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Course description

The goal of this course is to illustrate how p-adic analytic methods can be
used to construct explicit Weil cohomology for varieties over finite fields.
The sense in which “explicit” is meant here is that if one starts with a
variety defined by specific equations, one can in principle compute good
approximations to the matrix via which Frobenius acts on some basis of
cohomology. (Since this matrix has p-adic coefficients, one cannot expect to
compute it exactly, any more than one can exactly compute a typical real
number.)

We will start with the Monsky-Washnitzer cohomology of a smooth affine
variety over a finite field. This includes constructing the cohomology us-
ing a lift to characteristic zero, checking independence of the construction
from choices, proving an excision formula, and checking the Lefschetz trace
formula. (This all follows the original papers of Monsky-Washnitzer.) By
sheafifying, we will obtain a cohomology theory for general smooth varieties,
which is Berthelot’s rigid cohomology (also known as crystalline cohomology
with field coefficients).

We will then formulate the comparison theorem between rigid cohomology
and de Rham cohomology for a smooth proper scheme over ok, the ring of
integers in a p-adic field K. This means that the de Rham cohomology of a
variety over K with good reduction carries a Frobenius action, even though
the Frobenius map on the special fibre does not typically lift to characteristic
zero. It also means that we can use what we know about the de Rham
cohomology of the generic fibre to compute the zeta function of the special
fibre; this paradigm, applied to hyperelliptic curves as in [3], forms the basis
of applications of p-adic cohomology in cryptography (the “practice” of the
title).

We will then consider Gauss-Manin connections from the algebraic point
of view (following [2]), with an eye towards using these to compute Frobenius
actions in de Rham cohomology (following Lauder). This theme will be
carried further in the project.



Project description

The project will involve computing examples of Frobenius actions on the
de Rham cohomology of smooth proper varieties over a finite extension K
of @, which have semistable, rather than good, reduction. (Everywhere in
this description, “compute” means “compute on a computer”, using SAGE.)
The existence of such Frobenius actions is due to Hyodo and Kato; however,
unlike in the good reduction situation, it is not completely canonical. This
failure of canonicity is explained by the nonvanishing of a second operator,
the monodromy operator, which is indeed zero in the good reduction case.

We will first compute the Hyodo-Kato Frobenius and monodromy actions
on elliptic curves using the Tate uniformation (following [4, 1]). We will
then recompute it (at least conjecturally; if time permits, we may try to
prove correctness of these results using [1]) using Gauss-Manin connections,
particularly in the Legendre family (the universal family of elliptic curves
with rational 2-torsion). One key question we will be investigating, to which I
don’t know the answer: if one encounters an elliptic curve with multiplicative
reduction in a family such as the Legendre family, one apparently gets some
Hyodo-Kato Frobenius on its de Rham cohomology from the global Frobenius
action on the connection, but which one?
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