
CHAPTER 4

An introduction to Berkovich analytic spaces and
non-archimedean potential theory on curves

Matthew Baker1

Introduction and Notation

This is an expository set of lecture notes meant to accompany the author’s
lectures at the 2007 Arizona Winter School on p-adic geometry. It is partially
adapted from the author’s monograph with R. Rumely [BR08], and also draws
on ideas from V. Berkovich’s monograph [Ber90], A. Thuillier’s thesis [Thu05],
and Rumely’s book [Rum89]. We have purposely chosen to emphasize examples,
pictures, discussion, and the intuition behind various constructions rather than
emphasizing formal proofs and rigorous arguments. (Indeed, there are very few
proofs given in these notes!) Once the reader has acquired a basic familiarity with
the ideas in the present survey, it should be easier to understand the material in
the sources cited above.

We now explain the three main goals of these notes.

First, we hope to provide the reader with a concrete and “visual” introduction
to Berkovich’s theory of analytic spaces, with a particular emphasis on under-
standing the Berkovich projective line. Berkovich’s general theory, which is nicely
surveyed in [Con07], requires quite a bit of machinery to understand, and it is not
always clear from the definitions what the objects being defined “look like”. How-
ever, the Berkovich projective line can in fact be defined, visualized, and analyzed
with little technical machinery, and already there are interesting applications of the
theory in this case. Furthermore, general Berkovich curves (i.e., one-dimensional
Berkovich analytic spaces) can be studied by combining the semistable reduction
theorem and a good understanding of the local structure of the Berkovich projective
line.

Second, we hope to give an accessible introduction to the monograph [BR08],
which develops the foundations of potential theory on the Berkovich projective
line, including the construction of a Laplacian operator and a theory of harmonic
and subharmonic functions. Using Berkovich spaces one obtains surprisingly pre-
cise analogues of various classical results concerning subdomains of the Riemann
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2 4. POTENTIAL THEORY ON BERKOVICH CURVES

sphere P1(C), including a Poisson formula, a maximum modulus principle for sub-
harmonic functions, and a version of Harnack’s principle. A more general theory
(encompassing both arbitrary curves and more general base fields) has been worked
out by Thuillier in his recent Ph.D. thesis [Thu05]. One of the reasons for wanting
to develop potential theory on Berkovich spaces is purely aesthetic. Indeed, one
of the broad unifying principles within number theory is the idea that all comple-
tions of a global field (e.g., a number field) should be treated in a symmetric way.
This has been a central theme in number theory for almost a hundred years, as
illustrated for example by Chevalley’s idelic formulation of class field theory and
Tate’s development of harmonic analysis on adeles. In the traditional formulation
of Arakelov intersection theory, this symmetry principle is violated: one uses an-
alytic methods from potential theory at the archimedean places, and intersection
theory on schemes at the non-archimedean places, which at first glance appear to
be completely different tools. But thanks to the recent work of Thuillier, one can
now formulate Arakelov theory for curves in a completely symmetric fashion at all
places. A higher-dimensional synthesis of Berkovich analytic spaces, pluripoten-
tial theory, and Arakelov theory has yet to be accomplished, but achieving such a
synthesis should be viewed as an important long-term goal.

Third, we hope to give the reader a small sampling of some of the applications
of potential theory on Berkovich curves. The theories developed in [BR08] and
[Thu05], as well as the related theory developed in [FJ04], have already found
applications to subjects as diverse as non-archimedean equidistribution theorems
[BR06, FRL04, FRL06, CL06], canonical heights over function fields [Bak07],
Arakelov theory [Thu05], p-adic dynamics [BR08, FRL06, RL03b], complex dy-
namics [FJ07], and complex pluripotential theory [FJ05]. However, because these
notes have been written with beginning graduate students in mind, and because
of space and time constaints, we will not be able to explore in detail any of these
applications. Instead, we content ourselves with some “toy” applications, such as
Berkovich space interpretations of the product formula (see Example 3.1.2) and the
theory of valuation polygons (see §4.7), as well as new proofs of some known results
from p-adic analysis (see §4.8). We also briefly explain a connection between poten-
tial theory on Berkovich elliptic curves and Néron canonical local height functions
(see Example 5.4.5). Although these are not the most important applications of
the general theory being described, they are hopefully elegant enough to convince
the reader that Berkovich spaces provide an appealing and useful way to approach
certain natural problems.

The organization of these notes is as follows. In §1, we will provide an ele-
mentary introduction to the Berkovich projective line P1

Berk, and we will explore in
some detail its basic topological and metric properties. In §2, we will discuss more
general Berkovich spaces, including the Berkovich analytic space M(Z) associated
to Z. We will then give a brief overview of the topological structure of general
Berkovich analytic curves. In §3, we will explore the notion of a harmonic function
in the context of the spaces M(Z) and P1

Berk, formulating analogues of classical
results such as the Poisson formula, and we will briefly discuss the related notions
of subharmonic and superharmonic functions. In §4, we will define a Laplacian
operator on the Berkovich projective line which is analogous in many ways to the
classical Laplacian operator on subdomains of the Riemann sphere. Finally, in §5,
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we will describe how to generalize some of our constructions and “visualization
techniques” from P1

Berk to more general Berkovich curves.

We set the following notation, which will be used throughout:
K an algebraically closed field which is complete with respect to

a non-archimedean absolute value.
| | the absolute value on K, which we assume to be nontrivial.

|K∗| the value group of K, i.e., {|α| : α ∈ K∗}.
K̃ the residue field of K.
qv a fixed real number greater than 1, chosen so that z 7→ − logqv (z)

is a suitably normalized valuation v on K.
logv shorthand for logqv

B(a, r) the closed disk {z ∈ K : |z− a| ≤ r} of radius r about a in K.
Here r is any positive real number, and sometimes we allow
the degenerate case r = 0 as well. If r ∈ |K∗| we call the disk
rational, and if r 6∈ |K∗| we call it irrational.

B(a, r)− the open disk {z ∈ K : |z − a| < r} of radius r about a in K.
A1

Berk the Berkovich affine line over K.
P1

Berk the Berkovich projective line over K.
HBerk the “Berkovich hyperbolic space” P1

Berk\P1(K).
Qp the field of p-adic numbers.
Cp the completion of a fixed algebraic closure of Qp for some prime

number p.

1. The Berkovich projective line

In this lecture, we will introduce in a concrete way the Berkovich affine and
projective lines, and we will explore in detail their topological properties. We will
also define a subset of the Berkovich projective line called “Berkovich hyperbolic
space”, which is equipped with a canonical metric. Finally, we define and describe
various special functions (e.g. the “canonical distance”) on the Berkovich projective
line.

1.1. Motivation. Let K be an algebraically closed field which is complete with
respect to a nontrivial non-archimedean absolute value. (These conventions will
hold throughout unless explicitly stated otherwise.) The topology on K induced
by the given absolute value is Hausdorff, but it is also totally disconnected and
not locally compact. This makes it difficult to define in a satisfactory way a good
notion of an analytic function on K. Tate dealt with this problem by developing
the subject which is now known as rigid analysis, in which one works with a certain
Grothendieck topology on K. This gives a satisfactory theory of analytic functions
on K, but the underlying topological space is unchanged, so problems remain for
certain other applications. For example, even with Tate’s theory in hand it is not
at all obvious how to define a Laplacian operator on K analogous to the classical
Laplacian on C, or to formulate a natural notion of harmonic and subharmonic
functions on K.

However, these difficulties, and many more, can be resolved in an extremely
satisfactory way using Berkovich’s theory. The Berkovich affine line A1

Berk over K is
a locally compact, Hausdorff, and path-connected topological space which contains
K (with the topology induced by the given absolute value) as a dense subspace.
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One obtains the Berkovich projective line P1
Berk by adjoining to A1

Berk in a suitable
manner a point at infinity; the resulting space P1

Berk is a compact, Hausdorff, and
path-connected topological space which contains P1(K) (with its natural topology)
as a dense subspace. In fact, A1

Berk and P1
Berk are better than just path-connected:

they are uniquely path-connected, in the sense that any two distinct points can be
joined by a unique arc. The unique path-connectedness is closely related to the fact
that A1

Berk and P1
Berk are endowed with a natural profinite R-tree structure. The

profinite R-tree structure on A1
Berk (resp. P1

Berk) can be used to define a Laplacian
operator in terms of the classical Laplacian on a finite graph. This in turn leads to
a good theory of harmonic and subharmonic functions which closely parallels the
classical theory over C.

1.2. Multiplicative seminorms. The definition of A1
Berk is quite simple, and

makes sense with K replaced by an arbitrary field k endowed with a (possibly
archimedean or even trivial) absolute value. A multiplicative seminorm on a ring
A is a function | |x : A→ R≥0 satisfying:

• |0|x = 0 and |1|x = 1.
• |fg|x = |f |x · |g|x for all f, g ∈ A.
• |f + g|x ≤ |f |x + |g|x for all f, g ∈ A.

As a set, A1
Berk,k consists of all multiplicative seminorms on the polynomial

ring k[T ] which extend the usual absolute value on k. By an aesthetically desirable
abuse of notation, we will identify seminorms | |x with points x ∈ A1

Berk,k, and
we will usually omit explicit reference to the field k, writing A1

Berk and assuming
that we are working over a complete and algebraically closed non-archimedean field
K. The Berkovich topology on A1

Berk,k is defined to be the weakest one for which
x 7→ |f |x is continuous for every f ∈ k[T ].

To motivate the definition of A1
Berk, we can observe that in the classical setting,

every multiplicative seminorm on C[T ] which extends the usual absolute value on
C is of the form f 7→ |f(z)| for some z ∈ C. (This is a consequence of the well-
known Gelfand-Mazur theorem from functional analysis.) It is then easy to see that
A1

Berk,C is homeomorphic to C itself, and also to the Gelfand space of all maximal
ideals in C[T ].

1.3. Berkovich’s classification theorem. In the non-archimedean world,
K can once again be identified with the Gelfand space of maximal ideals in K[T ],
but now there are many more multiplicative seminorms on K[T ] than just the ones
given by evaluation at a point of K. The prototypical example is if we fix a closed
disk B(a, r) = {z ∈ K : |z − a| ≤ r} in K, and define | |B(a,r) by

|f |B(a,r) = sup
z∈B(a,r)

|f(z)| .

It is an elementary consequence of the well-known “Gauss lemma” that | |B(a,r)

is multiplicative, and the other axioms for a seminorm are trivially satisfied. Thus
each disk B(a, r) gives rise to a point of A1

Berk. Note that this includes disks for
which r 6∈ |K∗|, i.e., irrational disks for which the set {z ∈ K : |z − a| = r} is
empty. Also, we may consider the point a itself as a “degenerate” disk of radius
zero, in which case we set |f |B(a,0) = |f(a)|.

It is not hard to see that distinct disks B(a, r) with r ≥ 0 give rise to distinct
multiplicative seminorms on K[T ], and therefore the set of all such disks embeds
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naturally into A1
Berk. In particular, K embeds naturally into A1

Berk as the set of
disks of radius zero, and it is not hard to show that K is in fact dense in A1

Berk in
the Berkovich topology.

Suppose x, x′ ∈ A1
Berk are distinct points corresponding to the (possibly degen-

erate) disks B(a, r), B(a′, r′), respectively. The unique path in A1
Berk between x

and x′ has the following very intuitive description. If B(a, r) ⊂ B(a′, r′), this path
consists of all points of A1

Berk corresponding to disks containing B(a, r) and con-
tained in B(a′, r′). The collection of such “intermediate disks” is totally ordered by
containment, and if a = a′ it is just {B(a, t) : r ≤ t ≤ r′}, which is homeomorphic
to the closed interval [r, r′] in R. If B(a, r) and B(a′, r′) are disjoint, the unique
path between x and x′ consists of all points of A1

Berk corresponding to disks of the
form B(a, t) with r ≤ t ≤ |a − a′| or B(a′, t′) with r′ ≤ t′ ≤ |a − a′|. The disk
B(a, |a− a′|) is the smallest one containing both B(a, r) and B(a′, r′), and if x∨x′
denotes the corresponding point of A1

Berk, then the unique path from x to x′ is just
the path from x to x ∨ x′ followed by the path from x ∨ x′ to x′.

In particular, if a, a′ are distinct points of K, then one can visualize the unique
path in A1

Berk from a to a′ as follows: Start increasing the “radius” of the degenerate
disk B(a, 0) until we have a disk B(a, r) which also contains a′. This disk can also
be written as B(a′, s) with r = s = |a−a′|. Now decrease s until the radius reaches
zero and we have the degenerate disk B(a′, 0). In this way we have “connected up”
the totally disconnected space K by adding points corresponding to closed disks in
K!

In order to obtain a compact space from this construction, it is usually necessary
to add even more points. This is because K may not be spherically complete.2

Intuitively, we need to add points corresponding to such sequences in order to
obtain a space which has a chance of being compact. More precisely, if we return
to the definition of A1

Berk in terms of multiplicative seminorms, it is easy to see that
if {B(an, rn)} is any decreasing nested sequence of closed disks, then the map

f 7→ lim
n→∞

|f |B(an,rn)

defines a multiplicative seminorm on K[T ] extending the usual absolute value on
K. Two such sequences of disks with empty intersection define the same seminorm
if and only if the sequences are cofinal (or interlacing). This yields a large number
of additional points of A1

Berk which we are forced to throw into the mix. According
to Berkovich’s classification theorem, we have now described all points of A1

Berk.
More precisely:

Theorem 1.3.1 (Berkovich’s Classification Theorem). Every point x ∈ A1
Berk

corresponds to a nested sequence B(a1, r1) ⊇ B(a2, r2) ⊇ B(a3, r3) ⊇ · · · of closed
disks, in the sense that

|f |x = lim
n→∞

|f |B(an,rn).

Two such nested sequences define the same point of A1
Berk if and only if

(a) each has a nonempty intersection, and their intersections are the same; or
(b) both have empty intersection, and the sequences are cofinal.

2 A field is called spherically complete if there are no decreasing sequences of closed disks hav-

ing empty intersection. For example, the field Cp is not spherically complete. In a complete field
which is not spherically complete, any decreasing sequence of closed disks with empty intersection

must have radii tending towards a strictly positive real number.



6 4. POTENTIAL THEORY ON BERKOVICH CURVES

Consequently, we can categorize the points of A1
Berk into four types according

to the nature of B =
⋂
B(an, rn):

Type I: B is a point of K.

Type II: B is a closed disk with radius belonging to |K∗|.
Type III: B is a closed disk with radius not belonging to |K∗|.
Type IV: B = ∅.

The set of points of Type III can be either infinite or empty, and similarly for
the Type IV points. The set of points of Type I is always infinite, as is the set of
points of Type II.

The description of points of A1
Berk in terms of closed disks is very useful, be-

cause it allows us to visualize quite concretely the abstract space of multiplicative
seminorms which we started out with.

As a set3, the Berkovich projective line P1
Berk is obtained from A1

Berk by adding
a type I point at infinity, denoted∞. The topology on P1

Berk is that of the one-point
compactification.

Remark 1.3.2. Both P1(K) and P1
Berk\P1(K) are dense in the Berkovich topol-

ogy on P1
Berk.

We will denote by ζa,r the point of A1
Berk of type II or III corresponding to the

closed or irrational disk B(a, r). Allowing degenerate disks (i.e., r = 0), we can
extend this notation to points of type I: we let ζa,0 (or simply a, depending on the
context) denote the point of A1

Berk corresponding to a ∈ K.
Following the terminology introduced by Chambert-Loir in [CL06], the distin-

guished point ζ0,1 in A1
Berk corresponding to the Gauss norm on K[T ] will be called

the Gauss point. We will usually write ζGauss instead of ζ0,1.

1.4. Visualizing P1
Berk.

1.4.1. A partial order on P1
Berk. The space A1

Berk is endowed with a natural
partial order, defined by saying that x ≤ y if and only if |f |x ≤ |f |y for all f ∈ K[T ].
In terms of (possibly degenerate) disks, if x, y ∈ A1

Berk are points of type I, II, or
III, we have x ≤ y if and only if the disk corresponding to x is contained in the
disk corresponding to y. (We leave it to the reader to extend this description of
the partial order to points of type IV.) For each pair of points x, y ∈ A1

Berk, there
is a unique least upper bound x ∨ y ∈ A1

Berk with respect to this partial order.
Concretely, if x = ζa,r and y = ζb,s are points of type I, II or III, then x ∨ y is
the point of A1

Berk corresponding to the smallest disk containing both B(a, r) and
B(b, s).

We can extend the partial order to P1
Berk by declaring that x ≤ ∞ for all

x ∈ A1
Berk. Writing

[x, x′] = {z ∈ P1
Berk : x ≤ z ≤ x′} ∪ {z ∈ P1

Berk : x′ ≤ z ≤ x} ,

3One should also define a sheaf of analytic functions on A1
Berk and P1

Berk and view them as

locally ringed spaces endowed with the extra structure of a (maximal) K-affinoid atlas, but we
will not emphasize the formalism of Berkovich’s theory of K-analytic spaces in these lectures; see

instead B. Conrad’s article [Con07].
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Figure 1. The Berkovich projective line (adapted from an illus-
tration of Joe Silverman)

it is easy to see that the unique path between x, y ∈ P1
Berk is just

`x,y := [x, x ∨ y] ∪ [x ∨ y, y] .

1.4.2. Navigating P1
Berk. You can visualize “navigating” the Berkovich projec-

tive line in the following way (c.f. Figure 1). Starting from the Gauss point ζ0,1,
there are infinitely many branches in which you can travel, one for each element
of the residue field K̃ plus a branch leading up towards infinity. Having chosen a
direction in which to move, at each point of type II along the chosen branch there
are infinitely many new branches to choose from, and each subsequent branch be-
haves in the same way. This dizzying collection of densely splitting branches forms
a configuration which Robert Rumely has christened a “witch’s broom”. However,
the witch’s broom has some structure:

• There is branching only at the points of type II, not those of type III.
• The branches emanating from a type II point ζa,r are in one-to-one cor-

respondence with elements of P1(K̃): there is one branch going “up” to
infinity, with the other branches corresponding to open disks B(a′, r)− of
radius r contained in B(a, r).

• Some of the branches extend all the way to the bottom (terminating in
points of type I), while others are “cauterized off” earlier and terminate at
points of type IV. In any case, every branch terminates either at a point
of type I or type IV.

1.4.3. Tangent spaces and directional derivatives. Let x ∈ P1
Berk. We define

the space Tx of tangent directions at x to be the set of equivalence classes of paths
`x,y emanating from x, where y is any point of P1

Berk not equal to x and two paths
`x,y1 , `x,y2 are equivalent if they share a common initial segment. There is a natural
bijection between elements ~v ∈ Tx and connected components of P1

Berk\{x}. We
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denote by U(x;~v) the connected component4 of P1
Berk\{x} corresponding to ~v ∈ Tx.

It is not hard to show that the open sets U(x;~v) for x ∈ P1
Berk and ~v ∈ Tx form

a sub-base for the topology on P1
Berk, so that finite intersections of such open sets

form a neighborhood base for this topology.5

For example, consider the Gauss point ζGauss. The different tangent directions
~v ∈ TζGauss correspond bijectively to elements of P1(K̃), the projective line over the
residue field of K. Equivalently, elements of TζGauss correspond to the open disks
of radius 1 contained in the closed unit disk B(0, 1), together with the open disk

B(∞, 1)− := P1(K)\B(0, 1).

The correspondence between elements of TζGauss and open disks is given explicitly
by ~v 7→ U(ζGauss;~v) ∩ P1(K).

More generally, for each point x = ζa,r of type II, the set Tx of tangent directions
at x is (non-canonically) isomorphic to P1(K̃): there is one tangent direction going
“up” to infinity, and the other tangent directions correspond to open disks B(a′, r)−

of radius r contained in B(a, r), which (after choosing a Möbius transformation
sending B(a, r) to B(0, 1)) correspond bijectively to elements of K̃.

For points x = ζa,r of type III, there are only two possible tangent directions:
one leading “up” towards infinity, and one going “down” towards a. Similarly, since
points of type I or IV are “endpoints” of P1

Berk, the set Tx of tangent directions at
a point x ∈ P1

Berk of type I or IV consists of just one element.

In particular, for x ∈ P1
Berk, we have:

|Tx| =

 |P
1(K̃)| x of type II

2 x of type III
1 x of type I or type IV.

Finally, we explain how to interpret the sets U(x;~v) as “open Berkovich disks”.
For a ∈ K and r > 0, write

B(a, r)− = {x ∈ A1
Berk : |T − a|x < r} ,

B(a, r) = {x ∈ A1
Berk : |T − a|x ≤ r} .

We call a set of the form B(a, r)− an open Berkovich disk in A1
Berk, and a set

of the form B(a, r) a closed Berkovich disk in A1
Berk.

Similarly, we can define open and closed Berkovich disks in P1
Berk: an open

(resp. closed) Berkovich disk in P1
Berk is either an open (resp. closed) Berkovich

disk in A1
Berk or the complement of a closed (resp. open) Berkovich disk in A1

Berk.
It follows from the definitions that the intersection of a Berkovich open (resp.

closed) disk in P1
Berk with P1(K) is an open (resp. closed) disk in P1(K).

We have the following result, whose proof is left as an exercise for the reader:

4It is not difficult to show that a subset of P1
Berk is connected if and only if it is path-

connected, and in particular that the path-connected components of P1
Berk coincide with the

connected components.
5This has been called the “observer’s topology” (see [CHL07]), since a fundamental system

of open neighborhoods at x is given by the set of points which can simultaneously be ‘seen’ by a
finite number of “observers” x1, . . . , xn looking in the direction of x.
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Lemma 1.4.1. Every open set U(x;~v) with x of type II or III and ~v ∈ Tx is a
Berkovich open disk in P1

Berk, and conversely.

Remark 1.4.2. A fundamental system of open neighborhoods for the topol-
ogy on P1

Berk is given by the finite intersections of Berkovich open disks in P1
Berk

(c.f. Lemma 2.2.3 below).

1.5. The Berkovich hyperbolic space HBerk and its canonical metric.
Following notation introduced by Juan Rivera-Letelier, we write HBerk for the sub-
set of P1

Berk consisting of all points of type II, III, or IV, and call HBerk “Berkovich
hyperbolic space”. We also write HQ

Berk for the set of type II points, and HR
Berk for

the set of points of type II or III.
The subset HQ

Berk is dense in P1
Berk (and therefore HR

Berk and HBerk are also
dense).

There is a canonical metric ρ on HBerk, which we refer to as the path metric,
that is of great importance for potential theory. To define this metric, we first
define the diameter function diam : A1

Berk → R≥0 by setting diam(x) = lim ri if x
corresponds to the nested sequence {B(ai, ri)}. This is well-defined independent of
the choice of nested sequence. If x ∈ HR

Berk, then diam(x) is just the diameter (=
radius) of the corresponding closed disk. In terms of multiplicative seminorms, we
have

diam(x) = inf
a∈K
|T − a|x .

Because K is complete, it is not hard to see that if x is of type IV, then
necessarily diam(x) > 0 (see footnote 2). Thus diam(x) = 0 for x ∈ A1

Berk of type
I, and diam(x) > 0 for x ∈ HBerk.

If x, y ∈ HBerk with x ≤ y, we define

ρ(x, y) = logv
diam(y)
diam(x)

,

where logv denotes the logarithm to the base qv, with qv > 1 a fixed real number
chosen so that z 7→ − logv |z| is a suitably normalized valuation on K. For example,
if K = Cp, endowed with the standard absolute value | |p for which |p|p = 1/p,
then we set qv = p in order to have

{logv |z|p : z ∈ C∗p} = Q .

More generally, for x, y ∈ HBerk arbitrary, we define
ρ(x, y) = ρ(x, x ∨ y) + ρ(y, x ∨ y)

= 2 logv diam(x ∨ y)− logv diam(x)− logv diam(y) .

It is not hard to verify that ρ defines a metric on HBerk. One can extend ρ to a
singular metric on P1

Berk by declaring that if x ∈ P1(K) and y ∈ P1
Berk, we have

ρ(x, y) = +∞ if x 6= y and 0 if x = y. However, we will usually only consider ρ as
being defined on HBerk.

Intuitively, ρ(x, y) is just the “length” of the unique path `x,y between x and
y, which for closed disks B(a, r) ⊆ B(a,R) is just logv R− logv r.

Remark 1.5.1. It is important to note that the topology on HBerk defined by
the metric ρ is not the subspace topology induced from the Berkovich topology on
P1

Berk. However, the inclusion map i : HBerk ↪→ P1
Berk is continuous with respect to

these topologies.
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The group PGL(2,K) of Möbius transformations acts continuously on P1
Berk in

a natural way compatible with the usual action on P1(K), and this action preserves
HBerk,H

Q
Berk, and HR

Berk. (The action of PGL(2,K) on P1
Berk can be described

quite concretely in terms of Berkovich’s classification theorem, using the fact that
each M ∈ PGL(2,K) takes closed disks to closed disks, but it can also be described
more intrinsically in terms of multiplicative seminorms; see §2.1 for further details.)

An important observation (see Chapter 2 of [BR08]) is that PGL(2,K) acts
via isometries on HBerk, i.e.,

ρ(M(x),M(y)) = ρ(x, y)

for all x, y ∈ HBerk and all M ∈ PGL(2,K). This shows that the metric ρ is
canonical and does not depend on a choice of coordinates for P1.

1.6. The canonical distance.
1.6.1. The canonical distance relative to infinity. The diameter function diam

introduced in §1.5 can be used to extend the usual distance function |x− y| on K
to A1

Berk in a natural way. We call this extension the canonical distance (relative
to infinity), and denote it by [x, y]∞.

Formally, for x, y ∈ A1
Berk we have

(1.6.1) [x, y]∞ = diam(x ∨ y) .

It is easy to see that if x, y ∈ K then [x, y]∞ = |x−y|. More generally (see Chapter
4 of [BR08]), one has the formula

[x, y]∞ = lim sup
(x0,y0)→(x,y)

|x0 − y0| ,

where (x0, y0) ∈ K × K and the lim sup is taken with respect to the product
topology on P1

Berk×P1
Berk. The canonical distance [x, y]∞ satisfies all of the axioms

for an ultrametric except for the fact that [x, x]∞ > 0 for x ∈ HBerk.

Remark 1.6.2. In [BR08], [x, y]∞ is written as δ(x, y)∞, and is called the
Hsia kernel.

1.6.2. The canonical distance relative to an arbitrary point. In this section, we
describe a function [x, y]z which extends the canonical distance (relative to a point
z) on P1(K), as introduced by Rumely in [Rum89], to the Berkovich projective
line. When z = ∞, it coincides with the canonical distance relative to infinity as
defined in the previous section.

Let x, y, z be points of P1
Berk, not all equal. Following the terminology intro-

duced by Favre and Rivera-Letelier in [FRL06, FRL04], we define the Gromov
product (x|y)z by

(x|y)z = ρ(w, z),

where w is the first point where the unique paths from x to z and y to z intersect.
By convention, we set (x|y)z = +∞ if x = y and x is a point of type I, and we set
(x|y)z = 0 if x = z or y = z.

Remark 1.6.3. If x, y, z ∈ HBerk, then one checks easily that

(x|y)z =
1
2

(ρ(x, z) + ρ(y, z)− ρ(x, y)).
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This is the usual definition of the Gromov product in Gromov’s theory of δ-
hyperbolic spaces, with HBerk being an example of a 0-hyperbolic space.

Remark 1.6.4. In [BR08], the function (x|y)z is written jz(x, y).

Next, define the fundamental potential kernel relative to z, written κz(x, y),
and the canonical distance relative to z, written [x, y]z, by setting

(1.6.5) κz(x, y) = − logv[x, y]z = (x|y)ζ − (x|z)ζ − (y|z)ζ ,

where ζ = ζGauss is the Gauss point of P1
Berk. One can define κz(x, y) as an

extended-real number for all x, y, z ∈ P1
Berk by setting κz(z, y) = κz(x, z) = −∞ if

z is a point of type I.

Remark 1.6.6. 1. In Chapter 4 of [BR08], the notation δ(x, y)z is used instead
of [x, y]z, and δ(x, y)z is referred to as the generalized Hsia kernel. For x, y, z ∈
P1(K), our definition of [x, y]z agrees with Rumely’s definition of the canonical
distance in [Rum89].

2. If ζ, ζ ′ are arbitrary points of HBerk, one can show that

(x|y)ζ − (x|z)ζ − (y|z)ζ = (x|y)ζ′ − (x|z)ζ′ − (y|z)ζ′ + Cζ,ζ′

for some constant Cζ,ζ′ independent of x, y, z. Thus a different choice of ζ in (1.6.5)
would only change the definition of κz(x, y) by an additive constant. Our choice
ζ = ζGauss is just a convenient normalization.

3. After defining the Laplacian operator ∆ on P1
Berk, we will see in Exam-

ple 4.5.4 below that for y, z fixed, the function f(x) = κz(x, y) satisfies the Laplace
equation ∆(f) = δy − δz, and up to an additive constant f is in fact the unique
such function.

Since the definition of [x, y]z takes some getting used to, we will attempt to
orient the reader with the following illustrative examples:

Example 1.6.7. If z =∞, it is straightforward (but not completely trivial) to
verify that the definitions of [x, y]∞ given in (1.6.5) and (1.6.1) coincide. Thus our
notation is consistent, and [x, y]∞ extends the distance function |x− y| on K ×K.

Example 1.6.8. If x, y are written in homogeneous coordinates as x = (x1 : x2)
and y = (y1 : y2), the spherical metric on P1(K) is given by

‖x, y‖ =
|x1y2 − x2y1|

max(|x1|, |x2|) ·max(|y1|, |y2|)
.

If z = ζGauss, then for x and y in P1
Berk, the function − logv[x, y]ζGauss coincides

with the Gromov product (x|y)ζGauss , and the restriction of [x, y]ζGauss to x, y ∈
P1(K) coincides with the spherical metric ‖x, y‖ on P1(K).

We will sometimes write ‖x, y‖ for the extended function [x, y]ζGauss on P1
Berk×

P1
Berk.

Remark 1.6.9. 1. Note that unlike [x, y]∞, which is singular at infinity, the
function ‖x, y‖ = [x, y]ζGauss is bounded and real-valued on all of P1

Berk × P1
Berk.

2. By (1.6.5), we have the identity

[x, y]z =
‖x, y‖

‖x, z‖ ‖y, z‖
.
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The following result (see Chapter 4 of [BR08]) describes some of the main
properties possessed by the canonical distance [x, y]z on P1

Berk. Recall that if X
is a topological space, a real-valued function f : X → [−∞,∞) is called upper
semicontinuous if for each x0 ∈ X,

lim sup
x→x0

f(x) ≤ f(x0) .

This is equivalent to requiring that f−1([−∞, b)) be open for each b ∈ R.

Proposition 1.6.10. 1. For each z ∈ P1
Berk, the canonical distance [x, y]z is

nonnegative, symmetric, and continuous in each variable separately. If z ∈ HBerk,
then [x, y]z is bounded. For z ∈ P1(K) it is unbounded, and extends the canonical
distance [x, y]z from [Rum89].

2. As a function of x and y, the canonical distance [x, y]z is upper semicontin-
uous. It is continuous off the diagonal, and is continuous at (x0, x0) for each point
x0 ∈ P1(K) of type I, but is discontinuous at (x0, x0) for each point x0 ∈ HBerk.

3. For each x, y ∈ P1
Berk,

[x, y]z = lim sup
(a,b)→(x,y)

a,b∈P1(K)

[a, b]z .

4. For all x, y, w ∈ P1
Berk, the ultrametric inequality

[x, y]z ≤ max([x,w]z, [y, w]z)

holds, with equality if [x,w]z 6= [y, w]z.
5. If f is a nonzero meromorphic function on P1 with divisor Div(f) =∑
mi(ai), then for any z ∈ P1

Berk, there is a constant C (depending on z and
f) such that

|f(x)| = C ·
∏

[x, ai]miz
for all x ∈ P1

Berk.

2. Further Examples of Berkovich Analytic Spaces

In this lecture, we will explore further properties and an alternative definition
of the Berkovich projective line, and then we discuss some more general Berkovich
spaces. For example, after defining the Berkovich analytic space M(A) associated
to an arbitrary normed ring A, we will describe in detail the topological structure of
M(Z). We will then give a brief overview of the topological structure of Berkovich
analytic curves. (A more detailed description will be given in §5.)

All rings throughout these notes will be commutative rings with an identity
element 1.

2.1. The Berkovich “Proj” construction. As a topological space, we have
defined the Berkovich projective line P1

Berk,K to be the one-point compactification
of the locally compact Hausdorff space A1

Berk,K . However, this description depends
on a choice of coordinates, and is often awkward to use. For example, it is not
immediately clear from this definition how a rational function ϕ ∈ K(T ) induces
a natural map from P1

Berk to itself. We therefore introduce the following alternate
construction of P1

Berk,K , analogous to the “Proj” construction in algebraic geome-
try.6

6The alternate construction presented here is adapted from Berkovich’s paper [Ber95].
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Let S denote the set of multiplicative seminorms [ ] on the two-variable poly-
nomial ring K[X,Y ] which extend the absolute value on K, and which are not
identically zero on the maximal ideal (X,Y ) of K[X,Y ]. It is easy to see that [ ]
is automatically non-archimedean, and that [ ] is identically zero on (X,Y ) if and
only if [X] = [Y ] = 0.

We put an equivalence relation on S by declaring that [ ]1 ∼ [ ]2 if and only
if there exists a constant C > 0 such that [G]1 = Cd[G]2 for all homogeneous
polynomials G ∈ K[X,Y ] of degree d.

As a set, define P1
Berk to be the equivalence classes of elements of S.

Define the point ∞ in P1
Berk to be the equivalence class of the seminorm [ ]∞

defined by [G]∞ = |G(1, 0)|. More generally, if P ∈ P1(K) has homogeneous
coordinates (a : b), the equivalence class of the evaluation seminorm [G]P = |G(a, b)|
is independent of the choice of homogeneous coordinates, and therefore [ ]P is a
well-defined point of P1

Berk. This furnishes an embedding of P1(K) into P1
Berk.

We say that a seminorm [ ] in S is normalized if max{[X], [Y ]} = 1. Ev-
ery equivalence class of elements of S contains at least one normalized seminorm.
From the definition of the equivalence relation on S, it is clear that all the normal-
ized seminorms in a given class take the same value on homogeneous polynomials.
Explicitly, if [ ]z is any representative of the equivalence class of z ∈ P1

Berk, then
any normalized seminorm [ ]∗z representing z satisfies

[G]∗z = [G]z/max{[X]z, [Y ]z}d

for all homogeneous polynomials G ∈ K[X,Y ] of degree d.
The topology on P1

Berk is defined to be the weakest one such that z 7→ [G]∗z is
continuous for all homogeneous polynomials G ∈ K[X,Y ]. One readily verifies:

Lemma 2.1.1. This definition of P1
Berk as a topological space agrees with the

previous one.

Let ϕ ∈ K(T ) be a rational function of degree d ≥ 1. To conclude this section,
we explain how to extend the usual action of ϕ on P1(K) to a continuous map
ϕ : P1

Berk → P1
Berk.

Choose a homogeneous lifting F = (F1, F2) of ϕ, where Fi ∈ K[X,Y ] are
homogeneous of degree d and have no common zeros in K. (Recall that the field
K is assumed to be algebraically closed.) The condition that F1 and F2 have no
common zeros is equivalent to requiring that the homogeneous resultant Res(F ) =
Res(F1, F2) is nonzero.

We define the action of ϕ on P1
Berk as follows: Let G ∈ K[X,Y ], and define

(2.1.2) [G]ϕ(z) := [G(F1(X,Y ), F2(X,Y ))]z.

It is readily verified that the right-hand side of (2.1.2) is independent of the lifting
F of ϕ, up to equivalence of seminorms. As it is clear that the right-hand side of
(2.1.2) gives a continuous multiplicative seminorm on K[X,Y ], to see that (2.1.2)
induces a map from P1

Berk to itself, it suffices to note that [X]ϕ(z) = [F1(X,Y )]z
and [Y ]ϕ(z) = [F2(X,Y )]z cannot both be zero; this can be proved using standard
properties of resultants (see Chapter 2 of [BR08] for details).

In particular, we see that the group PGL(2,K) acts naturally on P1
Berk via

automorphisms, as mentioned in §1.5.
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Remark 2.1.3. One can show that ϕ : P1
Berk → P1

Berk is an open surjective
mapping, and that every point z ∈ P1

Berk has at most d preimages under ϕ (see
Chapter 9 of [BR08], §3 of [RL03b], and Lemma 3.2.4 of [Ber90]).

Remark 2.1.4. Note that if z ∈ HBerk then ϕ(z) ∈ HBerk as well, because the
seminorm [G]ϕ(z) has trivial kernel (i.e., is a norm), whereas for each a ∈ P1(K),
the corresponding seminorm has nonzero kernel.

More generally, one can verify that ϕ takes type I points to type I points, type
II points to type II points, type III points to type III points, and type IV points to
type IV points.

2.2. P1
Berk as an inverse limit of R-trees. We now come to an important

description of P1
Berk as a profinite R-tree. We will need the following definitions.

Let X be a metric space, and let x, y ∈ X. A geodesic in X is the image of
a one-to-one isometry from a real interval [a, b] into X. An arc from x to y is a
continuous one-to-one map f : [a, b] → X with f(a) = x and f(b) = y. An R-tree
is a metric space T such that for each distinct pair of points x, y ∈ T , there is a
unique arc from x to y, and this arc is a geodesic.

A topological space homeomorphic to an R-tree (but which is not necessarily
endowed with a distinguished metric) will be called a topological tree. A branch
point of a topological tree is a point x ∈ T for which T\{x} has either fewer than or
more than two connected components. A finite R-tree (resp. topological tree) is an
R-tree (resp. topological tree) with only finitely many branch points. Intuitively, a
finite R-tree is just a finite tree in the usual graph-theoretic sense, but where the
edges are thought of as line segments having specific lengths. Finally, a profinite
R-tree is an inverse limit of finite R-trees.

Here’s how these definitions play out in the case of P1
Berk. If S ⊂ P1

Berk, define
the convex hull of S to be the smallest path-connected subset of P1

Berk containing
S. (This is the same as the union of all paths between points of S.) By a finite
subgraph of P1

Berk, we will mean the convex hull of a finite subset S ⊂ HR
Berk. Every

finite subgraph Γ can be thought of as a finite R-tree, with the metric induced by
the path-distance ρ on HBerk. By construction, a finite subgraph of P1

Berk is both
finitely branched and of finite total length with respect to ρ.7 We define the locally
metric topology on HBerk to be the topology generated by the open subsets of Γ
(endowed with its metric topology) as Γ varies over all finite subgraphs of HBerk.

The collection of all finite subgraphs of P1
Berk is a directed set under inclusion.

Moreover, if Γ ≤ Γ′, then by a basic property of R-trees, there is a continuous re-
traction map rΓ′,Γ : Γ′ � Γ. The following result can be thought of as a topological
reformulation of Berkovich’s classification theorem:

Theorem 2.2.1. P1
Berk is homeomorphic to the inverse limit lim←−Γ over all finite

subgraphs Γ ⊂ P1
Berk.

This description of P1
Berk as a profinite R-tree provides a convenient way to

visualize the topology on P1
Berk: two points are “close” if they retract to the same

point of a “large” finite subgraph.

7We have chosen to require in addition that ∂Γ ⊂ HR
Berk, but this could be relaxed by allowing

a finite subgraph to have boundary points of type IV without creating any major differences in the

resulting theory. We could equally well impose the more stringent requirement that ∂Γ ⊂ HQ
Berk,

and again, the resulting theory would be basically the same.
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We also have the following fact:

Lemma 2.2.2. The direct limit of all finite subgraphs Γ of P1
Berk with respect

to inclusion is homeomorphic to the space HR
Berk endowed with the locally metric

topology.

Let rΓ be the natural map from P1
Berk to Γ coming from the universal property

of the inverse limit. A fundamental system of open neighborhoods for the topology
on P1

Berk is given by the connected open affinoids, or simple domains, which are
subsets of the form r−1

Γ (V ) for Γ a finite subgraph of P1
Berk and V a connected open

subset of Γ (see Figure 4 below).

Lemma 2.2.3. For a subset U ⊆ P1
Berk, the following are equivalent:

1. U is a simple domain.
2. U is a finite intersection of Berkovich open disks.
3. U is a connected open set whose boundary is a finite subset of HR

Berk.

2.3. The Berkovich spectrum of a normed ring. In this section, we ex-
plain a general construction which associates a Berkovich analytic space to an
arbitrary normed ring.

2.3.1. Seminorms and norms. A seminorm on a ring A is a function | | : A→
R≥0 with values in the set of nonnegative reals such that for every f, g ∈ A, we
have

(S1) |0| = 0, |1| = 1.
(S2) |f + g| ≤ |f |+ |g|.
(S3) |f · g| ≤ |f | · |g|.
A seminorm | | defines a topology on A in the usual way, and this topology is

Hausdorff if and only if | | is a norm, meaning that |f | = 0 if and only if f = 0.

A normed ring is a pair (A, ‖ ‖) consisting of a ring A and a norm ‖ ‖. It is
called a Banach ring if A is complete with respect to this norm. Any ring may be
regarded as a Banach ring with respect to the trivial norm, for which ‖0‖ = 0 and
‖f‖ = 1 for f 6= 0.

A seminorm | | on a ring A is called multiplicative if for all f, g ∈ A, we have

(S3)′ |f · g| = |f | · |g|,
and it is called non-archimedean if

(S2)′ |f + g| ≤ max{|f |, |g|}.
A multiplicative norm on a ring A is also called an absolute value on A.

A seminorm | | on a normed ring (A, ‖ ‖) is called bounded if

(S4) there exists a constant C > 0 such that |f | ≤ C‖f‖ for all f ∈ A.

Lemma 2.3.1. If | | is a multiplicative seminorm, then condition (S4) is equiv-
alent to:

(S4)′ |f | ≤ ‖f‖ for all f ∈ A.

Proof. Since |fn| ≤ C‖fn‖ ≤ C‖f‖n, we have |f | ≤ n
√
C‖f‖ for all n ≥ 1.

Passing to the limit as n tends to infinity yields the desired result. �
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2.3.2. The Berkovich spectrum of a normed ring. Let (A, ‖ ‖) be a normed
ring. We define a topological space M(A), called the Berkovich spectrum of A, as
follows. As a set, M(A) consists of all bounded multiplicative seminorms on A. The
topology on M(A) (which we will call the Berkovich topology8) is defined to be the
weakest one for which all functions of the form | | 7→ |f | for f ∈ A are continuous.

It is useful from a notational standpoint to denote points of X = M(A) by a
letter such as x, and the corresponding bounded multiplicative seminorm by | |x.
With this notation, a sub-base of open neighborhoods for the topology on X is
given by the collection

U(f, α, β) = {x ∈ X : α < |f |x < β}

for all f ∈ A and all α < β in R.
Equivalently, one may define the topology on M(A) as the topology of pointwise

convergence: a net9 〈xα〉 in M(A) converges to x ∈ M(A) if and only if |f |xα
converges to |f |x in R for all f ∈ A.

Theorem 2.3.2. If A is a nonzero Banach ring, then the spectrum M(A) is a
non-empty compact Hausdorff space.

Proof. This is proved in Theorem 1.2.1 of [Ber90]. The fact that M(A) is
Hausdorff is an easy exercise. The proof that M(A) is always non-empty is rather
subtle, though. (In many cases of interest, however, such as when the norm on A

is multiplicative, the fact that M(A) is non-empty is obvious.)
Here is a quick proof, different from the one in [Ber90], of the compactness of

M(A). It suffices by general topology to prove that every net in X = M(A) has
a convergent subnet. Let T be the space

∏
f∈A[0, ‖f‖] endowed with the product

topology. By Tychonoff’s theorem, T is compact. By Lemma 2.3.1, there is a
natural map ι : X → T sending x ∈ X to (|f |x)f∈A, and ι is clearly injective and
continuous.

Let 〈xα〉 be a net in X. Since T is compact, 〈ι(xα)〉 has a subnet 〈ι(yβ)〉
converging to an element (αf )f∈A ∈ T . Define a function | · |y : A → R≥0 by
|f |y = αf . It is easily verified that | · |y is a bounded multiplicative seminorm on
A, and thus defines a point y ∈ X. By construction, we have ι(y) = limβ ι(yβ).
This implies that limβ |f |yβ = |f |y for all f ∈ A, i.e., yβ → y. Thus 〈xα〉 has a
convergent subnet as desired. �

2.4. The analytification of an algebraic variety. As discussed in [Ber90,
§3.4.1] and [Ber93, §2.6] (see also [Duc06, §1.4] and [Con07]), one can associate
in a functorial way to every algebraic variety X/K a locally ringed topological
space XBerk called the Berkovich K-analytic space associated to X. A Berkovich
K-analytic space is also endowed with an additional structure, called a K-affinoid
atlas, which is crucial for gluing constructions, and for defining the general concept
of a morphism in the category of K-analytic spaces.

8This topology is also referred to as the Gelfand topology.
9Recall that a net in a topological space X is a mapping from a directed set I to X, with

a sequence being the special case where I = N. For non-metrizable topological spaces, nets are
much better than sequences for describing the interplay between concepts like convergence and

continuity. The space A1
Berk,K (or equivalently P1

Berk,K) is metrizable if and only if the residue

field K̃ of K is countable.
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We will refer to the functor from algebraic varieties over K to Berkovich K-
analytic spaces as the Berkovich analytification functor. When X = Spec(A) is
affine, the underlying topological space of XBerk is the set of multiplicative semi-
norms on A which extend the given absolute value on K, equipped with the weakest
topology for which all functions of the form | | 7→ |f | for f ∈ A are continuous.
When X = A1 (resp. P1), we recover the definition of A1

Berk (resp. P1
Berk) given

above. The space XBerk is locally compact and Hausdorff, and if X is proper then
XBerk is compact. Moreover, if X is connected in the Zariski topology then XBerk

is path-connected. Finally, there is a canonical embedding of X(K) (endowed with
its totally disconnected analytic topology) as a dense subspace of XBerk.

As a concrete example, let X be a smooth, proper, and geometrically integral
algebraic curve over K. We briefly describe the topological structure of XBerk;
further details will be given in §5.1.

A finite topological graph is just a finite connected graph whose edges are
thought of as line segments; this is essentially the same thing as a connected one-
dimensional CW-complex with finitely many cells. If the genus of X is at least
one, there is a canonically defined subset Σ ⊂ XBerk, called the skeleton of XBerk,
which is homeomorphic to a finite topological graph. Moreover, the entire space
XBerk admits a deformation retraction r onto Σ. (In the case X = P1, there is no
canonical skeleton, but after choosing coordinates, we can if we like think of the
skeleton of P1

Berk as the Gauss point ζGauss.) A useful fact which will be discussed
in §5 is that the skeleton of XBerk can be equipped with a canonical metric.

For each x ∈ Σ, the fiber r−1(x) is homeomorphic to a compact, connected
subset of P1

Berk, and in particular is a topological tree. Using this, one can define a
notion of a “finite subgraph” of XBerk in such a way that XBerk is homeomorphic
to the inverse limit of its finite subgraphs (see §5.1 below).

More generally, Berkovich proves in [Ber99] and [Ber04] that every smooth
K-analytic space (for example, the analytification of a smooth projective variety
over K) is locally contractible. This is a very difficult result which relies, among
other things, on de Jong’s theory of alterations, and we will not discuss the higher-
dimensional case any further in these notes. See [Duc06, §2] for a nice overview of
this and many other aspects of Berkovich’s theory.

2.5. The Berkovich space M(Z). We now consider a simple but interesting
example of the construction from (2.3.2): the Berkovich analytic space M(Z) as-
sociated to the normed ring (Z, | |∞), where | |∞ denotes the usual archimedean
absolute value on Z.

A famous result of Ostrowski asserts that every non-trivial absolute value on
Q is equivalent to either | |∞, or to the standard p-adic absolute value | |p for some
prime number p. (We normalize | |p in the usual way so that |p|p = 1

p .)
Thus, if we let MQ denote the set of places (equivalence classes of non-trivial

absolute values) of Q, then there is a bijection

MQ ↔ {prime numbers p} ∪ {∞}.
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With this notation, the product formula states that if α ∈ Q∗ is a non-zero
rational number, then ∏

v∈MQ

|α|v = 1.

Following Berkovich10, one can classify all multiplicative seminorms on Z as
follows:

(Z1) The p-trivial seminorms | |p,∞ defined by

|n|p,∞ =
{

0 p | n
1 p - n.

(Z2) The trivial seminorm | |0 defined by

|n|0 =
{

0 n = 0
1 n 6= 0.

(Z3) The p-adic absolute values | |p,ε for 0 < ε <∞ defined by

|n|p,ε = |n|εp.

(Z4) The archimedean absolute values | |∞,ε for 0 < ε ≤ 1 defined by

|n|∞,ε = |n|ε∞.

All of the seminorms in (Z1)-(Z4) are clearly bounded. Moreover:

Lemma 2.5.1. For all n ∈ Z, we have:
(1) limε→0 |n|∞,ε = |n|0.
(2) limε→∞ |n|p,ε = |n|p,∞.
(3) limε→0 |n|p,ε = |n|0.

We will therefore write | |∞,0 or | |p,0 instead of | |0 when convenient.

This leads to the following visual representation of the Berkovich analytic space
M(Z) associated to Z:

. . . . . . . .

length + ∞

length 1

length 1

length ε

length ε

| ⋅ |2, ∞

| ⋅ |2

| ⋅ |3, ∞

| ⋅ |3

| ⋅ |p, ∞

| ⋅ |∞

| ⋅ |0

| ⋅ |p

| ⋅ |p
ε

| ⋅ |∞
ε (0<ε<1)

(0<ε<1)

M(Z):

1

Figure 2. The space M(Z).

10See [Ber90, Example 1.4.1], although our notation is slightly different
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Note that the different “tangent directions” emanating from the trivial semi-
norm | |0 are in one-to-one correspondence with the places of Q. We will return to
this observation later when we discuss harmonic functions and Laplacians.

Recall that the Berkovich topology on M(Z) is defined to be the weakest one
for which the function x 7→ |n|x is continuous for all n ∈ Z. This can be described
concretely as follows: each of the subsets

`∞ = {| |0} ∪ {| |∞,ε}0<ε≤1 = {| |∞,ε}0≤ε≤1

and
`p = {| |p,∞} ∪ {| |p,ε}0<ε<∞ ∪ {| |0} = {| |p,ε}0≤ε≤∞

is homeomorphic to a real interval, and the open neighborhoods of the trivial semi-
norm | |0 are the subsets U of M(Z) containing | |0 for which:

(1) U ∩ `v is open in `v for all v ∈MQ.
(2) U ∩ `v = `v for all but finitely many v ∈MQ.

It is a simple exercise to verify directly using this description of the topology
that M(Z) is path-connected, compact, and Hausdorff.

If we identify the segment `∞ with the real interval [0, 1] via the association

| |∞,ε 7→ ε

and the segment `p with the extended-real interval [0,∞] via

| |p,ε 7→ ε,

then the complement HZ in M(Z) of all points of type (Z1) becomes a metric space.
We let ρ denote the corresponding metric.

Remark 2.5.2. 1. The points of M(Z) having distance 1 from the trivial
seminorm | |0 are precisely the points corresponding to the standard absolute values
| |p = | |p,1 and | |∞ = | |∞,1.

2. If we extend ρ to a degenerate metric on all of M(Z), then a point x of type
(Z1) is infinitely far away from every point y ∈M(Z) distinct from x.

Remark 2.5.3. Like P1
Berk, the space M(Z) can be viewed as an inverse limit

of finite graphs. Indeed, define a finite subgraph of M(Z) to be the “convex hull” (in
the obvious sense) of finitely many points of HZ, endowed with the usual Euclidean
topology on a finite union of real segments. The collection S of all such finite
subgraphs Γ ⊆M(Z) forms an inverse system with respect to the natural retraction
maps rΓ′,Γ : Γ′ → Γ (defined whenever Γ ⊆ Γ′), and one can show that M(Z) is
homeomorphic to the inverse limit lim←−Γ∈S

Γ.
Equipping each finite subgraph Γ ∈ S with the metric induced by ρ, the space

M(Z) = lim←−Γ∈S
becomes a profinite R-tree, with HZ ∼= lim−→Γ∈S

Γ in the locally
metric topology.

3. Harmonic functions

In this lecture, we explore the notion of a harmonic function in the context of
the spaces M(Z) and P1

Berk. We will also discuss the related notion of a subharmonic
function on P1

Berk.

By a measure on a space X, we will always mean a signed Borel measure on
X.
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3.1. Harmonic functions on M(Z). It is possible to give a natural definition
of a “harmonic function” on M(Z), using the metric ρ introduced in §2.5.

We introduce the following convenient notation for points of M(Z):
ζp,∞: the point of M(Z) corresponding to | |p,∞.
ζ0: the point of M(Z) corresponding to | |0.
ζp,ε: the point of M(Z) corresponding to | |p,ε.
ζ∞,ε: the point of M(Z) corresponding to | |∞,ε.
ζv: the point ζp,1 if v ∈MQ is a non-archimedean place corresponding to the

prime p, or the point ζ∞ = ζ∞,1 if v ∈MQ is the archimedean place.

As in §1.4.3, for x in M(Z), we define the set Tx of tangent directions at x to be
the connected components of M(Z)\{x}. When x = ζ0 is the point corresponding
to the trivial seminorm | |0 on Z, there is a canonical bijection between Tx and the
set MQ of places of Q; at all other points of M(Z), the space Tx has cardinality 1
or 2. For v ∈ MQ, we will refer to the segments `v defined above as the “branches
emanating from ζ0”.

Recall also from §2.5 that HZ denotes the complement of the points of type
(Z1); the points of HZ are precisely the ones at finite distance from the trivial point
ζ0 with respect to the metric ρ.

Let U be a connected open subset of M(Z) (with respect to the Berkovich
topology), and let f : U → R∪{±∞} be a continuous extended-real valued function
which is finite-valued on U∩HZ. For expositional simplicity, we assume that ζ0 ∈ U
(which is the main case of interest, since the connected components of M(Z)\{ζ0}
are homeomorphic to segments in R, and one already knows how to define the
Laplacian on R; in our terminology it is just −f ′′(x)dx).

We say that f is continuous piecewise affine on U , and write f ∈ CPA(U), if
f is (i) continuous, (ii) piecewise-affine along each branch of M(Z) emanating from
ζ0, and (iii) constant on all but finitely many branches emanating from ζ0. These
conditions guarantee that if f ∈ CPA(U) and x ∈ U ∩ HZ, then the directional
derivative d~vf(x) is well-defined for all ~v ∈ Tx, and d~vf(x) = 0 for all but finitely
many ~v ∈ Tx. Thus for all x ∈ U ∩HZ the quantity

∆x(f) := −
∑
v∈Tx

d~vf(x)

is well-defined.
Let x ∈ U , and let h ∈ CPA(U).

Definition 3.1.1. 1. If x ∈ HZ, we say that h is harmonic at x if ∆x(h) = 0.
2. If x is of type (Z1), we say that h is harmonic at x if h is constant on an

open neighborhood of x.

Example 3.1.2. Let n ∈ Z be a nonzero integer, let S0 = {ζp,∞ : p | n}, and
let S = S0 ∪ {ζ∞}.

Define

Fn(x) =
{

+∞ x ∈ S0

− log |n|x x ∈M(Z)\S0.

Claim: Fn(x) is continuous piecewise affine and is harmonic outside S.

To see this, first note that if Λ denotes the smallest connected subset of M(Z)
containing all the points of S, then Λ is finitely branched and there is a natural



3. HARMONIC FUNCTIONS 21

retraction map rΛ : M(Z) � Λ. Along the branch Λv of M(Z) emanating from
ζ0 in the tangent direction corresponding to v ∈ MQ, the function Fn(x) is linear
with slope equal to − log |n|v. In particular, Fn(x) is locally constant off Λ: for all
x ∈M(Z), we have Fn(x) = Fn(rΛ(x)). It follows from this that Fn(x) is harmonic
at all points x 6∈ S∪{ζ0}. Finally, the fact that Fn(x) is harmonic at ζ0 is equivalent
to the product formula for Q:

∆ζ0(Fn) = −
∑
~v∈Tζ0

d~vFn(ζ0) =
∑
v∈MQ

log |n|v = 0.

If we think of n 6= ±1 as an analytic function on M(Z), of S0 as the set of “zeros”
of n, and of ζ∞ as the unique “pole” 11 of n, then this example can be rephrased,
by analogy with the classical situation over C, as saying that the function − log |n|
on M(Z) is harmonic outside the zeros and poles of n.

3.2. Harmonic functions on P1
Berk. In this section, we define what it means

for a real-valued function on P1
Berk to be harmonic. This is somewhat more compli-

cated than the corresponding notion for M(Z) discussed in §3.1, since the branching
behavior of P1

Berk is much more complicated than that of M(Z).

We recall from §1.4.3 that if x ∈ P1
Berk, there is a well-defined set Tx of tangent

directions at x, and the tangent directions at x are in one-to-one correspondence
with the connected components of P1

Berk\{x}.

Let U be a connected open subset of P1
Berk, and let f : U → R ∪ {±∞}

be a continuous extended-real valued function which is finite-valued on HBerk =
P1

Berk\P1(K).
We say that f is continuous piecewise affine on U , and write f ∈ CPA(U) if:

(CPA1) The restriction of f to HBerk is piecewise-affine with respect to the path
metric ρ; concretely, this means that for each x ∈ HBerk and each suffi-
ciently small path Λ = `x,y emanating from x, the restriction of f to Λ is
affine.

(CPA2) If f ∈ CPA(U) and x ∈ U ∩HBerk, then for each ~v ∈ Tx the directional
derivative d~vf(x) is well-defined. Concretely, this means that for each
~v ∈ Tx, there exists a constant m~v = d~vf(x) such that for every y ∈ HBerk

representing the tangent direction ~v, there exists a point y′ ∈ (x, y] such
that for every z ∈ (x, y′] we have

f(z) = f(x) +m~vρ(x, z).

(CPA3) For each x ∈ U ∩ HBerk, we have d~vf(x) = 0 for all but finitely many
~v ∈ Tx. In particular, the quantity

(3.2.1) ∆x(f) := −
∑
v∈Tx

d~vf(x)

is well-defined for each x ∈ U ∩HBerk.

Definition 3.2.2. Let x ∈ U , and let h ∈ CPA(U).

11Somewhat peculiarly, it seems that the point ζ∞ should be thought of as a pole of n,
despite the fact that − log |n|∞ is finite-valued, because the function x 7→ − log |n|x is not locally

constant near ζ∞; see Example 4.5.8 below for another explanation.
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1. If x ∈ HBerk, we say that h is harmonic at x if ∆x(h) = 0. In other words,
a function h ∈ CPA(U) is harmonic at a point x ∈ HBerk if the sum of the slopes
of h in all tangent directions emanating from x is zero.

2. If x ∈ P1(K), we say that h is harmonic at x if h is constant on an open
neighborhood of x.

Example 3.2.3. Consider the function G : P1
Berk → R ∪ {+∞} defined by

G(x) =
{

+∞ x =∞
logv max(|T |x, 1) x ∈ A1

Berk

whose restriction to K is the function log+
v |x| = logv max(|x|, 1). Let Λ = `ζGauss,∞

be the closed path from ζGauss to∞ in P1
Berk, and let rΛ : P1

Berk � Λ be the natural
retraction map from P1

Berk onto Λ. Recall that if x = ζa,r ∈ HR
Berk, then

|T |x = sup
z∈B(a,r)

|z|.

From this, one deduces easily:
• G(x) is linear with slope 1 along Λ, i.e., G(x) = ρ(ζGauss, x).
• G(x) is locally constant off Λ, i.e., for all x ∈ P1

Berk, we have G(x) =
G(rΛ(x)).

It follows that G ∈ CPA(P1
Berk) and that G is harmonic on P1

Berk\{ζGauss,∞},
but is not harmonic at ζGauss or ∞. For example, the sum of the slopes of G in all
directions emanating from ζGauss is 1: in the direction heading up to infinity the
slope is 1, and in all other directions the slope is 0.

As an immediate consequence of the definition of harmonic functions, we have:

Lemma 3.2.4. If h1, h2 are harmonic on U and c1, c2 ∈ R, then c1h1 + c2h2 is
harmonic on U .

As an application of Lemma 3.2.4, we discuss the following example.

Example 3.2.5. Let f(T ) =
∏n
i=1(x−ai) ∈ K[T ] be a nonconstant polynomial,

and let

F (x) =

 −∞ x =∞
+∞ x ∈ {a1, . . . , an}
− logv |f |x x ∈ P1

Berk\{∞, a1, . . . , an}
be the unique continuous function on P1

Berk extending the function − logv |f(x)| on
K.

Claim: F (x) is harmonic outside {∞, a1, . . . , an}.
Indeed, as far as type I points go, it follows from the ultrametric inequality

that if x ∈ K\{a1, . . . , an}, then |f(x)| is constant on every disk around a not
containing a1, . . . , an. Since F is continuous and K is dense in A1

Berk, it follows
that F is constant on a Berkovich open disk B(a, r)− containing a.

It remains to see why F is harmonic on HBerk. First, we consider the special
case in which f(T ) = T − a. In this case, if Λa = `a,∞ denotes the unique path in
P1

Berk from a to ∞ and Fa = − logv |T − a|x, then we have:
• Fa(x) is linear with slope −1 along (a,∞).
• Fa(x) is locally constant off Λa, i.e., for all x ∈ P1

Berk, we have Fa(x) =
Fa(rΛa(x)).
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It follows in this special case that Fa ∈ CPA(P1
Berk), and that Fa is harmonic

on P1
Berk\{∞, a}.
In the general case, we have F (x) =

∑n
i=1 Fa(x), and it follows from Lemma 3.2.4

that F is harmonic outside {∞, a1, . . . , an}, as claimed.

3.3. Properties of harmonic functions on P1
Berk. By a domain in P1

Berk, we
will mean a connected open subset of P1

Berk. In this section, we present a selection
of results from Chapter 7 of [BR08] concerning harmonic functions on domains in
P1

Berk

3.3.1. The maximum principle. The following result is the Berkovich space ana-
logue of the classical maximum principle for harmonic functions on domains in C:

Proposition 3.3.1 (Maximum Principle). 1. If h is a nonconstant harmonic
function on a domain U ⊂ P1

Berk, then h does not achieve a maximum or a minimum
value on U .

2. If h is a harmonic function on a domain U ⊂ P1
Berk which extends continu-

ously to the closure Ū of U , then h achieves both its minimum and maximum values
on the boundary ∂U of U .

Recall from Lemma 2.2.3 that a simple domain in P1
Berk is a connected open

set U ⊆ P1
Berk whose boundary is a finite subset of HR

Berk. One can show (see §3.3.2
below) that every harmonic function on a simple domain U extends continuously
to Ū . If U = P1

Berk (resp. U is a Berkovich open disk), then ∂U is empty (resp.
consists of a single point). By the second part of the Maximum Principle, we
therefore conclude:

Corollary 3.3.2. If U = P1
Berk or U is an open Berkovich disk, then every

harmonic function on U is constant.

The conclusion of Corollary 3.3.2 can be better understood through the obser-
vation that the behavior of a harmonic function on a domain U in P1

Berk is controlled
by its behavior on a certain special subset.

Definition 3.3.3. If U is a domain in P1
Berk, the main dendrite D(U) ⊂ U is

the set of all x ∈ U belonging to paths between boundary points y, z ∈ ∂U .

The main dendrite of a domain U is empty if and only if U has at most one
boundary point, which happens precisely in the following three cases:

• U = P1
Berk.

• U ∼= P1
Berk\{a} for some point a of type I or IV.

• U is an open Berkovich disk.

Example 3.3.4. If U = B(a,R)−\B(a, r) is a Berkovich open annulus (see
Figure 3), then D(U) is the open segment joining the two boundary points ζa,r and
ζa,R of U .

Example 3.3.5. If K = Cp and U = P1
Berk\P1(Qp), then the main dendrite

D(U) is a locally finite real tree in which the set of branch points is discrete, and
every branch point has degree p+ 1. In fact, D(U) can be identified with the (geo-
metric realization of the) Bruhat-Tits tree associated to PGL(Qp) (see [FvdP04,
Definition 4.9.3] or [DT07]).
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Figure 3. A Berkovich open annulus.

When D(U) is non-empty, it is not hard to see that there is a natural retraction
map rU,D(U) : U � D(U). The following result is proved in Chapter 7 of [BR08]:

Proposition 3.3.6. Let U be a domain in P1
Berk.

1. If the main dendrite D(U) of a domain U is nonempty, then it is finitely
branched at each point of HR

Berk.
2. Let h be harmonic in a domain U . If the main dendrite is empty, then

h is constant; otherwise, h is constant on branches off the main dendrite, i.e.,
h = h ◦ rU,D(U).

3.3.2. The Poisson Formula. In the classical theory of harmonic functions in
the complex plane, if f is harmonic on an open disk V then it has a continuous
extension to the closure of V , and the Poisson Formula expresses the values of f
on V in terms of its values on the boundary of V .

Specifically, if V ⊆ C is an open disk of radius r centered at z0, and if f is
harmonic in V , then f extends continuously to V̄ and f(z0) =

∫
∂V

f dµV , where
µV is the uniform probability measure dθ/2π on the boundary circle ∂V . More
generally, for any z ∈ V there is a measure µz,V depending only on z and V , called
the Jensen-Poisson measure, for which

f(z) =
∫
∂V

f dµz,V

for every harmonic function f on V̄ . We seek to generalize this type of formula to
the Berkovich projective line.

In P1
Berk, the basic open neighborhoods are the simple domains. A simple

domain has only a finite number of boundary points (c.f. Lemma 2.2.3), and its
main dendrite is the interior of a finite subgraph Γ of P1

Berk. As we will see, every
harmonic function f on a simple domain V has a continuous extension to its closure,
and there is an analogue of the Jensen-Poisson measure which yields an explicit
formula for f in terms of its values on the boundary. In other words, one can
explicitly solve the Berkovich space analogue of the Dirichlet problem on any simple
domain (using, as we will see, only simple linear algebra).

Recall from §1.6.2 that κz(x, y) = − logv[x, y]z denotes the fundamental poten-
tial kernel on P1

Berk relative to the point z.

Let V be a simple domain in P1
Berk with boundary points x1, . . . , xm ∈ HR

Berk.
For z ∈ V , let C(z) be the m × m matrix whose ijth entry is κz(xi, xj). Define
a probability vector on Rm to be a vector [p1, . . . , pm]T ∈ Rm such that pi ≥ 0 for
1 ≤ i ≤ m and p1 + · · ·+ pm = 1.
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Proposition 3.3.7. For each z ∈ V , there is a unique probability vector
~p(z) = [p1(z), p2(z), . . . , pm(z)]T ∈ Rm such that C(z) · ~p(z) is a scalar multiple
of [1, 1, . . . , 1]T .

For each 1 ≤ i ≤ m, define the function hi : V → R, called the ith harmonic
measure with respect to V , by setting hi(z) = pi(z). By construction, we have
0 ≤ hi(z) ≤ 1 for all z ∈ V and h1 + · · ·+ hm ≡ 1 on V .

Explicitly, let

M(z) =


0 1 · · · 1
1 κz(x1, x1) · · · κz(x1, xm)
...

...
. . .

...
1 κz(xm, x1) · · · κz(xm, xm)


and for each i = 0, 1, . . . ,m, let Mi(z) be the matrix obtained by replacing the ith

column of M(z) by [1, 0, . . . , 0]T . If C(z) · ~p(z) = [−ν, . . . ,−ν]T , then

M(z)


ν
p1(z)
...
pm(z)

 =


1
0
...
0


and so by Cramer’s rule, we have

hi(z) = det(Mi(z))/ det(M(z)) .

Lemma 3.3.8. For each 1 ≤ i ≤ m, the function hi(z) is harmonic in V and
extends continuously to V̄ by setting hi(xj) = δij.

Proposition 3.3.9 (Poisson Formula). Let V be a simple domain in P1
Berk with

boundary points x1, . . . , xm. Then each harmonic function f on V has a continuous
extension to V̄ , and there is a unique such function with a prescribed set of boundary
values A1, . . . , Am. Moreover, f can be computed from its boundary values using
the formula

f(z) =
m∑
i=1

f(xi) · hi(z),

valid for all z ∈ V̄ , where hi(z) is the ith harmonic measure with respect to V .

A useful reformulation of Proposition 3.3.9 is as follows (compare with [Kan89,
§4.2]). For z ∈ V̄ , define the Jensen-Poisson measure µz,V on V̄ relative to the
point z by

µz,V =
m∑
i=1

hi(z)δxi .

Then by Proposition 3.3.9, we have:

Corollary 3.3.10. If V is a simple domain in P1
Berk, then a continuous func-

tion f : V̄ → R ∪ {±∞} is harmonic in V if and only if

f(z) =
∫
∂V

f dµz,V

for all z ∈ V .
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Since the closures of simple domains form a fundamental system of compact
neighborhoods for the topology on P1

Berk, it follows that a function f is harmonic
on an open set U if and only if its restriction to every simple subdomain V ⊆ U is
harmonic, where a simple subdomain of U denotes a simple domain whose closure
is contained in U . With this terminology, we have:

Corollary 3.3.11. If U is a domain in P1
Berk and f : U → R ∪ {±∞} is

a continuous function, then f is harmonic in U if and only if for every simple
subdomain V of U we have

f(z) =
∫
∂V

f dµz,V

for all z ∈ V .

Corollary 3.3.11 is the Berkovich space analogue of the mean value characteri-
zation for harmonic functions on a domain U ⊆ C. Note that over C, it suffices to
consider small disks V ⊆ U centered at z, while in the Berkovich case disks are not
sufficient.

Arizona Winter School Project #1: Let B = B1 ∪ · · · ∪ Bm be a finite
disjoint union of closed disks in Cp having radii in |C∗p| = pQ. Prove that there is a
polynomial f ∈ Cp[T ] such that B = {z ∈ Cp : |f(z)| ≤ 1}, and find an explicit
formula for f(z) in terms of the Jensen-Poisson measure associated to the simple
domain V = P1

Berk\(B1 ∪ · · · ∪Bm), where Bi is the closed Berkovich disk in P1
Berk

associated to Bi.

3.3.3. Uniform Convergence. The Poisson formula implies that the limit of a
sequence of harmonic functions is harmonic, under a much weaker condition than
is required classically (see Chapter 7 of [BR08]):

Proposition 3.3.12. Let U be an open subset of P1
Berk. Suppose f1, f2, . . . are

harmonic in U and converge pointwise to a function f : U → R. Then f(z) is
harmonic in U , and the fi(z) converge uniformly to f(z) on compact subsets of U .

Using the previous result, one can characterize harmonic functions as local uni-
form limits of logarithms of norms of rational functions (see Chapter 7 of [BR08]):

Proposition 3.3.13. If U ⊂ P1
Berk is a domain and h is harmonic in U , there

are rational functions g1(T ), g2(T ), . . . ∈ K(T ) and rational numbers R1, R2, . . . ∈
Q such that

h(x) = lim
i→∞

Ri · logv(|gi|x)

uniformly on compact subsets of U .

A Berkovich space analogue of Harnack’s principle holds as well (see Chapter
7 of [BR08]):

Proposition 3.3.14 (Harnack’s Principle). Let U be a domain in P1
Berk, and

suppose f1, f2, . . . are harmonic in U , with 0 ≤ f1 ≤ f2 ≤ · · · . Then either
A) limi→∞ fi(z) =∞ for each z ∈ U , or
B) f(z) = limi→∞ fi(z) is finite for all z, the fi(z) converge uniformly to f(z)

on compact subsets of U , and f(z) is harmonic in U .
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3.4. Subharmonic functions. We give a brief introduction to the notion of
a subharmonic function on P1

Berk; see [BR08, Chapter 8] and [Thu05] for further
details.

Definition 3.4.1. Let U ⊂ P1
Berk be a domain.

A function f : U → [−∞,∞) with f(x) 6≡ −∞ is called subharmonic on U if

(SH1) f is upper semicontinuous.
(SH2) For each simple subdomain V ⊂ U we have

f(z) ≤
∫
∂V

f dµz,V

for all z ∈ V .

A function f : U → (−∞,∞] with f(x) 6≡ +∞ is called superharmonic on U if −f
is subharmonic on U .

Remark 3.4.2. By Corollary 3.3.11, f is harmonic on U if and only if it is
both subharmonic and superharmonic on U .

Corollary 3.3.11 also shows that condition (SH2) can be replaced by the con-
dition that for each simple subdomain V ⊂ U and each harmonic function h on V ,
if f(x) ≤ h(x) on ∂V then f(x) ≤ h(x) on V .

Example 3.4.3. For fixed y, z ∈ P1
Berk with y 6= z, the function f(x) = κz(x, y)

is superharmonic in P1
Berk\{z}, and is subharmonic in P1

Berk\{y}.

Example 3.4.4. If ν is a probability measure on P1
Berk and z /∈ Supp(ν), then

the potential function

pν,z(x) =
∫

P1
Berk

κz(x, y) dν(y)

is superharmonic in P1
Berk\{z} and is subharmonic in P1

Berk\ Supp(ν).

Subharmonic functions obey the following maximum principle (see Chapter 8
of [BR08]):

Proposition 3.4.5. 1. If f is a nonconstant subharmonic function on a do-
main U ⊂ P1

Berk, then f does not achieve a global maximum on U .
2. If f is a subharmonic function on a domain U ⊂ P1

Berk which extends
continuously to Ū , then f achieves its maximum value on ∂U .

Finally, we mention the following analogue of Proposition 3.3.6 (see Chapter 8
of [BR08]):

Proposition 3.4.6. Let f be subharmonic on a domain U . Then f is non-
increasing on paths leading away from the main dendrite of U . If U is a disk, then
f is non-increasing on paths leading away from the unique boundary point of U .

Since the main dendrite of a domain is finitely branched, Proposition 3.4.6
implies that at any given point, there are only finitely many tangent directions in
which a subharmonic function can be increasing.
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4. Laplacians

In this lecture, we will define a Laplacian operator on the Berkovich projective
line which is analogous in many ways to the classical Laplacian operator

∆(f) = −(
∂2f

∂x2
+
∂2f

∂y2
)dx ∧ dy

on C.

Actually, a slight abstraction of the construction from [BR08] of the Laplacian
on P1

Berk yields a Laplacian operator on more general one-dimensional Berkovich
spaces such as M(Z) or the analytic space XBerk associated to a complete nonsingu-
lar curve (see §5). The Laplacian on P1

Berk will be constructed via a limiting process
from the Laplacian on a finite R-tree. For curves of higher genus, the associated
Berkovich analytic space is no longer simply connected, so in order to construct a
Laplacian in this generality, one needs to replace finite R-trees by metrized graphs.

We will define a Laplacian operator in the rather abstract general setting of
an arboretum, which is a special kind of inverse limit of metrized graphs, and
then gradually specialize to the particular cases of interest to us. This involves
setting up some cumbersome notation, but it has the advantage of making the
entire construction more conceptually clear.

4.1. Metrized graphs.
4.1.1. Definition of a metrized graph. Intuitively, a metrized graph is a finite

graph Γ whose edges are thought of as line segments having a well-defined length. In
particular, Γ is a one-dimensional manifold except at finitely many “branch points”,
where it looks locally like an n-pointed star. The path-length function along each
edge extends to a metric on all of Γ, making it a compact metric space. One thinks
of a metrized graph as an analytic object, not just a combinatorial one.

Formally, define a star-shaped set of valence np ≥ 1 to be a set of the form

S(np, rp) = {z ∈ C : z = tek·2πi/np for some 0 ≤ t < rp and some k ∈ Z}.

Then a metrized graph is a compact, connected metric space Γ such that each
p ∈ Γ has a neighborhood Up isometric to a star-shaped set of valence np ≥ 1,
endowed with the path metric.

A metrized graph with no cycles is the same thing as a compact, finite R-tree,
as defined in §2.2.

By a vertex set for Γ, we mean a finite set of points S such that Γ\S is a union
of open intervals whose closures have distinct endpoints. (A vertex set necessarily
contains all endpoints and branch points of Γ, and if Γ has loops, a vertex set also
contains at least one interior point from each loop.)

There is a close connection between metrized graphs and finite weighted graphs
(i.e., finite graphs whose edges are assigned positive real weights). Given a metrized
graph Γ, any choice of a vertex set S for Γ gives rise to a weighted graph G which
one may call a model for Γ; a different choice of vertex set leads to an equivalent
weighted graph (with respect to a certain natural equivalence relation). Conversely,
every weighted graph G determines a metrized graph in the obvious way, so there
is a one-to-one correspondence between metrized graphs and equivalence classes of
finite weighted graphs (see [BR07] or [BF06, Theorem 4] for further details).
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Often, when given a metrized graph Γ, one chooses without explicit comment a
vertex set S, together with distinguished parametrizations of the edges of the corre-
sponding model G. The definition of the Laplacian given below in §4 is independent
of these implicit choices.

By a path in Γ, we will mean an injective length-preserving continuous map
from the real interval [0, L] into Γ. We will say that a path γ : [0, L]→ Γ emanates
from p, and terminates at q, if γ(0) = p and γ(L) = q. We call two paths emanating
from p equivalent if they share a common initial segment. For each p ∈ Γ, we let
Tp(Γ) (the set of tangent directions at p) denote the set of equivalence classes of
paths emanating from p. It is easy to see that |Tp(Γ)| = np, i.e., there is a bijection
between elements of Tp and the “edges” of Γ emanating from p.

It is useful to associate to each element of Tp(Γ) a formal “unit tangent vector”
~v, and to write p+ t~v instead of γ(t), where γ : [0, L]→ Γ is a representative path.
If f : Γ→ R is a function, and ~v is a formal unit tangent vector at p, we define the
derivative of f in the direction ~v to be

d~vf(p) = lim
t→0+

f(p+ t~v)− f(p)
t

= lim
t→0+

f(γ(t))− f(p)
t

,

provided the limit exists.

4.2. The Laplacian on a metrized graph.
4.2.1. The space CPA(Γ). Let CPA(Γ) be the space of continuous, piecewise-

affine, real-valued functions on Γ, i.e., functions which have the form t 7→ at+ b on
each edge of Γ (with respect to some vertex set).

If f ∈ CPA(Γ), then clearly the directional derivatives d~vf(p) are defined for
all p ∈ Γ and all ~v ∈ Tp(Γ).

Chinburg and Rumely ([CR93]) introduced a Laplacian operator on CPA(Γ).
Their Laplacian is a map from CPA(Γ) to the space of discrete signed measures on
Γ. We will take the Laplacian to be the negative of theirs, and put

∆(f) =
∑
p∈Γ

∆p(f) δp(x),

where ∆p(f) = −
∑
~v∈Tp(Γ) d~vf(p) and δp(x) is the Dirac measure at p. The op-

erator ∆ coincides, in a natural sense, with the usual combinatorial Laplacian on
a finite weighted graph – see [BF06] for details. Here are some easily verified
properties of ∆:

Proposition 4.2.1. Let f, g ∈ CPA(Γ). Then
1. ∆(f) ≡ 0 if and only if f is constant on Γ.
2. ∆(f) = ∆(g) if and only if f = g + C for some constant C.
3. If f is nonconstant, then f(x) achieves its maximum at a point p where

∆(f)(p) > 0, and its minimum at a point q where ∆(f)(q) < 0.
4.
∫

Γ
f ∆(g) =

∫
Γ
g∆(f).

5. The total mass ∆(f)(Γ) is 0.

4.2.2. The space BDV(Γ). One can define a measure-valued Laplacian operator
on a much larger class of functions than just CPA(Γ). The construction is motivated
by the following “Mass Formula”. If S ⊆ Γ, we let ∂S be the set of points belonging
to the closures of both S and Γ\S. (Note that under this definition, if Γ = [0, 1]
and S = [0, 1

2 ], for example, then the left endpoint 0 is not a boundary point of S.)
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For each p ∈ ∂S, let In(p, S) be the set of “inward-pointing unit tangent vectors
at p”, i.e., the set of all ~v ∈ Tp(Γ) for which p+ t~v belongs to S for all sufficiently
small t > 0. Similarly, let Out(p, S) = Tp(Γ)\ In(p, S) be the collection of “outward-
directed unit tangent vectors at p”. For example, if p is an isolated point of S, then
In(p, S) = ∅ and Out(p, S) = Tp(Γ).

Proposition 4.2.2 (Mass formula). Let f ∈ CPA(Γ). Then the measure µ =
∆(f) satisfies the following properties:

(a) If E ⊆ Γ is a finite union of connected closed sets, then

(4.2.3) µ(E) = −
∑
p∈∂E

∑
~v∈Out(p,E)

d~vf(p).

(b) If V ⊆ Γ is a finite union of connected open sets, then

(4.2.4) µ(V ) =
∑
p∈∂V

∑
~v∈In(p,V )

d~vf(p).

Let D(Γ) be the class of all functions on Γ whose one-sided derivatives exist
everywhere, i.e.,

D(Γ) = {f : Γ→ R : d~vf(p) exists for each p ∈ Γ and ~v ∈ Tp(Γ)} .

It is easy to see that each f ∈ D(Γ) is continuous.

Definition 4.2.5. We will say that a continuous function f ∈ D(Γ) is of
bounded differential variation, and write f ∈ BDV(Γ), if there is a (bounded signed
Borel) measure µ on Γ satisfying properties (a) and (b) of Proposition 4.2.2. If
this is the case, we define the Laplacian ∆(f) of f to be this measure. Since the
connected open sets generate the topology of Γ, it is not hard to see that the
measure ∆(f), if it exists, is uniquely determined by properties (a) and (b).

By Proposition 4.2.2, we have CPA(Γ) ⊆ BDV(Γ). We now describe a larger
class of functions for which ∆(f) exists and can be explicitly described.

Proposition 4.2.6. Let Zh(Γ) be the space of continuous, piecewise C2 func-
tions f whose one-sided directional derivatives d~vf(p) exist for all p ∈ Γ, and for
which f ′′ is bounded along each edge. Then Zh(Γ) ⊂ BDV(Γ), and for f ∈ Zh(Γ)
we have

(4.2.7) ∆(f) = −f ′′(x) dx+
∑
p∈Γ

∆p(f) δp,

where f ′′ is computed on each segment in the complement of an appropriate vertex
set Xf for Γ.

For f ∈ Zh(Γ), our Laplacian operator therefore coincides with the one defined
by S. Zhang in [Zha93]. The Laplacian in (4.2.7) is a hybrid of the usual Laplacian
−f ′′(x)dx on R and the combinatorial Laplacian on a weighted graph. It is easy
to check using integration by parts that

∫
Γ
f∆(g) =

∫
Γ
g∆(f) for all f, g ∈ Zh(Γ).

From this, it follows (taking g to be the constant function 1) that ∆(f)(Γ) = 0.
It is clear from the definitions that the Laplacian on BDV(Γ) is a linear oper-

ator, i.e., that
∆(αf + βg) = α∆(f) + β∆(g)

for all f, g ∈ BDV(Γ) and all α, β ∈ R.
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We note the following additional properties of the Laplacian on BDV(Γ), which
extend those proved in Proposition 4.2.1 for functions in CPA(Γ). (We let µ+, µ−

denote the positive and negative parts, respectively, of the Jordan decomposition
of a measure µ.)

Proposition 4.2.8. If f, g ∈ BDV(Γ), then
1. ∆(f) ≡ 0 if and only if f is constant on Γ.
2. ∆(f) = ∆(g) if and only if f = g + C for some constant C.
3. If f is nonconstant, then f(x) achieves its maximum at a point p in the

support of ∆(f)+, and its minimum at a point q in the support of ∆(f)−.
4.
∫

Γ
f ∆(g) =

∫
Γ
g∆(f).

5. ∆(f)(Γ) = 0.

We also have the following useful, but somewhat harder to prove, result:

Theorem 4.2.9. If ν is a measure of total mass zero on a metrized graph Γ,
then there exists a function h ∈ BDV(Γ), unique up to an additive constant, such
that ∆h = ν.

It follows that there is a natural bijection between measures of total mass zero
on Γ and functions in BDV(Γ) modulo constant functions.

Finally, we note that the Laplacian operator on a metrized graph satisfies the
following compatibility property:

Lemma 4.2.10. If Γ,Γ′ are metrized graphs with Γ ⊆ Γ′ and there is a defor-
mation retraction rΓ′,Γ from Γ′ onto Γ, and if f ∈ BDV(Γ′), then

(4.2.11) ∆Γ(f |Γ) = (rΓ′,Γ)∗∆Γ′(f) .

Lemma 4.2.10 will be used in §4.4 to define the Laplacian on an arboretum.

4.3. Arboreta. Recall that a directed set is a set I together with a reflexive
and transitive relation ≤ satisfying:

Given α, β ∈ I, there exists γ ∈ I with α ≤ γ and β ≤ γ.

Definition 4.3.1. An arboreal system of metrized graphs is a directed set (I,≤)
together with the following data:

• For each α ∈ I, a metrized graph Γα.
• For each α ≤ β in I, an isometric inclusion map iα,β : Γα ↪→ Γβ .
• For each α ≤ β in I, a deformation retraction rβ,α : Γβ � Γα.

Remark 4.3.2. Concretely, the condition that rβ,α : Γβ → Γα is a deformation
retraction is equivalent to saying that the graph Γβ is obtained from Γα by attaching
finitely many finite R-trees, and rβ,α is the map obtained by contracting each of
these R-trees to a point.

We will usually write {Γα} instead of (Γα, iα,β , rβ,α) to denote an arboreal
system of metrized graphs.

Definition 4.3.3. The arboretum attached to an arboreal system of metrized
graphs {Γα} is the topological space X = lim←−Γα, where the inverse limit is taken
with respect to the maps rβ,α.
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Recall that a point of lim←−Γα is a compatible system (xα) ∈
∏
α∈I Γα, where

“compatible” means that if α ≤ β then rβ,α(xβ) = xα. The inverse limit X comes
equipped with a compatible system of continuous maps rα : X → Γα satisfying the
following universal property:

If Y is a topological space equipped with a compatible system of continu-
ous maps sα : Y → Γα, then there is a unique continuous map φ : Y → X
such that sα = rα ◦ φ for all α ∈ I.

The topology on X = lim←−Γα is the weakest one for which all of the maps rα
are continuous. A fundamental system of open neighborhoods for the topology on
X is given by the open sets r−1

α (Uα) for α ∈ I and Uα ⊆ Γα a connected open set.

The following topological properties of an arboretum are easily verified:

Lemma 4.3.4. If X is an arboretum, then:
1. X is a compact, Hausdorff, and path-connected topological space.
2. For each α ∈ I and each x0 ∈ Γα, the map rα : X → Γα is a retraction

which induces an isomorphism of fundamental groups π1(X,x0) ∼= π1(Γα, x0).

Remark 4.3.5. If X is an arboretum, then for each α ∈ I and each x ∈ Γα,
the fiber r−1

α (x) can be endowed in a natural way with the structure of a compact
topological tree. Thus one can think of an arboretum as a family of (compact
topological) trees fibered over a (finite) metrized graph (hence the name arboretum).

Next, we define the analogue for a general arboretum of the collection HR
Berk

of all points of type II or III in P1
Berk.

Definition 4.3.6. The hyperbolic space HR(X) associated to an arboretum
X is the metric space lim−→Γα, where the direct limit is taken with respect to the
inclusion maps iα,β .

By the definition of a direct limit, there are natural continuous inclusion maps
iα : Γα ↪→ HR(X) for each α ∈ I, and HR(X) satisfies a universal property relative
to these maps.

It is not hard to show that there is a natural injective map of sets i : HR(X) ↪→
X, and the image of HR(X) under this map is a dense, path-connected subspace
of X.

Remark 4.3.7. The metric topology on HR(X) is not in general the same as
the subspace topology induced by the inclusion map i : HR(X) ↪→ X. However,
i is always continuous as a map from HR(X) with its direct limit topology to X
with its inverse limit topology.

Definition 4.3.8. A simple function on an arboretum X is a function of the
form f ◦ rα with α ∈ I and f ∈ CPA(Γα).

We will make use of the following consequence of the Stone-Weierstrass theorem
in §4.

Proposition 4.3.9. The simple functions are dense in the ring C(X) of con-
tinuous real-valued functions on X (endowed with the uniform topology).
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4.4. The Laplacian on an arboretum. Let X be an arboretum correspond-
ing to the arboreal system S = (Γα)α∈I of metrized graphs.

Definition 4.4.1. A system of measures {µΓ}Γ∈S is called coherent if:
• For each α ≤ β, we have (rβ,α)∗(µβ) = µα.
• There is a constant B such that |µΓ|(Γ) ≤ B for all Γ ∈ S.

If µ is a measure on X and we set µΓ = (rΓ)∗(µ) for each Γ ∈ S, then {µΓ} is
easily seen to be a coherent system of measures. Conversely, every coherent system
arises in this way:

Theorem 4.4.2. If {µΓ} is a coherent system of measures on X, there is a
unique measure µ on X such that (rΓ)∗(µ) = µΓ for each Γ ∈ S.

The proof is based on the Riesz representation theorem, together with Propo-
sition 4.3.9 (see Chapter 5 of [BR08] for a proof in the special case X = P1

Berk,
which can be easily generalized to the present setting).

We define BDV(X) to be the collection of all functions f : X → R ∪ {±∞}
such that:
(BDV1) f |Γ := f ◦ iΓ ∈ BDV(Γ) for each finite subgraph Γ ∈ S, where iΓ : Γ ↪→ X

is the natural inclusion.
(BDV2) The measures |∆Γ(f |Γ)| for Γ ∈ S have uniformly bounded total mass.
Note that belonging to BDV(Γ) imposes no condition on the values of f at points
of X\HR(X).

Using the compatibility property (4.2.11), one shows that if f ∈ BDV(X), then
{∆Γ(f |Γ)} is a coherent system of measures on X. By Theorem 4.4.2, there is a
unique measure ∆X(f) on the inverse limit space X for which

(4.4.3) (rΓ)∗∆X(f) = ∆Γ(f ◦ iΓ)

for all Γ ∈ S.

Definition 4.4.4. If f ∈ BDV(X), the unique measure ∆X(f) on X satisfying
(4.4.3) is called the Laplacian of f on X.

Remark 4.4.5. It follows from the definitions that ∆X(f) is the weak limit
over all Γ ∈ S of the measures (iΓ)∗ (∆Γ(f ◦ iΓ)); this is in fact an alternate way to
define ∆X(f).

As a consequence of Theorem 4.4.2, we have:

Corollary 4.4.6. Let F = f ◦ rΓ be a simple function on X (c.f. Proposi-
tion 4.3.9). Then F ∈ BDV(X) and ∆X(F ) = (iΓ)∗∆Γ(f).

The Laplacian on an arboretum satisfies the following properties, which can be
deduced from the corresponding properties of the Laplacian on a metrized graph.

Proposition 4.4.7. Let X be an arboretum, and let f, g ∈ BDV(X). Then:
1. ∆X(f) ≡ 0 if and only if f is constant on HR(X).
2.
∫
X
f ∆X(g) =

∫
X
g∆X(f).

3. ∆X(f) has total mass zero.

We also have the following result, which is a generalization of Theorem 4.2.9.
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Theorem 4.4.8. If ν is a measure of total mass zero on an arboretum X, then
there exists a function h ∈ BDV(X), whose restriction to HR(X) is unique up to
an additive constant, such that ∆X(h) = ν.

4.5. Examples. We now compute the Laplacian in some specific examples,
using the fact that we have endowed the Berkovich spaces P1

Berk and M(Z) with a
canonical arboretum structure (see Theorem 2.2.1 and Remark 2.5.3).

Example 4.5.1. As a concrete example, fix y ∈ A1
Berk and let f : P1

Berk →
R ∪ {±∞} be defined by

f(x) = κ∞(x, y) = − logv[x, y]∞

(c.f. §1.6.2). Then f ∈ BDV(P1
Berk), and

(4.5.2) ∆P1
Berk

(f) = δy − δ∞

is a discrete measure on P1
Berk supported on {y,∞}. The explanation for the formula

(4.5.2) is as follows. The function f is locally constant off the path Λ = `y,∞ from
y to ∞; more precisely, we have f(x) = f(rΛ(x)) for all x ∈ P1

Berk. Moreover, the
restriction of f to the open segment (y,∞) is linear (with respect to the metric ρ)
with slope −1. It follows that for every finite subgraph Γ of P1

Berk, we have

(4.5.3) ∆Γ(f) = δrΓ(y) − δrΓ(∞).

The weak limit over all Γ ∈ S of the right-hand side of (4.5.3) is δy − δ∞, which
establishes (4.5.2).

Equation (4.5.2) shows that κ∞(x, y) = − logv[x, y]∞, like its classical counter-
part − log |x− y| over C, is a “fundamental solution of the Laplace equation”.

Example 4.5.4. Generalizing the previous example, fix y, z ∈ P1
Berk and let

f : P1
Berk → R ∪ {±∞} be defined by

f(x) = κz(x, y).

Then one can show that f(x) is the unique solution in BDV(P1
Berk) to the differential

equation
∆P1

Berk
(f) = δy − δz

and satisfying the initial condition

f(ζGauss) = logv ‖y, z‖

(c.f. §1.6.2).

Example 4.5.5. Consider the function G : P1
Berk → R ∪ {+∞} from Exam-

ple 3.2.3, defined as

G(x) =
{

+∞ x =∞
logv max(|T |x, 1) x ∈ A1

Berk.

If Λ denotes the closed path from ζGauss to ∞ in P1
Berk, and rΛ : P1

Berk → Λ is
the natural retraction map from P1

Berk onto Λ, then we saw in Example 3.2.3 that
G = g ◦ rΛ, where g : Λ→ R∪{+∞} is the linear map of slope 1 along Λ for which
g(ζGauss) = 0.

It follows as in Example 4.5.1 that

∆P1
Berk

(G) = δ∞ − δζGauss .
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Note that G(x) = − logv ‖x,∞‖, so that this example is in fact a special case
of Example 4.5.4.

Example 4.5.6. Let f(T ) =
∏k
i=1(x− ai)mi ∈ K[T ] be a nonconstant polyno-

mial of degree n, with a1, . . . , ak distinct, and let F (x) be the unique continuous
function on P1

Berk extending the function − logv |f(x)| on K.
From Example 3.2.5 and the linearity of the Laplacian, we deduce easily that

∆P1
Berk

(F ) =

(
k∑
i=1

miδai

)
− nδ∞.

More generally, let ϕ ∈ K(T ) be a nonzero rational function with zeros and
poles given by the divisor Div(ϕ) on P1(K). As discussed in §2.1, the usual action
of ϕ on P1(K) extends naturally to an action of ϕ on P1

Berk, and there is a unique
continuous function − logv |ϕ| : P1

Berk → R ∪ {±∞} in CPA(P1
Berk) extending the

usual map x 7→ − logv |ϕ(x)| on P1(K). One can derive from (4.5.2) the following
analogue for P1

Berk of the classical Poincaré-Lelong formula:

(4.5.7) ∆P1
Berk

(− logv |ϕ|) = δDiv(ϕ) .

Example 4.5.8. Following Example 3.1.2, let n ∈ Z be a nonzero integer. As
we saw previously, along the branch Λv of M(Z) emanating from ζ0 in the tangent
direction corresponding to v ∈ MQ, the function Fn(x) = − log |n|x is linear with
slope equal to − log |n|v. Taking a limit over all finite subgraphs of M(Z) yields the
formula

∆M(Z)(− log |n|x) =
∑

v∈MQ finite

− log(|n|v) · δζv,∞ − log(|n|∞) · δζ∞ .

For example, if n = 12 then

∆M(Z)(− log |12|) = log(4) · δζ2,∞ + log(3) · δζ3,∞ − log(12) · δζ∞ .
Thus we see that the Laplacian operator on M(Z) is basically factoring the

integer n.

Example 4.5.9. More generally, it is not hard to see that if α = m/n is a
nonzero rational number written in lowest terms, then ∆M(Z)(− log |α|) has total
mass zero, and in the Jordan decomposition

∆M(Z)(− log |α|) = µ+ − µ−,
each of µ+ and µ− has total mass equal to the standard logarithmic Weil height
h(α) = log max{|m|, |n|}.

For example, if α = 4/3 then

∆M(Z)(− log |4/3|) = log(4) · δζ2,∞ − log(3) · δζ3,∞ − log(4/3) · δζ∞
and

∆M(Z)(− log |4/3|)+(M(Z)) = ∆M(Z)(− log |4/3|)−(M(Z)) = log(4) = h(4/3).

Thus we see that the Laplacian on M(Z) provides an intriguing way of inter-
preting the Weil height on Q∗.

Arizona Winter School Project #2: Extend the results of Examples 4.5.8
and 4.5.9 to the Berkovich analytic space associated to the ring of integers in an
arbitrary number field k, and interpret the Arakelov class group of k (and in par-
ticular the usual class group and unit group) in terms of functions on this space.
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4.6. Harmonic functions and the Laplacian. Let U be a domain in P1
Berk.

In this section, we will define the Laplacian ∆Ū (f) of a function f on U as a measure
supported on Ū , and explain the connection between harmonic functions on U and
the Laplacian.

The key point is that Ū is itself an arboretum. Indeed, define SU to be the
collection of all finite subgraphs Γ of P1

Berk which are contained in U . With respect
to the natural inclusion and retraction maps, we have:

Lemma 4.6.1. There are homeomorphisms

U ∩HBerk
∼= lim−→

Γ∈SU

Γ

(with respect to the locally metric topology on HBerk) and

Ū ∼= lim←−
Γ∈SU

Γ

(with respect to the Berkovich subspace topology on Ū).

It follows that Ū is naturally endowed with the structure of an arboretum, and
therefore we have defined a Laplacian operator on Ū . Since the Laplacian of a
function f on Ū depends only on the restriction of f to H(U) = U ∩HBerk, we see
that it makes sense to speak of the Laplacian of a (suitably nice) function f on U
as a measure on Ū .

Remark 4.6.2. The definition of f ∈ BDV(Ū) only concerns the restrictions
f |Γ to finite subgraphs Γ ⊂ U . By definition, such subgraphs only contain points of
type II or III; in fact, as the subgraphs vary they exhaust U ∩HR

Berk. In particular,
requiring that f ∈ BDV(Ū) imposes no conditions on the behavior of f on P1(K).
In practice, that behavior must be deduced from auxiliary hypotheses, such as
continuity or upper-semicontinuity.

Using Lemma 4.2.10, we have:

Lemma 4.6.3. If V ⊆ U are domains in P1
Berk, and if r = rŪ,V̄ : Ū → V̄ denotes

the natural retraction map, then for all f ∈ BDV(Ū), we have f |V ∈ BDV(V̄ ) and

r∗(∆Ū (f)) = ∆V̄ (f |V ).

The relation between harmonic functions and the Laplacian is the following:

Theorem 4.6.4. Let U be a domain in P1
Berk, and let f ∈ BDV(Ū) be a con-

tinuous real-valued function. Then f is harmonic on U if and only if ∆V̄ (f) is
supported on ∂V for every simple subdomain V of U .

Similarly:

Theorem 4.6.5. Let U be a domain in P1
Berk, and let f ∈ BDV(Ū) be a con-

tinuous extended-real valued function. Then f is subharmonic on U if and only if
∆V̄ (f)|V ≤ 0 for every simple subdomain V of U .
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4.7. Valuation polygons. Let ϕ ∈ K(T ) be a nonzero rational function. We
saw in §2.1 how ϕ induces in a natural way a map

ϕ : P1
Berk → P1

Berk

which, when restricted to P1(K), coincides with the usual induced map.
There is a unique simple function f = − logv |ϕ| : P1

Berk → R ∪ {±∞} whose
restriction to P1(K) is the map x 7→ − logv |ϕ(x)| on P1(K). As we have seen
in (4.5.7), one has the following Berkovich space analogue of the Poincaré-Lelong
formula:

∆P1
Berk

(f) = δDiv(ϕ) .

As a consequence, we obtain:

Corollary 4.7.1. For any Borel subset A of P1
Berk, let N0(ϕ,A) be the number

of zeros of ϕ in A, and let N∞(ϕ,A) be the number of poles of ϕ in A (counting
multiplicities). Then:

(4.7.2) ∆P1
Berk

(− logv |ϕ|)(A) = N0(ϕ,A)−N∞(ϕ,A).

We wish to interpret the formula (4.7.2) in terms of the classical theory of
valuation polygons (see [Rob00, Chapter 6, §1,3]) using the Mass Formula (Propo-
sition 4.2.2).

If D is a Berkovich open disk in P1
Berk, then by Lemma 1.4.1, we have D =

U(x;~v) for some x ∈ HR
Berk and ~v ∈ Tx (and conversely, each pair (x,~v) with

x ∈ HR
Berk and ~v ∈ Tx determines a unique Berkovich open disk). Following Rivera-

Letelier [RL03a, RL03b] we call x the boundary of D and ~v the corresponding
end (French: “bout”).

More generally, let V be a simple domain in P1
Berk. By Lemma 2.2.3, we can

write V = r−1
Γ (U) for some finite subgraph Γ of P1

Berk and some connected open
subset U of Γ. Let ∂U = {x1, . . . , xn} ⊆ Γ be the boundary of U in Γ (which is
the same as the boundary of U in P1

Berk). For each 1 ≤ i ≤ n, let ~vi ∈ Txi(Γ)
denote the unique inward-pointing tangent vector at xi (with respect to U). We
can identify ~vi with an element of Txi (the set of tangent directions in P1

Berk at
xi) in a natural way, since there is a canonical inclusion Txi(Γ) ⊂ Txi . We call
x1, . . . , xn the boundary points of V and ~v1, . . . , ~vn the ends of V . It is easy to see
that the set of ends of V is canonical, and does not depend on our choice of the
pair (Γ, U).

Remark 4.7.3. If we write Di = U(xi;~vi), then each Di is a Berkovich open
disk and

V =
n⋂
i=1

Di.

Using the Mass Formula (Proposition 4.2.2) and Corollary 4.4.6, we find:

Proposition 4.7.4. Let V be a simple domain with boundary {x1, . . . , xn} and
ends {~v1, . . . , ~vn}, and let f be a simple function on P1

Berk. Then:

∆P1
Berk

(f)(V ) =
n∑
i=1

d~vif(xi).

Combining Proposition 4.7.4 and Corollary 4.7.1, we obtain the following result:
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v1

v2

v3

x1

x3x2

→

→

→

Figure 4. A simple domain with three boundary points and three ends.

Corollary 4.7.5. Let V be a simple domain with boundary {x1, . . . , xn} and
ends {~v1, . . . , ~vn}, let ϕ ∈ K(T ) be a nonzero rational function, and let f =
− logv |ϕ|. Then:

N0(ϕ, V )−N∞(ϕ, V ) =
n∑
i=1

d~vif(xi).

In other words, one can compute the difference between the number of zeros
and the number of poles of a rational function in a simple domain V in terms of
the inward-pointing derivatives of − logv |ϕ| at each boundary point of V . This is
one of the main consequences of the theory of valuation polygons.

Remark 4.7.6. For simplicity, we have stated Corollary 4.7.5 just for rational
functions, but using the Weierstrass preparation theorem, one can extend Corol-
lary 4.7.5 more generally to meromorphic functions.

Example 4.7.7. Let ϕ(T ) = T 2 − T , and let f(x) = − logv |T 2 − T |x for
x ∈ A1

Berk. Let D = B(0, 1)− be the open unit disk in A1
Berk, and let ~v ∈ TζGauss

be the corresponding end (i.e., the unique tangent vector at ζGauss pointing in the
direction of 0). Since f(x) is linear with slope 1 along the path from ζGauss to 0
(with respect to the path-distance ρ), we have d~vf(ζGauss) = 1. This agrees with
the prediction of Corollary 4.7.5, since T 2 − T has precisely one zero (namely 0) in
the open unit disk B(0, 1)−. In other words:

# of zeros of T 2 − T on B(0, 1)− = d~vf(ζGauss) = 1.

Example 4.7.8. There is a variant of Corollary 4.7.5 for intersections of closed
Berkovich disks (which are precisely the connected affinoid subdomains of P1

Berk).
For example, to compute the number of zeros of T 2 − T in the closed unit disk
B(0, 1), we look at the tangent vector ~w ∈ TζGauss pointing in the direction of ∞
(which is the unique end of the open Berkovich disk P1

Berk\B(0, 1)), and we find
that the number of zeros of T 2 − T in B(0, 1) is

# of zeros of T 2 − T on B(0, 1) = −d~wf(ζGauss) = 2.

We leave the details to the reader.
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We conclude this section by explaining more precisely the relationship between
Corollary 4.7.5 and the theory of valuation polygons. For this, we shift our attention
to analytic functions on a closed disk.

Let B(a,R) be a closed disk in K, and let B = B(a,R) denote the correspond-
ing Berkovich closed disk in A1

Berk. We let x = ζa,R ∈ HR
Berk denote the unique

boundary point of B, and let ~w be the corresponding “outward-pointing” tangent
direction at x. More precisely, we define ~w to be the end of the open disk P1

Berk\B,
and call ~w the end of B. Let F be an analytic function on a strictly larger disk
B(a,R′) containing B(a,R), i.e., F is an element of the affinoid algebra

{
∞∑
n=0

an(T − a)n : an ∈ K, lim
n→∞

|an|(R′)n = 0}

for some R′ > R.
We define the growth modulus of F to be the function Mr(F ) : [0, R′] → R

defined by
Mr(F ) = max

n≥0
|an|rn = sup

z∈B(a,r)

|F (z)| = |F |B(a,r),

so that Mr(F ) is a positive, increasing real-valued function on [0, R′).
Replacing open disks by closed disks in the Mass Formula, and using the Weier-

strass Preparation Theorem to pass from polynomials to analytic functions, one
obtains the following variant of Proposition 4.7.4:

Proposition 4.7.9. Let B be a closed Berkovich disk with boundary point x
and end ~w, and let F be analytic on an open neighborhood U of B in P1

Berk. Then

∆P1
Berk

(logv |F |)(B) = d~w(logv |F |)(x).

It follows from the definitions that if B = B(a,R) is a closed Berkovich disk
with unique boundary point x = ζa,r and end ~w, then

d~w logv |F |(ζa,R) =
d

dr
logvMr(F )|r=R.

We therefore obtain a new proof using basic properties of the Laplacian on
P1

Berk of the following classical result from the theory of valuation polygons:

Corollary 4.7.10. Let B(a,R) be a closed disk in K, and let F be analytic
on B(a,R′) for some R′ > R. Then

# of zeros of F on B(a,R) =
d

dr
logvMr(F ) |r=R.

4.8. The modulus of an open annulus. In this section, we explore some
more “classical” results from p-adic analysis from the point of view of Berkovich’s
theory. Our treatment of this material draws inspiration from [RL03a, RL03b].

Definition 4.8.1. An open annulus in K is a subset of K of the form A =
B(a,R)−\B(a, r) with 0 < r < R, i.e., an open disk in K with a closed disk removed
from it. A is called a rational open annulus if r,R ∈ |K∗|.

The standard open annulus Ar of height r for 0 < r < 1, is the subset of K
given by Ar = B(0, 1)−\B(0, r).

The modulus of an open annulus A is defined to be

Mod(A) = logv(R/r).
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Remark 4.8.2. If A = B(a,R)−\B(a, r) is the Berkovich open annulus in A1
Berk

corresponding to the open annulus A in K, then by definition, the modulus Mod(A)
coincides with the distance ρ(ζa,r, ζa,R) between the two boundary points of A in
HBerk. The invariance of ρ under Möbius transformations is therefore equivalent to
the fact that the modulus of an annulus is invariant under Möbius transformations.

Definition 4.8.3. An analytic function on an open annulus A ⊂ K is a map
ϕ : A→ K given by a power series

∑∞
n=−∞ an(T−a)n with an ∈ K which converges

at every point of A.
An analytic isomorphism between open annuli is an analytic function ϕ : A→

A′ with an analytic inverse.

The following proposition shows that, just as in the complex case, the only
“conformal invariant” of an open annulus is its modulus.

Proposition 4.8.4. Let A,A′ be rational open annuli in K. Then there exists
an analytic isomorphism between A and A′ if and only if Mod(A) = Mod(A′).

Sketch. By applying suitable Möbius transformations, one is reduced to show-
ing that the standard open annuli Ar and As are analytically isomorphic if and only
if r = s. Suppose that φ : Ar → As is an analytic isomorphism. Since φ is a nonzero
analytic function on Ar, one can show that φ extends to a function Ar → As, where
Ar = B(0, 1)−\B(0, r) denotes the corresponding simple domain in P1

Berk, and that
the function f = − logv |φ| : Ar → R is harmonic and extends continuously to
∂Ar = Ar ∪ {ζ0,1, ζ0,r}. Consequently, ∆Ar

(f) = dδζ0,1 − dδζ0,r for some integer
d ∈ Z. As g(x) = −d logv |T | has the same property, it follows that f(x) = g(x)+C ′

for some constant C ′, and therefore that ϕ(x) = C · |x|d for all x ∈ Ar. Letting
|x| → 1 shows that C = 1, and then letting |x| → r shows that r = s. �

Proposition 4.8.5. Let B = B(a,R)− be an open disk in K, and let φ : B →
K be an analytic function on B defined by a power series

∑∞
n=0 an(T − a)n which

converges for all x ∈ B. Then B′ = φ(B) is also an open disk, and there exists an
integer d ≥ 1 such that φ : B → B′ has degree d (i.e., such that every point of B′

has exactly d preimages in B, counting multiplicities).

Sketch. By applying a suitable translation, we may assume that φ(0) = 0.
Let ~v be the end corresponding to the unique boundary point ζa,R of the open
Berkovich disk B = B(a,R)−. Then

R′ := |φ|ζa,R = sup
z∈B(a,R)

|φ(z)|.

We claim that φ(B) = B(0, R′)−. Indeed, φ(B) ⊆ B(0, R′)− by the maximum
modulus principle, since logv |φ| is harmonic on B outside the zeros of φ (where
it takes the value −∞). And if w ∈ B(0, R′)− is any point, then |φ|B(0,r) = |φ −
w|B(0,r) for all r with |w| < r < R′ by the ultrametric inequality. By considerations
analogous to those in §4.7, the number of zeros of φ − w in B coincides with the
directional derivative d~v(− logv |φ|)(ζa,R), which is equal to d for some integer d ≥ 1
that is independent of w. �

To study the effect of φ on open annuli instead of open disks, one uses the
following lemma, which can be proved using the theory of valuation polygons (see
[RL03b, Lemma 4.3]:



4. LAPLACIANS 41

Lemma 4.8.6. Let φ ∈ K(T ) be a non-constant rational function. Then there
is an ε > 0 (depending only on φ) such that if A is a rational open annulus in K
with Mod(A) < ε, then φ(A) is also a rational open annulus.

Proposition 4.8.7. Let A be a rational open annulus in K, and let φ : A →
K be an analytic function on A for which φ(A) is also an open annulus. Then
Mod(φ(A)) = dMod(A) for some integer d ≥ 1, and the map φ : A → φ(A) has
degree d.

Sketch. By applying suitable Möbius transformations, we may assume that
0 6∈ φ(A), so that φ has no zeros or poles on A, and that A = Ar is a standard open
annulus. Write A = B(0, 1)−\B(0, r), so that the two boundary points of A are
ζ = ζ0,1 and ζ ′ = ζ0,r, with corresponding ends ~v and ~v′. Let f = − logv |φ| : A→
R. As in the proof of Proposition 4.8.4, we find that there is a nonzero integer d
such that |φ(z)| = α|z|d for all z ∈ A. Applying suitable Möbius transformations,
we may assume (since φ(A) is an open annulus by hypothesis) that d ≥ 1 and that
α = 1. Thus if A′ = B(0, 1)−\B(0, rd), then φ(A) ⊆ A′.

We claim that φ(A) = A′, and more generally that every point of A′ has exactly
d preimages in A, counting multiplicities. To see this, choose a point w ∈ A′. Then
the number mw(φ) of zeros of φ− w in A is given by

mw(φ) = d~v(− logv |φ− w|)(ζ) + d~v′(− logv |φ− w|)(ζ ′).

Since |φ(z)−w| = |z|d for |w| < |z|d < 1 and |φ(z)−w| = |w| for r < |z|d < |w|,
we find that

mw(φ) = d+ 0 = d

as desired. �

Using Remark 4.8.2, Lemma 4.8.6, and Proposition 4.8.7, one deduces the
following result, due originally to Rivera-Letelier [RL03a].

Theorem 4.8.8. Let ϕ ∈ K(T ) be a nonzero rational function of degree d ≥ 1,
let x ∈ HR

Berk, and let ~v ∈ Tx. Then there is an integer deg~v(ϕ) with 1 ≤ deg~v(ϕ) ≤
d such that for all y ∈ HR

Berk ∩ U(x;~v) sufficiently close to x (with respect to the
locally metric topology on HBerk), we have

ρ(ϕ(x), ϕ(y)) = deg~v(ϕ) · ρ(x, y).

This result shows that, locally in the direction of a tangent vector ~v, a rational
function ϕ stretches distances in HBerk by an integer factor between 1 and d, which
Rivera-Letelier calls the local degree of ϕ with respect to ~v.

As a consequence of Theorem 4.8.8, one deduces from a simple compactness
argument the following result:

Corollary 4.8.9. Let ϕ ∈ K(T ) be a nonzero rational function of degree
d ≥ 1. Then for all x, y ∈ HBerk, we have

ρ(ϕ(x), ϕ(y)) ≤ d · ρ(x, y).
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5. Introduction to Potential Theory on Berkovich Curves

Following Berkovich [Ber90] and Thuillier [Thu05], we describe in this lecture
how to generalize some of our constructions and “visualization techniques” from
P1

Berk to more general Berkovich curves. The basic idea, explained using different
terminology in [Ber90], is that the Berkovich analytic space XBerk attached to a
smooth, proper, geometrically integral curve X/K admits a deformation retraction
onto a finite topological graph called the skeleton of XBerk. A very special case of
the results of [Ber99] and [Ber04] is that the skeleton of XBerk can be naturally
endowed with the structure of a metrized graph. More generally, the entire space
XBerk can be viewed in a canonical way as an arboretum, in the sense of §4.3. This
observation will allow us to define a Laplacian operator on XBerk which generalizes
the one we have already defined on the Berkovich projective line.

Out of necessity, this lecture assumes significantly more background in rigid
analysis, algebraic geometry, and Berkovich’s global theory of K-analytic spaces
than the previous lectures did. (See [Con07] for an overview of much of the back-
ground material that we will be assuming, and also [BL85].) Nevertheless, we have
tried to keep the exposition as elementary as possible.

5.1. Visualizing Berkovich curves via the semistable reduction the-
orem. As before, K will denote a complete, algebraically closed non-archimedean
field. Let X be a smooth, proper, and geometrically integral algebraic curve over
K, and let Xrig denote the corresponding rigid-analytic space in the sense of Tate.
In this section, we will explain how to visualize the associated Berkovich analytic
space XBerk (see §2.4 above) in a manner similar to the way we visualized P1

Berk

and M(Z) in §1.3 and §2.5, respectively. To do this, we will use a deep result from
rigid analysis, namely the existence of semistable models. We will also utilize the
rigid-analytic description (due to Bosch and Lütkebohmert) of the formal fibers of
a semistable model.

Let R = {x ∈ K : |x| ≤ 1} denote the valuation ring of K, and let K̃ be its
(algebraically closed) residue field. By a formal model for X, we will mean an ad-
missible formal model in the sense of Raynaud (see [Con07] for further discussion).
Recall that a projective curve Z over k is called semistable if it is reduced, and if
the only singularities of Z are ordinary double points. The semistable reduction
theorem implies that every curve X as above has a semistable formal model.

From now on, unless otherwise specified, we choose without comment a partic-
ular semistable formal model X, and let Z denote its special fiber. We denote by π
the natural reduction map π : X(K)→ Z(K̃). If z ∈ Z(K̃), we call X(z) = π−1(z)
the formal fiber of X over z. It carries the structure of a rigid analytic space in a
natural way. Let B(0, r) denote the closed disk of radius r in K (i.e., the affinoid
space corresponding to K〈r−1T 〉), and let B(0, r)− be the corresponding open disk,
which is the inverse image of 0 under the canonical reduction map from SpK〈r−1T 〉
to the affine line over K̃. Also, for 0 < α < 1, define

A(α) = SpK〈T, αT−1〉 ↔ {z ∈ B(0, 1) : α ≤ |z| ≤ 1}

to be the standard closed annulus of height α in B(0, 1). The canonical reduction
of A(α) is the scheme Spec K̃[S, T ]/(ST ) consisting of two affine lines intersecting
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at an ordinary double point. We also let

A(α)− = {z ∈ B(0, 1) : α < |z| < 1}
be the corresponding standard open annulus of height α, which is the inverse image
in A(α) of the singular point of Spec K̃[S, T ]/(ST ) under the canonical reduction
map.

We recall the following result due to Bosch and Lütkebohmert:

Proposition 5.1.1. Let z ∈ Z(K̃). Then:
(i) If z is a nonsingular point of Z, then the formal fiber X(z) is analytically

isomorphic to the open unit disk B(0, 1)−.
(ii) If z is a singular point of Z (which by hypothesis is an ordinary double

point), then the formal fiber X(z) is analytically isomorphic to a standard
open annulus A(α)− for some unique α ∈ |K∗| with 0 < α < 1.

Remark 5.1.2. In fact, the proof of (i) shows that there exists an affinoid
neighborhood V of X(z) and an analytic map V → B(0, 1) which restricts to an
isomorphism X(z) ∼−→B(0, 1)−. Similarly, the proof of (ii) shows that if z lies on
two different components of Z, then there exists an affinoid neighborhood V of X(z)
and an analytic map V → A(α) which restricts to an isomorphism X(z) ∼−→A(α)−.

For our purposes, it is important to note that, just as over the complex numbers,
the height α is a “conformal invariant” of an annulus. More precisely, define a closed
annulus to be an affinoid of the form

A(α, β) = SpK〈β−1T, αT−1〉 = {z ∈ A1 : α ≤ |z| ≤ β},
and define an open annulus to be a rigid space of the form A(α, β)− (i.e., the formal
fiber over the singular point of the canonical reduction of a closed annulus). As in
§4.8, we define the modulus of a closed (resp. open) annulus A = A(α, β) (resp.
A = A(α, β)−) to be m(A) = logv β − logv α. Generalizing Proposition 4.8.4, we
have:

Lemma 5.1.3. (i) Any two closed (resp. open) rational (i.e., with radii
in |K∗|) disks are isomorphic as rigid spaces.

(ii) Two closed (resp. open) rational annuli A,A′ are isomorphic as rigid
spaces if and only if they have the same modulus.

For simplicity, we assume for the moment that the special fiber Z of the formal
model X satisfies Z =

⋃t
i=1 Zi, where the Zi are smooth and irreducible projective

curves, each containing at least two double points of Z. Let Z∗i be the nonsingular
affine curve obtained from Zi by removing all double points of Z lying on Zi.
The rigid analytic space X∗i = π−1(Z∗i ) is an affinoid with nonsingular canonical
reduction Z∗i . For each ordinary double point p ∈ Z(K̃), lying on the components
Zi and Zj , we also have an affinoid Xp = π−1(Z∗i ∪ Z∗j ∪ {p}) whose canonical
reduction is (Z∗i ∪Z∗j ∪{p}). As a rigid space, X is obtained by gluing the affinoids
Xp along the affinoid subsets X∗i .

Berkovich’s construction of globalK-analytic spaces in [Ber93] (c.f. §2.4) yields
a space XBerk (the “Berkovich analytification” of Xrig) obtained by gluing the
affinoid spaces (Xp)Berk along the affinoid subsets (X∗i )Berk. The reduction map
π : X(K) → Z(K̃) extends naturally to a map red : XBerk → Z, where the target
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space is the set of scheme-theoretic points of Z. According to [Ber90, Proposition
2.4.4], for each irreducible component Zi of Z, there is a unique point ζi of XBerk

reducing to the generic point of Zi. We now describe, following [FvdP04, §7.2],
how the underlying topological space of XBerk can be understood in terms of the
dual graph of Z.

Recall that the spaces (X∗i )Berk correspond to the irreducible components of
Z, and the spaces (Xp)Berk to the intersections between components. This can be
conveniently encoded via the dual graph ΣX of Z, which is the topological graph
having a vertex for each component of Z, and an edge for each point of intersection
between two components. The gluing data for the space XBerk corresponds in
a natural way to ΣX. According to [Ber90, Chapter 4], since each X∗i is a 1-
dimensional affinoid with nonsingular canonical reduction, the spaces (X∗i )Berk are
all contractible. More concretely, there is a deformation retraction ri : (X∗i )Berk �
{ζi}.

One can visualize the retraction ri as follows. By Proposition 5.1.1, the rigid-
analytic formal fiber π−1(z) over any closed point z ∈ Z∗i (K̃) is isomorphic to the
open disk B(0, 1)−. Applying the Berkovich analytification functor, one sees that
the inverse image red−1(z) is isomorphic to the Berkovich open disk B(0, 1)−. The
closure of red−1(z) in (X∗i )Berk (or equivalently, in XBerk) is precisely red−1(z) ∪
{ζi}, which is isomorphic to B(0, 1)− ∪ {ζGauss}, the closure of B(0, 1)− in B(0, 1).
Using the tree structure of B(0, 1)−, one therefore sees that each Berkovich formal
fiber red−1(z) admits a deformation retraction onto {ζi}, and the deformation re-
traction r : (X∗i )Berk � {ζi} is obtained by simultaneously retracting all of these
formal fibers to this point.

Similarly, for each singular point p of Z, corresponding to an intersection of Zi
and Zj , the space (Xp)Berk deformation retracts onto a line segment ep with end-
points ζi and ζj . One can again visualize this retraction using Proposition 5.1.1, as
there is an isomorphism ψ : π−1(p)→ A(αp)− from the rigid-analytic formal fiber
π−1(p) to an open annulus A(αp)− which extends to an isomorphism on Berkovich
spaces. By considering the reduction map red : Xp → Z∗i ∪ Z∗j ∪ {p}, one sees
that (Xp)Berk = red−1(p) ∪ (Xi)Berk ∪ (Xj)Berk as sets. The closure of red−1(p) in
(Xp)Berk is red−1(p) ∪ {ζi, ζj}, and the open annulus A(αp)− ⊂ B(0, 1) deforma-
tion retracts onto the open segment connecting its two boundary points ψ(ζi) and
ψ(ζj) in A1

Berk, which are the type II points corresponding to the disks B(0, 1) and
B(0, αp). (Of course, A(αp)− is in fact contractible, but to get a retraction which
is compatible with the gluing maps, we need to keep the points ψ(ζi) and ψ(ζj)
fixed.) The segment ep is the unique path in (Xp)Berk from ζi to ζj , and can be
thought of as a “line of embedded disks” {ψ−1(B(0, r)) : αp ≤ r ≤ 1} linking the
“Gauss point” of X∗i to the “Gauss point” of X∗j .

Globalizing, we now see that the entire Berkovich space XBerk admits a de-
formation retraction onto the topological space obtained by gluing the segments
ep along the points ζi, which is precisely the topological dual graph ΣX. Let
r : XBerk → ΣX be this retraction map. For x ∈ ΣX, each connected compo-
nent of r−1(x)\{x} is isomorphic to B(0, 1)−, and in particular is a topological
tree.
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Figure 5. The Berkovich analytic space associated to an elliptic
curve with multiplicative reduction.

We now define a path metric ρ(x, y) on H(X) = XBerk\X(K). It is enough
to define ρ locally, so we may assume that either x, y lie in the closure of the
same connected component V of r−1(z) for some z ∈ ΣX, or that x, y ∈ ep for
some singular point p ∈ Z. Since both V and ep are isomorphic to subsets of
B(0, 1), we can use the path metric ρ on B(0, 1) to define distances locally on
H(X). Lemma 5.1.3 shows that this is well-defined. It is not hard to show that
the metric on H(X) is canonical, i.e., does not depend on our choice of a particular
semistable formal model X of X.

Remark 5.1.4. The set S(XBerk) of points of XBerk corresponding to generic
points of irreducible components of Z having arithmetic genus at least 1 is inde-
pendent of the formal model X. We will refer to S(XBerk) as the set of marked
points of XBerk. The set of marked points of XBerk is empty if and only if X is a
Mumford curve in the sense of [GvdP80].

Remark 5.1.5. If the genus of X is at least one, there is a maximal subgraph
Σ of ΣX containing the set S(XBerk) of marked points and having no unmarked
vertices of degree 1. Following Berkovich, the metrized graph Σ is called the skeleton
of XBerk. The skeleton is canonical, and in particular does not depend on the choice
of a formal model X for X. We refer to the metrized graph ΣX, which admits a
deformation retraction onto Σ, as the skeleton of XBerk with respect to the formal
model X.

The existence of the skeleton of a curve of genus at least one, and the non-
existence of such a canonical skeleton for curves of genus zero, is closely related
to the theory of minimal models for arithmetic surfaces (see, e.g., [Liu02]). For
example, if X has genus at least 2 and is defined over a discretely valued subfield
K ′ of K with valuation ring R′, then the skeleton of the formal covering associated
to the (unique) minimal regular model of X over R′ coincides with the skeleton of
XBerk.

5.2. Tate elliptic curves. The semistable reduction theorem is not the only
way to study Berkovich curves. For example, when studying curves with totally
degenerate reduction, one can also profit considerably from the point of view offered
by p-adic uniformization theory. To illustrate the utility of this point of view, in
this section we give a detailed topological description of the Berkovich analytic
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space associated to a Tate elliptic curve (i.e., an elliptic curve with multiplicative
reduction) from the point of view of Tate’s non-archimedean uniformization theory.

Let E/K be an elliptic curve with multiplicative reduction, let Erig be the
corresponding rigid analytic space, and let EBerk be the corresponding Berkovich
analytic space. According to Tate’s theory, Erig ∼= (Grig

m )/qZ, where Grig
m is the rigid

analytic space associate to the multiplicative group over K and q ∈ K∗ satisfies
|q| < 1. In particular, E(K) ∼= K∗/qZ. By choosing coordinates on P1, we can
identify Grig

m with (P1)rig\{0,∞}. We can then view the Berkovich analytic space
EBerk somewhat informally as the space obtained from the closed annulus V =
B(0, 1)\B(0, |q|)− by identifying the affinoid subspaces V1 = B(0, 1)\B(0, 1)− and
V2 = B(0, |q|)\B(0, |q|)− in the “obvious” way. Let π : V → EBerk denote the
corresponding quotient map.

We may visualize the resulting graph structure on EBerk, and the path distance
ρ on H(EBerk) := EBerk\E(K), as follows. Let ζ, ζ ′ be the points of P1

Berk corre-
sponding to B(0, 1) and B(0, |q|), respectively, and let I denote the unique path in
P1

Berk from ζ to ζ ′, so that I is isometric to a segment of length ` = − logv |q| with
0 < ` <∞. Then the image π(I) of I in EBerk is isometric to a circle Σ of length `,
which we call the skeleton of EBerk. There is also a retraction map r : EBerk → Σ
induced by the retraction (which we also denote by r) of V onto I. Note that if
x ∈ I corresponds to the disk B(0, R) with R ∈ |K∗| (i.e., x is a point of type II),
then the space {z ∈ V : r(z) = x} is naturally identified with B(0, R)\B(0, R)−,
which itself is isomorphic (and isometric) to B(0, 1)\B(0, 1)−. If R 6∈ |K∗| (i.e.,
x is a point of type III), then r−1(x) = {x}. In this way, we can view EBerk as
fibered over the circle Σ, and each fiber r−1(x) for x ∈ Σ is isomorphic either to
a point or to the closed annulus W = B(0, 1)\B(0, 1)−, which has the structure
of an infinite metrized tree. In particular, EBerk can be thought of as a family of
infinite metrized trees fibered over the rational points of the circle Σ. For any two
points x, y ∈ EBerk, we can define the path-distance ρ(x, y) as the length of the
shortest path from x to y, where path lengths are given on each annulus W by the
usual path distance on P1

Berk, and on Σ by identifying it with a circle of length `. If
x 6= y, we have ρ(x, y) =∞ if and only if one of x and y is in E(K). In particular,
ρ(x, y) <∞ for all x, y ∈ H(EBerk).

The Berkovich topology on EBerk is the quotient topology induced by the map
π; a fundamental system of open neighborhoods for the topology on EBerk is given
by {UΓ,V }, where Γ is a finitely branched connected subgraph of H(EBerk) contain-
ing Σ, V ⊆ Γ is open in the metric topology on Γ, and UΓ,V = r−1(V ).

Remark 5.2.1. The space P1
Berk\{0,∞} is simply connected, and is in fact the

universal covering space of EBerk via the natural map from P1
Berk\{0,∞} to EBerk.

The fundamental group of EBerk is Z, since it admits a deformation retraction onto
the circle Σ. This is yet another illustration of the power and utility of Berkovich’s
theory: it allows one to study non-archimedean analytic spaces using standard tools
of algebraic topology!

5.3. Harmonic functions on Berkovich curves. In this section, we define
what it means for a real-valued function on a Berkovich curve XBerk to be harmonic.
This is analogous to the discussion in §3.2.
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5.3.1. Definition of a harmonic function. As in §1.4.3, if x ∈ XBerk then there
is a well-defined set Tx of tangent directions at x, defined as the set of equivalence
classes of paths `x,y emanating from x, where y is any point of XBerk not equal to
x and two paths `x,y1 , `x,y2 are equivalent if they share a common initial segment.

Define HR(XBerk) to be the set of all points x ∈ XBerk for which Tx has more
than one element. (This coincides with the definition of HR

Berk when X = P1
Berk.)

As with HBerk, we view HR(XBerk) as equipped with the metric ρ defined in §5.1.

Let U be a connected open subset of XBerk, and let f : U → R ∪ {±∞} be a
continuous extended-real valued function which is finite-valued on HR(XBerk).

As in §3.2, we say that f is continuous piecewise affine on U , and write f ∈
CPA(U) if:
(CPA1) The restriction of f to HR(XBerk) is piecewise-affine with respect to the

path metric ρ.
(CPA2) If f ∈ CPA(U) and x ∈ U∩HR(XBerk), then for each ~v ∈ Tx the directional

derivative d~vf(x) is well-defined.
(CPA3) For each x ∈ U ∩HR(XBerk), we have d~vf(x) = 0 for all but finitely many

~v ∈ Tx. In particular, the quantity

∆x(f) := −
∑
v∈Tx

d~vf(x)

is well-defined for each x ∈ U ∩HR(XBerk).
Let x ∈ U , and let h ∈ CPA(U). As in §3.2, we make the following definition.

Definition 5.3.1. 1. If x ∈ HR(XBerk), we say that h is harmonic at x if
∆x(h) = 0.

2. If x 6∈ HR(XBerk), we say that h is harmonic at x if h is constant on an open
neighborhood of x.

5.3.2. Example: Logarithms of absolute values of meromorphic functions. As
before, we let XBerk be a Berkovich curve, and we let f be a nonzero meromorphic
function on XBerk. We also let X be a formal model for the underlying rigid-analytic
space Xrig, and we let r : XBerk � ΣX be the corresponding retraction onto the
skeleton of XBerk with respect to X.

Proposition 5.3.2. Let ϕ be the unique continuous function from XBerk to
R ∪ {±∞} for which ϕ(x) = − logv |f(x)| outside the zeros and poles of f . Then
ϕ ∈ CPA(XBerk).

Sketch. Since the property of belonging to CPA(XBerk) is local, and since
the zeros and poles of a meromorphic function are finite in number, it suffices to
check the result for an affinoid V on which either f or 1/f is analytic. In this case,
ϕ is continuous by definition. Moreover, the linearity of ϕ can be checked locally
on residue classes U isomorphic to open disks or open annuli in P1

Berk. So we can
reduce the assertion that ϕ satisfies (CPA1) to the corresponding fact on P1

Berk,
which we already know to be true. Furthermore, note that XBerk\ΣX is a disjoint
union of branches emanating from ΣX, each of which is isomorphic to an open disk
U in P1

Berk. By the corresponding fact for open subsets of P1
Berk, we obtain that

ϕ satisfies (CPA2). Finally, if f has no zeros or poles on such a branch, then the
corresponding function φ̃ = − logv |f̃ | : U → R is harmonic on an open disk, so by
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Corollary 3.3.2 it is constant. It follows that ϕ is constant in all but finitely many
tangent directions emanating from ΣX, proving (CPA3). �

We will now show that ϕ is harmonic outside the zeros and poles of f . In order
to do this, we describe the translation into the language of Berkovich spaces of some
results of Bosch and Lütkebohmert from rigid analysis (see [BL85, Section 3]). As
before, let Z1, . . . , Zt be the irreducible components of Z, and for each i = 1, . . . , t,
choose an open affine subset Wi ⊂ Zi. Then the preimage Vi = π−1(Wi) is an
affinoid subdomain of Xrig.

Let ζi ∈ XBerk be the “Gauss point” corresponding to an irreducible component
Zi of Z. The tangent space Tζi , which is the set of equivalence classes of paths
emanating from ζi, is naturally in bijection with the set Z̃i(K̃) of closed points
of Z̃i, where Z̃i is the normalization of Zi. We make this bijection explicit by
writing Tζi = {~vz̃}z̃∈Z̃i(K̃), where ~vz̃ is a formal unit vector emanating from ζi in
the direction corresponding to z̃ ∈ Z̃i(K̃).

Remark 5.3.3. Our explicit “visualization” of XBerk using the semistable re-
duction theorem shows that every point x ∈ XBerk\{ζ1, . . . , ζt} has an open neigh-
borhood isomorphic to an open disk or open annulus in P1

Berk, and by the corre-
sponding result on P1

Berk, in order to show that ϕ(x) is harmonic outside the zeros
and poles of f , it suffices to check that ∆ζi(ϕ) = 0 at the finitely many points
ζi ∈ XBerk corresponding to the generic points of the irreducible components of Z.

For each component Zi, there exists a nonzero scalar ci = ci(f) ∈ K∗, depend-
ing on Zi and on f , such that c−1

i f reduces to a nonzero rational function on Zi.
The absolute value |ci| of ci is uniquely determined, and is in fact equal to |f |ζi .
The divisor of c−1

i f on the normalization Z̃i of Zi depends only on f , not on the
choice of a particular constant ci. We can thus define the order of f at a point
z̃ ∈ Z̃i(K̃) to be

ordz̃,Z̃i(f) := ordz̃(c−1
i f).

Part 2 of the following proposition is Proposition 3.1 of [BL85], and part 1 is
established as the key step in the proof of this proposition.

Proposition 5.3.4. Let f be a nonzero meromorphic function on XBerk.

1. If z̃ ∈ Z̃i, then the directional derivative d~vz̃ (− logv |f |)(ζi) is equal to
− ordz̃,Z̃i(f).

2. Let z ∈ Z(K̃), and denote by z̃1, . . . , z̃r the points in the normalization
of Z lying over z (so that r equals 1 or 2, depending on whether z is
nonsingular or singular). Then the divisor of f has degree

deg(Div(f)|π−1(z)) =
r∑
i=1

ordz̃i,Z̃i(f).

on the formal fiber π−1(z).

As an immediate consequence of part 1 of the proposition, we obtain:
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Corollary 5.3.5. Let f be a nonzero meromorphic function on XBerk, let Zi
be an irreducible component of Z, and let ζi ∈ XBerk be the corresponding “Gauss
point”. Then

∆ζi(− logv |f |) =
∑

z̃∈Z̃i(K̃)

d~vz̃ (logv |f |)(ζi) = 0.

Proof. The sum in question is equal to∑
z̃∈Z̃i(K̃)

ordz̃,Z̃(c−1
i f) = 0,

since a rational function on a complete nonsingular curve has the same number of
zeros as poles (counting multiplicities). �

Combining Corollary 5.3.5 and Remark 5.3.3, we find:

Corollary 5.3.6. Let f be a nonzero meromorphic function on XBerk, and
let ϕ = − logv |f |. Then ϕ is harmonic outside the zeros and poles of f .

5.4. The Laplacian on a Berkovich curve.
5.4.1. A higher genus analogue of Berkovich’s classification theorem. Let XBerk

be a Berkovich curve over K.
Define a finite subgraph of XBerk to be a (finite and connected) metrized graph

contained in HR(XBerk). It follows from our description in §5.1 that the collection
S of all finite subgraphs Γα of XBerk containing ΣX forms an arboreal system of
metrized graphs.

Moreover, we have the following generalization of Theorem 2.2.1, which can
be thought of as an extension of Berkovich’s classification theorem from P1

Berk to
arbitrary Berkovich curves.

Theorem 5.4.1. XBerk is homeomorphic to lim←−Γ∈S
Γ.

There is a useful and more natural version of Theorem 5.4.1 which can be
formulated in terms of formal models. If X is a semistable formal model of X, the
dual graph ΓX of the special fiber of X can be naturally endowed with the structure
of a metrized graph. Moreover, given any two such formal models X1 and X2,
there is a third semistable formal model X3 of X which dominates both X1 and X2.
Consequently, one finds that the collection

{ΓX : X is a semistable formal model of X}
forms an arboreal system of metrized graphs. The reformulation of Theorem 5.4.1
in terms of formal models is that XBerk is homeomorphic to lim←−X

ΓX.
5.4.2. The Laplacian on XBerk. The discussion in the previous section shows

that XBerk is naturally endowed with the structure of an arboretum, and in partic-
ular there is a well-defined Laplacian operator on XBerk.

Here is an example which generalizes both Example 4.5.6 and Corollary 5.3.6.

Example 5.4.2. Let ϕ be a nonzero meromorphic function on the algebraic
curve X/K. Then there is a continuous function − logv |ϕ| : XBerk → R∪{±∞} in
CPA(XBerk) extending the usual map x 7→ − logv |ϕ(x)| on X(K). One can deduce
from the discussion in §5.3.2 the following Poincaré-Lelong formula for Berkovich
curves:

(5.4.3) ∆XBerk (− logv |ϕ|) = δDiv(ϕ) .
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(See Thuillier [Thu05] for a generalization of this result.)

Arizona Winter School Project #3: The left-hand side of formula (5.4.3)
depends on the metric structure on HR(XBerk). Show that ρ is the unique metric
on HR(XBerk) for which the formula (5.4.3) holds.

5.4.3. Examples. We give some examples of Laplacians of functions on Berkovich
curves.

Example 5.4.4. If XBerk is a Berkovich curve and y, z ∈ XBerk, there is,
up to an additive constant, a unique function f(x) = κz(x, y) : XBerk → R ∪
{±∞} in BDV(XBerk) for which ∆XBerk(f) = δy − δz. We call any such function
a fundamental potential kernel (or generalized Hsia kernel), and the corresponding
function [x, y]z = q

−κz(x,y)
v a canonical distance function on XBerk relative to z;

c.f. (4.5.4).
The restriction of the canonical distance [x, y]z to x, y, z ∈ X(K) agrees with

the canonical distance constructed by Rumely in [Rum89] (which is also defined
only up to a constant).

As in Proposition 1.6.10(5), the canonical distance can be used to factorize
absolute values of meromorphic functions on X: if f is a nonzero meromorphic
function with divisor Div(f) =

∑
mi(ai), then for any z ∈ XBerk there is a constant

C (depending on z and f) such that

|f(x)| = C ·
∏

[x, ai]miz

for all x ∈ XBerk.

Example 5.4.5. Let EBerk be the Berkovich analytic space associated to a
Tate elliptic curve E/K, and let Σ be the skeleton of EBerk, which is isometric
to a circle of length ` > 0. Let µ be the normalized Haar measure supported on
Σ ⊂ EBerk. Let λ : E(K)\{O} → R be the Néron canonical local height relative
to the origin, as defined in [Sil94, §VI.1]. Then λ extends in a canonical way to a
function λ : EBerk → R ∪ {+∞} which is singular only at the origin O. Moreover,
λ ∈ BDV(EBerk) and

(5.4.6) ∆EBerk(λ) = δO − µ,
so that λ can be considered as a kind of Green’s function on EBerk. Moreover, the
normalization of λ given in [Sil94, §VI.1] ensures that

(5.4.7)
∫
EBerk

λ dµ = 0.

The canonical local height λ can in fact be completely characterized as the unique
function satisfying (5.4.6) and (5.4.7).

5.4.4. The Laplacian on a simple subdomain of XBerk. For domains in P1
Berk,

we defined a Laplacian operator ∆Ū on the closure Ū of U by viewing Ū as the
inverse limit of all finite subgraphs of P1

Berk contained in U . If U ⊆ XBerk is an
arbitrary domain, it is no longer true in general that Ū is the inverse limit of all finite
subgraphs of XBerk contained in U . For one thing, such graphs need not belong
to S, since they might not contain the skeleton ΣX. Another problem is illustrated
by the following observation: if X is a Tate elliptic curve, r : XBerk → Σ is the
corresponding retraction, and V = Σ\{p} for some point p ∈ Σ, then U = r−1(V )
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has closure equal to U ∪ {p}, which is not the same as the inverse limit of all finite
subgraphs of XBerk contained in U .

There are various possible ways to remedy the situation. The most natural is
probably the development of potential theory on Berkovich curves as in [Thu05]
in terms of formal and rigid geometry.

Here is another possible approach:

Definition 5.4.8. A simple compact set inXBerk is a subset of the form r−1
Γ (W )

with Γ ∈ S and W a connected union of closed intervals in Γ.

If V is a simple compact set in XBerk, we define

SV = {Γ ∩ V : Γ ∈ S and Γ ∩ V 6= ∅}.
With a bit of thought, one can show that SV is an arboreal system of metrized

graphs, and that (V, SV ) is an arboretum. In particular, V is homeomorphic to
lim←−Γ′∈SV

Γ′, and one can construct a corresponding Laplacian operator ∆V .
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2007.
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