binary cubic form f(x, y) by that same element of GL2(Z). Hence an isomorphism
class of cubic rings determines a binary cubic form uniquely up to the action of GL2(Z).
This is the desired conclusion. 2

One finds by an explicit calculation using (4) and (5) that the discriminant of the
cubic ring R(f) is precisely the discriminant of the binary cubic form f ; explicitly, it is given
by

Disc(R(f)) = Disc(f) = b2c2 − 4ac3 − 4b3d − 27a2d2 + 18abcd. (6)

We end this subsection with some exercises.

Exercise 4 What binary cubic form f corresponds to the cubic ring Z3? To Z[x]/(x3)? To
Z[x, y]/(x2, xy, y2)? To Z[ 3

√
n]?

Exercise 5 Prove that R(f) is an integral domain (equivalently, an order in a number field)
if and only if f is irreducible as a polynomial over Q.

Exercise 6 Suppose that f has nonzero discriminant. Prove that a cubic ring R(f), having
nonzero discriminant, has automorphism group isomorphic either S3, C3, C2 or 1. Prove
that if f is irreducible over Q, then the only possible automorphism groups for R(f) are C3

or 1. How can one distinguish all these possibilities simply by looking at f? (Hint: look also
at the next two exercises!)

Exercise 7 Consider the form Tr(x2) on the cubic ring R = R(f). Now restrict this form
to the sublattice of Z + 3R consisting of elements of trace 0. What is the interpretation of
this quadratic form in terms of the corresponding binary cubic f?

Exercise 8 (Continuation of Exercise 7) Write down some examples of cubic rings inside
Galois cubic fields. Do they all have three automorphisms? What are the associated binary
cubics? What can you say about the Tr(x2) form for a cubic ring having three automor-
phisms? Can you use this to give an explicit parametrization of such “C3-cubic rings”?
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Exercise 9 Show that the cubic ring given by a binary cubic form lies in the field generated
by the coordinates of the points cut out in P1 by the form. What if the field is quadratic?

Exercise 10 (*) What can you say about the integers represented by a binary cubic form
f , making use of the relationship with the corresponding cubic ring R(f)?

3.2 Quadratic resolvent rings of a cubic ring

Here is an alternative way to look at the cubic case, using resolvent rings. First, recall that
the discriminant of a cubic ring is always an integer that is 0 or 1 (mod 4), i.e., it is always
an element of D. We may thus define a quadratic resolvent ring of a cubic ring as follows.

Definition 2 For a cubic ring R, the quadratic resolvent ring of R is the unique quadratic
ring S such that Disc(R) = Disc(S).

Now suppose R is an order in a cubic field K. Then there is a natural map f : R → S,
namely

f(x) =
Disc(x) +

√
Disc(x)

2
:=

[(x − x′)(x′ − x′′)(x′′ − x)]2 + (x − x′)(x′ − x′′)(x′′ − x)

2
,

(7)
where x, x′, x′′ denote the conjugates of x in the Galois closure of K.

The map f satisfies two key properties:

(a) f is discriminant-preserving: Disc(f(x)) = Disc(x) (Check this!);

(b) f : R → S descends to a map f̄ : R/Z → S/Z (Check this!).

Note that f̄ is a cubic map from R/Z ∼= Z2 (as Z-modules) to S/Z ∼= Z (as Z-
modules); thus f̄ is a binary cubic form!

Exercise 11 Show that f̄ gives the same binary cubic form as in the Delone-Faddeev cor-
respondence.

Thus we have obtained a concrete ring-theoretic interpretation of the Delone-Faddeev
correspondence in terms of resolvent rings.

Remark 1 Note that the quadratic resolvent field of a cubic field, and the corresponding
map f for these fields, was very important in the classical solution to the cubic equation.
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4 n = 4

We now turn to quartic rings! In analogy with the quadratic resolvents of a cubic ring as in
the previous section, we begin by considering cubic resolvent rings of a quartic ring.

4.1 Cubic resolvent rings of a quartic ring

Let Q be a quartic ring, and assume moreover that Q is an order in an S4-quartic field K.
In parallel with the cubic case discussed in the previous section, we want to find a cubic ring
R and a map φ : Q → R preserving discriminants.

Such a map φ comes up in a natural way in the classical theory of solving the quartic:
if x, x′, x′′, x′′′ denote the conjugates of x in the Galois closure of K, then we let

φ(x) = xx′ + x′′x′′′. (8)

It is known from the classical theory of solving the quartic that φ is discriminant-preserving;
this amounts to the beautiful identity

(
[xx′ + x′′x′′′] − [xx′′ + x′x′′′]

)(
[xx′′ + x′x′′′] − [xx′′′ + x′x′′]

)(
[xx′′′ + x′x′′] − [xx′ + x′′x′′′]

)

= (x − x′′′)(x′ − x′′) · (x − x′)(x′′ − x′′′) · (x − x′′)(x′ − x′′′).

It is also clear that φ(x) lies in a cubic ring, being algebraic and having exactly three S4-
conjugates in K.

What does it mean for R to be a cubic resolvent ring of Q?

Definition 3 A cubic resolvent ring of a quartic ring Q is a cubic ring R such that Disc(Q) =
Disc(R) and R ⊇ {φ(x) : x ∈ Q}.

Now given Q and a cubic resolvent ring R, we get a natural map

φ : Q → R

preserving discriminants. Again, we see that φ descends to a map

φ̄ : Q/Z → R/Z, (9)

because we see that, for any c ∈ Z,

φ(x + c) = (x + c)(x′ + c) + (x′′ + c)(x′′′ + c) = φ(x) + d

for some d ∈ Z, namely d = c Tr(x) + 2c2.
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4.2 Quartic rings and pairs of ternary quadratic forms

As a map between Z-modules, the map φ̄ in (9) is a quadratic map from Q/Z ∼= Z3 to
R/Z ∼= Z2, and thus corresponds to a pair (A, B) of integral ternary quadratic forms, well-
defined up to GL3(Z) × GL2(Z)-equivalence.

So given a pair (Q, R) consisting of a quartic ring and a cubic resolvent, we obtain a
pair (A, B) of integral ternary quadratic forms. The question now arises: given (A, B), can
one recover (Q, R)? (to go back)

The following lemma about φ plays an invaluable role in determining the multiplica-
tive structure of Q from (A, B). To state the lemma, we use the notation IndM(v1, v2, . . . , vk)
to denote the (signed) index of the lattice spanned by v1, v2, . . . , vk in the (oriented) rank k
Z-module M ; in other words, IndM(v1, v2, . . . , vk) is the determinant of the tranformation
between v1, v2, . . . , vk and any (positively oriented) Z-basis of M . Then we have:

Lemma 1 If Q is a quartic ring, and R is a cubic resolvent ring of Q, then for any x, y ∈ Q
we have

IndQ(1, x, y, xy) = ± IndR(1, φ(x), φ(y)). (10)

Proof: Since Disc(Q) = Disc(R), it suffices to show that the discriminants of the corre-
sponding lattices are equal:

∣∣∣∣∣∣∣∣

1 1 1 1
x x′ x′′ x′′′

y y′ y′′ y′′′

xy x′y′ x′′y′′ x′′′y′′′

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

1 1 1

xx′ + x′′x′′′ xx′′ + x′x′′′ xx′′′ + x′x′′

yy′ + y′′y′′′ yy′′ + y′y′′′ yy′′′ + y′y′′

∣∣∣∣∣∣∣∣
.

This identity may be verified by direct calculation. 2

The sign in expression (10) of course depends on how Q and R are oriented. To fix
the orientations on Q and R once and for all, let 〈1, α, β, γ〉 and 〈1, ω, θ〉 be bases for Q and
R respectively such that the map φ is given by

φ(rᾱ + sβ̄ + tγ̄) = B(r, s, t)ω̄ + A(r, s, t)θ̄, (11)

where ᾱ, β̄, γ̄, ω̄, θ̄ denote the reductions modulo Z of α, β, γ, ω, θ respectively. Then we fix
the orientations on Q and R so that IndQ(1, α, β, γ) = IndR(1, ω, θ) = 1.

For a fixed (A, B), we can use the lemma to understand the ring structure on Q.
First, let Q have Z-basis 〈1 = α0, α1, α2, α3〉, where we have

αiαj =
3∑

k=0

c k
ijαk (12)
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for some set of integral constants c k
ij ∈ Z.

We may make one additional assumption about the basis 〈1, α1, α2, α3〉 without any
harm. By translating α1, α2, α3 by appropriate constants in Z, we may arrange for the
coefficients of α1 and α2 in α1α2, together with the coefficient of α1 in α1α3, to each equal
zero. We call a basis 〈1, α1, α2, α3〉 satisfying the latter conditions a normal basis for Q.
Similarly, a basis 〈1, ω, θ〉 of R is called normal if the coefficients of ω and θ in ωθ are both
equal to zero.

In terms of the constants c k
ij in (12), the condition that the basis 〈1, α1, α2, α3〉 is

normal is equivalent to
c 1
12 = c 2

12 = c 1
13 = 0. (13)

Similarly, that the basis 〈1, ω, θ〉 of R is normal is equivalent to the multiplication table of R
taking the form (4). We choose to normalize bases because bases of Q/Z (resp. R/Z) then
lift uniquely to normal bases of Q (resp. R).

Let x = r1α1 + r2α2 + r3α3, y = s1α1 + s2α2 + s3α3 be general elements of Q, where
ri, si ∈ Z. Then using (12), we find that

xy = c + t1α1 + t2α2 + t3α3,

where c ∈ Z and
tk =

∑

1≤i,j≤3

c k
ij risj (14)

for k = 1, 2, 3. It follows that

IndQ(1, x, y, xy) =

∣∣∣∣∣∣∣∣

1 0 0 0
0 r1 r2 r3

0 s1 s2 s3

0 t1 t2 t3

∣∣∣∣∣∣∣∣
. (15)

The right side of (15) is a polynomial of degree 4 in the variables r1, r2, r3, s1, s2, s3, which
we denote by p(r1, r2, r3, s1, s2, s3).

Similarly,

IndR(1, φ4,3(x), φ4,3(y)) =

∣∣∣∣∣∣∣

1 0 0

0 B(r1, r2, r3) A(r1, r2, r3)

0 B(s1, s2, s3) A(s1, s2, s3)

∣∣∣∣∣∣∣
. (16)

The right side of (16) is also a polynomial of degree 4 in the variables r1, r2, r3, s1, s2, s3,
which we denote by q(r1, r2, r3, s1, s2, s3). (Note that the multiplicative structure of R was
not needed for computing the polynomial q.)
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By Lemma 1, we conclude that for all integers r1, r2, r3, s1, s2, s3,

p(r1, r2, r3, s1, s2, s3) = q(r1, r2, r3, s1, s2, s3).

As they take equal values at all integer arguments, the polynomials p and q must in fact
be identical. Equating coefficients of like terms yields a system of linear equations in the
15 variables c k

ij (k ≥ 1) in terms of the coefficients of the quadratic forms A and B, and
this system is easily seen to have a unique solution. Writing out the pair (A, B) of ternary
quadratic forms as

A(x1, x2, x3) =
∑

1≤i≤j≤3

aij xixj

B(x1, x2, x3) =
∑

1≤i≤j≤3

bij xixj ,
(17)

and letting aji = aij and bji = bij , define the constants λij
kℓ = λij

kℓ(A, B) by

λij
kℓ(A, B) =

∣∣∣∣
aij bij

akℓ bk ell

∣∣∣∣ ; (18)

the λij
kℓ thus take up to 15 possible nonzero values up to sign. Then we find that the unique

solution to the system p = q is given as follows. For any permutation (i, j, k) of (1, 2, 3), we
have

c i
ii = ±λik

ij + Ci,

c j
ii = ±λii

ik,

c i
ij = ±1

2
λik

jj + 1
2
Cj ,

c k
ij = ±λjj

ii ,

(19)

where we have used ± to denote the sign of the permutation (i, j, k) of (1, 2, 3), and where
the constants Ci are given by

C1 = λ23
11, C2 = −λ13

22, C3 = λ12
33. (20)

Note that the c 0
ij are still undetermined. However, it turns out that the associative law

for Q now uniquely determines the c 0
ij from the other c k

ij. Indeed, computing the expressions
(αiαj)αk and αi(αjαk) using (12), and then equating the coefficients of αk, yields the equality

c 0
ij =

3∑

r=1

(
c r
jkc

k
ri − c r

ijc
k
rk

)
(21)

for any k ∈ {1, 2, 3} \ {j}. One easily checks using the explicit values given in (19) that the
above expression is independent of k, and that with these values of c 0

ij all relations among
the c k

ij implied by the associative law are completely satisfied. Thus we have completely
determined the ring structure of Q = Q(A, B) from (A, B); it is given in sum by (12), (19),
(20), and (21).
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To determine the structure of R from (A, B), we may simply use the relation

IndQ(1, x, x2, x3) = IndR(1, φ(x), φ(x)2), (22)

since the multiplicative structure of Q is now in place. (This identity amounts to the fact
that the map φ is discriminant-preserving!) Let x = r1α + r2β + r3γ ∈ Q.

Then
IndQ(1, x, x2, x3) = p(r1, r2, r3)

and
IndR(1, φ(x), φ(x)2) = q(r1, r2, r3),

where p and q are determinantal expressions similar to (15) and (16).

As before, we argue that the polynomials p and q must take the same values for
all integer choices of r1, r2, r3, and consequently are identical. Equating coefficients of like
terms, we obtain several linear and quadratic equations in a, b, c, d. Solving these equations
for a, b, c, d, we find that there is a unique solution whenever the image of φ generates R.
This occurs, in particular, whenever Disc(A, B) 6= 0. In that case the unique solution is
given by

ax3 + bx2y + cxy2 + dy3 = 4 · Det(Ax − By) (23)

and hence the structure of R is determined, at least whenever Disc(A, B) 6= 0.

It is interesting to ask what the discriminant of the resulting quartic ring Q(A, B)
and cubic ring R(A, B) is in terms of the pair of ternary quadratic forms (A, B). As
an explicit calculation shows, the answer is happily that Disc(Q(A, B)) = Disc(A, B) :=
Disc(4 · Det(Ax − By)).

We may summarize our discussion as follows:

Theorem 4 There is a canonical bijection between the set of GL3(Z)×GL2(Z)-orbits on the

space (Sym2Z3⊗Z2)∗ of pairs of integral ternary quadratic forms and the set of isomorphism

classes of pairs (Q, R), where Q is a quartic ring and R is a cubic resolvent ring of Q.

Under this bijection, the discriminant of an element (A, B) ∈ (Sym2Z3⊗Z2)∗ is equal

to the discriminant of the quartic ring Q. Furthermore, the binary cubic form corresponding

to the cubic ring R by the Delone-Faddeev correspondence is 4 · Det(Ax − By).

Although we have proven the above theorem only for those quartic rings Q that are
orders in S4-quartic fields, it is possible to define cubic resolvent rings R for a general quartic
ring appropriately so that Theorem 4 extends to general quartic rings.
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Definition 4 Let Q be a quartic ring. Then R = (R, φ̄, δ) is a cubic resolvent ring of Q if

(a) φ̄ : Q/Z → R/Z is a quadratic map

(b) δ : ∧4Q → ∧3R is an isomorphism

(c) δ(1 ∧ x ∧ y ∧ xy) = 1 ∧ φ̄(x) ∧ φ̄(y)

(d) If we write φ̄ = (A, B), then R is the cubic ring corresponding to 4 · Det(Ax − By)
under the Delone–Faddeev–Gan–Gross–Savin correspondence.

Using Definition 4, the proof of Theorem 4 for general Q is then essentially identical.

It remains to understand whether a quartic ring even possesses a single cubic resolvent
ring! Using a study of the invariant theory of pairs of ternary quadratic forms, it is proven
in [3] that

Proposition 1 The number of cubic resolvents of a quartic ring Q is the number of sublat-

tices of Z2 of index ct(Q), where

ct(Q) = sup{n : ∃ quartic ring Q′ s.t. Q = Z + nQ′}.

It follows that every quartic ring has a cubic resolvent!

Corollary 1 Every quartic ring has a cubic resolvent ring. For a maximal quartic ring, the

cubic resolvent ring is unique.

Thus Theorem 4 is a bijection on maximal quartic rings, and so in particular on the
rings of integers in quartic number fields!

Finally, we remark that one can characterize local properties of a quartic ring (e.g.,
maximality, prime splitting, etc.) by explicit congruence conditions on the corresponding
pair of ternary quadratic forms. See [3] for details. One may also treat these matters entirely
geometrically, as hinted at in Exercise 14 below. See Melanie’s lecture notes for more on this
perspective!

We end this section again with some exercises:

Exercise 12 What pair of ternary quadratic forms corresponds to the quartic ring Z4? To
Z[x]/(x4)? To Z[x, y, z]/(x, y, z)2? To Z[ 4

√
n]? To Z[

√
a,
√

b]? Or your favorite quartic ring?
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Exercise 13 (*) Find pairs of ternary quadratic forms corresponding to quartic rings that
have some special kind of structure – for example, those lying inside K ⊕ Q where K is a
cubic field. How does this relate to cubic rings and binary cubic forms? What about other
types of special structure, such as the various possible Galois groups? Can you find nice
representatives for the pairs of ternary quadratic forms corresponding to these? Can you
find a parametrization space for quartic rings with one of these structures?

Exercise 14 Show that the quartic ring given by a pair of ternary quadratic forms lies in the
field generated by the coordinates of the points cut out in P2 by these forms. In particular,
what happens in some of the special cases considered in Exercise 13?

Exercise 15 (*) What can you say about the pairs of integers represented by a pair of
ternary quadratic forms in terms of the corresponding quartic ring?

5 n = 5

The key to understanding the parametrization of quintic rings is first understanding the
combinatorics of the numbers 5 and 6 .

5.1 Six pentagons and a hexagon

The complete graph on five vertices contains twelve 5-cycles. The symmetric group S5 acts
naturally on this set of twelve 5-cycles, and under this action, the unique S5-orbit of twelve
elements splits up into two A5-orbits consisting of six elements each. One such A5-orbit of
5-cycles is illustrated in Figure 1, while the other A5-orbit can be obtained simply by taking
the graph complements of the 5-cycles shown in Figure 1. Together these two A5-orbits,
viewed as six pairs of complementary graphs, yield the six ways of partitioning the complete
graph on five vertices into pairs of 5-cycles. The “metacyclic” subgroup M (i) is defined to
be the set of all elements in S5 that map the 5-cycle in Figure 1 i© to either itself or its
complement.

We observe that any two 5-cycles in Figure 1 share exactly two common edges; more-
over, these two edges always involve four distinct vertices, so that there is exactly one vertex
that neither edge passes through. For example, the 5-cycles labelled 1© and 2© in Figure 1
share precisely the edges · ·

2 3
and · ·

4 5
involve the four distinct vertices 2, 3, 4 and 5. Vertex

1 does not arise. Thus in Figure 2, we label the edge connecting 1© and 2© by the number
“1”. In general, the edge connecting i© and j© in Figure 2 is labelled by the number of the
unique vertex that does not lie on a common edge of the cycles labelled i© and j© in Figure
1. In this way, we obtain in Figure 2 a complete graph on six vertices whose 15 edges are
labelled by numbers in the set {1, 2, . . . , 5}, and where each of the 5 numbers occurs as the
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label of an edge exactly 3 times. Thus, for example, “1” occurs as the label on the three
disjoint edges ( 1©, 2©), ( 3©, 6©), and ( 4©, 5©). It is interesting to note that the process of
obtaining Fig. 2 from Fig. 1 is completely reversible; i.e., up to taking the graph complements
of 1©, . . ., 6©, the 5-cycles labelled 1©, . . ., 6©, in Fig. 1 are completely determined by the
labellings in Fig. 2. In particular, the natural action of S5 on the six elements 1©,. . . , 6© is
completely determined by Fig. 2.

In sum, the elements of {1, 2, 3, 4, 5, 6} correspond to certain 5-cycles on the set
{1, 2, 3, 4, 5} (Fig. 1), while the elements of {1, 2, 3, 4, 5} correspond to certain disjoint triples
of pairs of elements in {1, 2, 3, 4, 5, 6} (Fig. 2). These ‘dual” correspondences between the
sets {1, 2, 3, 4, 5} and {1, 2, 3, 4, 5, 6} play a central role in understanding the relationship
between quintic rings and their sextic resolvents.

5.2 Sextic resolvents of a quintic ring

Suppose now R is an order in an S5-quintic field K. Let S be an order in the sextic resolvent
field of K, i.e., in the field fixed by the metacyclic group M = M (1) ⊂ S5 when it acts on
the Galois closure of K.

Then there is a natural map F : R → S ⊗ Q defined by defined by

F (α) =
1√

Disc(R)

(
α(1)α(2) + α(2)α(3) + α(3)α(4) + α(4)α(5) + α(5)α(1)

− α(1)α(3) − α(3)α(5) − α(5)α(2) − α(2)α(4) − α(4)α(1)
)
, (24)

called the Cayley-Klein resolvent map. (Check that this map indeed has image in the sextic
resolvent field.) This map is very important in the solution of the quintic equation, whenever
it is solvable. It is, however, not the most fundamental map between a quintic ring/field and
its sextic resolvent!

This most fundamental map f seems to have been missed in the literature, perhaps
because the map is not symmetric, but alternating!

This special map f is as follows. One takes S to be an order (to be specified later) in
the sextic resolvent field so that f is a map f : R → ∧2S, or equivalently (by taking duals),
a map f : ∧3S → R∨, where R∨ denotes the dual lattice in R⊗Q of R under the trace form.

Then f is defined on ∧3S as follows. For s ∈ S, let s(1), s(2), . . . , s(6) denote the conju-
gates of s in R̄⊗Q, labelled so that they are stabilized by M (1), M (2), . . . , M (6) respectively;
then for any x, y, z ∈ S, define f(x ∧ y ∧ z) ∈ R∗ by

f(x, y, z) =
1

16 · Disc(R)

∣∣∣∣∣∣∣

x(1) − x(2) x(3) − x(6) x(4) − x(5)

y(1) − y(2) y(3) − y(6) y(4) − y(5)

z(1) − z(2) z(3) − z(6) z(4) − z(5)

∣∣∣∣∣∣∣
. (25)
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Note that (1,2), (3,6), and (4,5) are the pairs corresponding to the edges labelled “1” in the
hexagon in Figure 2.

One checks using Figures 1 and 2 that the the map f has the following properties:

• f is fixed under the action of S
(1)
4 ⊂ S5. Hence f(x, y, z) lies in R ⊗ Q.

• f = f (1) has five conjugate maps f (1), f (2), . . . , f (5), and

f (1)(x, y, z) + f (2)(x, y, z) + · · ·+ f (5)(x, y, z) = 0.

Hence the image of f lies not only in R∨, but in fact lies in the distinguished four-
dimensional sublattice (R/Z)∨ ⊂ R∨ ⊂ R ⊗ Q consisting of the trace 0 elements.

• f : ∧3S → R∨ descends to a map f̄ : R/Z → ∧3(S/Z)∨ ∼= ∧2(S/Z). By taking bases
of R and S respectively, we get an element A ∈ Z4 ⊗ ∧2Z5 (a quadruple of quinary
alternating 2-forms), well-defined up to the action of GL4(Z) × GL5(Z).

Now the action of GL4(Z) × GL5(Z) on A ∈ Z4 ⊗ ∧3Z5 is known to have a unique
polynomial invariant, having degree 40, which we denote by Disc(A). A calculation shows
that

224 · Disc(A) = Disc(S)12 · Disc(R)−35.

Since in analogy with previous cases, we want Disc(A) = Disc(R), we conclude that we must
have Disc(S) = 4 ·Disc(R)3. We are now led to the definition of a sextic resolvent of a quintic
ring:

Definition 5 Let R be an order in an S5-quintic field K. Then a sextic resolvent ring S of
R is an order in the sextic resolvent field of K such that

(a) f(x ∧ y ∧ z) ∈ R∨ for all x, y, z ∈ S; and

(b) Disc(S) = 4 · Disc(R)3.

Thus, given a quintic ring R and a sextic resolvent ring S of R as above, we obtain
an element A ∈ Z4 ⊗∧2Z5 (∼= (R/Z)∨ ⊗ ∧2(S/Z) ).

The question now arises: given an A ∈ Z4 ⊗ ∧2Z5, can we recover R and S? Again,
the answer is yes!
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5.3 Quintic rings and quadruples of alternating quinary 2-forms

To recover R from an element A ∈ Z4 ⊗ ∧2Z5, we make the following observations. First,
we observe that GL4(Z) × GL5(Z) acts on Z4 ⊗ ∧2Z5; the factor GL4(Z) acts on the basis
of R/Z, while the factor GL5(Z) acts on the basis of S/Z. Thus the multiplicative structure
constants of R should be GL5(Z)-invariants of A. So to recover R, we need to look at the
GL5(Z)-invariants on Z4 ⊗∧2Z5.

How can one construct these invariants? Clearly the determinant of each skew-
symmetric 5 × 5 matrix A(x) for x ∈ R/Z is a GL5(Z)-invariant; however, this determinant
is zero (since it’s the determinant of a 5 × 5 skew-symmetric matrix)! So we need a more
clever way to make a nonzero invariant.

Take elements x, y, z ∈ R/Z. Then A(x), A(y), A(z) are again 5 × 5 skew-symmetric
matrices. All their determinants are zero, but the Pfaffian of the 10 × 10 skew-symmetric
matrix [

A(x) A(y)
A(y) A(z)

]
(26)

is clearly a GL5(Z)-invariant of A (and it’s generally nonzero!); indeed, the action of an
element g ∈ GL5(Z) on A results in the action of

(
g

g

)
on the 10× 10 skew-symmetric form[

A(x)
A(y)

A(y)
A(z)

]
, and hence the value of the Pfaffian does not change. The Pfaffians

Pf(x, y, z) := Pfaff

[
A(x) A(y)
A(y) A(z)

]
(27)

are our prototypical GL5(Z)-invariants.

Now define

P+(X, Y, Z) =
Pf(X, Y, Z) + Pf(X, Y,−Z)

2
, (28)

P−(X, Y, Z) =
Pf(X, Y, Z) − Pf(X, Y,−Z)

−2
. (29)

Then one checks that P+(X, Y, Z) and P−(X, Y, Z) are integer polynomials in the entries
of X, Y, Z having homogeneous degrees 2,1,2 and 1,3,1 respectively. By construction, the
integer polynomials P+(A(x), A(y), A(z)) for x, y, z ∈ R are GL5(Z)-invariants of A. In
fact, one can show that all polynomial invariants for GL5(Z) acting on Z4 ⊗ ∧2Z5 must
be polynomials in these degree 5 Pfaffians! (However, we shall not need this fact in what
follows, and so we omit the proof.)

There is an alternative description of these invariants P+ and P− which is also very
beautiful. Given a 5×5 skew-symmetric matrix X, let us denote by Q(X) the column vector
[Q1, . . . , Q5]

t of 4 × 4 sub-Pfaffians of A. Thus Q is a quadratic function of the entries of
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X. Let Q(X, Y ) denote the symmetric bilinear form such that Q(X, X) = Q(X). Then for
skew-symmetric 5 × 5 matrices V, W, X, Y, Z, define the invariant

{V W |X|Y Z} = Q(V, W )t · X · Q(Y, Z).

Then we have

P+(X, Y, Z) = {XX|Y |ZZ}, (30)

P−(X, Y, Z) = {XY |Y |Y Z}. (31)

We observe the following beautiful identities:

Lemma 2 For x, y, z ∈ R, we have

(a) P+(A(x), A(y), A(z)) = IndR(1, x, y, z, xz)

(b) P−(A(x), A(y), A(z)) = IndR(1, x, y, z, y2).

In the same way as in the quartic case, Lemma 2 determines uniquely a multiplicative
structure on R!

We may write down this multiplicative structure as follows. Let R have Z-basis
〈1 = α0, α1, α2, α3, α4〉, where

αiαj = c 0
ij +

4∑

k=1

c k
ijαk , (32)

and the c k
ij ∈ Z. We use the shorthand {ijkℓm} for {A(αi)A(αj)|A(αk)|A(αℓ)A(αm)}. Then

we find that, for any permutation (i, j, k, ℓ) of (1, 2, 3, 4), we have

c k
ij = ±{iiℓjj}/4,

c j
ii = ±{ℓiiik},

c i
ij − c i

ik = ±{jkℓii}/2,

c i
ii − c i

ij − c i
ik = ±{ijℓki},

(33)

where we have used ± to denote the sign of the permutation (i, j, k, ℓ) of (1, 2, 3, 4). By choos-
ing suitable normalizing conditions (as in the cubic and quartic cases), this then determines
all c k

ij (for k 6= 0) as primitive integer polynomials in the entries of A.

The remaining constant coefficients c 0
ij can also now be uniquely expressed as polyno-

mials in the entries of A, using the associative law in R. Indeed, computing the expressions
(αiαj)αk and αi(αjαk), and then equating the coefficients of αk, yields the equality

c 0
ij =

4∑

r=1

(
c r
jkc

k
ri − c r

ijc
k
rk

)
(34)
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for any k ∈ {1, 2, 3, 4}\{j}. One checks using the explicit expressions in (33) that the right-
hand side of (34) is a polynomial expression in the entries of A that is independent of k.
We have thus recovered all structure coefficients of R = R(A) in terms of the SL5-invariants
{ijklm} of the quadruple A = (A1, . . . , A4) of 5 × 5 skew-symmetric matrices.

The sextic resolvent ring S = S(A) can also similarly be recovered from A (though
this is a more complicated process). Therefore, we obtain the following theorem:

Theorem 5 There is a canonical bijection between the GL4(Z)×GL5(Z)-orbits on the space

Z4 ⊗ ∧2Z5 of quadruples A of 5 × 5 skew-symmetric matrices and the set of isomorphism

classes of pairs (R, S), where R is a quintic ring and S is a sextic resolvent ring of R. Under

this bijection, we have Disc(A) = Disc(R) = Disc(S)1/3.

Although we have only discussed the above theorem when the quintic ring R is an
order in an S5-quintic field, by defining a sextic resolvent ring appropriately for general
quintic rings (as we did in the quartic case), one can extend Theorem 5 to general quintic
rings using the identical arguments.

5.4 Pfaffians and the classical resolvent map

In the previous section, we have proven that an element A ∈ Z4 ⊗ ∧2Z5 corresponds to the
most fundamental mapping

f : R/Z → ∧2(S/Z)

relating the quintic ring R = R(A) and its sextic resolvent S = S(A). However, there
are many other beautiful polynomial mappings relating the rings R and S, and any such
mapping may be understood in terms of higher covariants of A.

In particular, we may consider the classical resolvent map

F : R → S̃ ⊗ Q

of Cayley-Klein defined by (24). This map, too, is a higher degree covariant of the funda-
mental map f , namely, it is a degree 2 covariant as follows.

Given an element A ∈ (R/Z)∨⊗∧2(S/Z), viewed as a quadruple A = (A1, A2, A3, A4)
of 5 × 5 skew-symmetric matrices, we may form the single 5 × 5 skew-symmetric matrix
A1x1 + A2x2 + A3x3 + A4x4, where x1, x2, x3, x4 are indeterminates. Taking the 4 × 4 sub-
Pfaffians of the latter matrix, we obtain 5 quaternary quadratic forms (in x1, x2, x3, x4). This
yields a quadratic map G : R/Z → (S/Z)∨.

The map 4 · G is then exactly the Cayley-Klein resolvent map F .
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We end with a couple of exercises.

Exercise 16 Give examples of quadruples of quinary alternating 2-forms corresponding to
some examples of quintic rings.

Exercise 17 (*) Can you find a parametrization space for quintic rings with some special
structure (as in Exercise 13)?
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