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Abstract

We give a survey of some classical and modern methods for solving
Diophantine equations.

1 Introduction to Diophantine Equations

The study of Diophantine equations is the study of solutions of polynomial
equations or systems of equations in integers, rational numbers, or sometimes
more general number rings. It is one of the oldest branches of number theory,
in fact of mathematics itself, since its origins can be found in texts of the
ancient Babylonians, Chinese, Egyptians, Greeks,... One of the fascinations
of the subject is that the problems are usually easy to state, but more often
than not very difficult to solve, and when they can be solved sometimes
involve extremely sophisticated mathematical tools.

Perhaps even more importantly, mathematicians must often invent or ex-
tensively develop entirely new tools to solve the number-theoretical problems,
and these become in turn important branches of mathematics per se, which
often have applications in completely different problems than the one from
which they originate.

For many more details and examples, see Chapters 6 and 14 (pages 327
to 443 and 1011 to 1040) of the accompanying pdf file.
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1.1 Examples of Diophantine Problems

Let me give four examples. The first and most famous is “Fermat’s last
theorem” (FLT), stating that for n ≥ 3, the curve xn + yn = 1 has no
rational points other than the ones with x or y equal to 0 (this is of course
equivalent to the usual statement). 1

In the nineteenth century, thanks in particular to the work of E. Kummer
and P.-G. Lejeune-Dirichlet, the theorem was proved for quite a large number
of values of n, including all n ≤ 100. Together with the theory of quadratic
forms initiated by A.-M. Legendre and especially by C.-F. Gauss, one can
without exaggeration say that this single problem gave rise to algebraic num-
ber theory (rings, ideals, prime ideals, principal ideals, class numbers, units,
Dirichlet series, L-functions,...) As is well-known, although these methods
were pushed to the extreme in the twentieth century, they did not succeed
in solving the problem completely. The next progress on FLT came from
algebraic geometry thanks to the work of G. Faltings who proved the so-
called Mordell conjecture, which in particular implies that for a fixed n ≥ 3
the number of solutions to the Fermat equation is finite. However it was
only thanks to the work of several mathematicians starting with Y. Hel-
legouarch and G. Frey, and culminating with the work of K. Ribet, then
finally of A. Wiles (helped for a crucial part by R. Taylor), that the problem
was finally completely solved by using completely different tools from those
of Kummer (and even Faltings): elliptic curves, Galois representations and
modular forms. Although these subjects were not initiated by FLT, their
development was certainly accelerated by the impetus given by FLT. In par-
ticular, thanks to the work of Wiles the complete proof of the Taniyama–Weil
conjecture was obtained a few years later by C. Breuil, B. Conrad, F. Dia-
mond and R. Taylor. This latter result can be considered in itself a more
important (and certainly a more useful) theorem than FLT.

A second rather similar problem whose history is slightly different is Cata-
lan’s conjecture. This states that when n and m are greater or equal to 2,
the only solutions in nonzero integers x and y of the equation xm − yn = 1

1Incidentally, this is the place to destroy the legend concerning this statement, which
has produced an enormous number of “Fermatists” claiming to have found an “elementary”
proof that Fermat may have found himself: Fermat made this statement in the margin
of his copy of the book by Diophantus on number theory (at the place where Diophantus
discusses Pythagorean triples, see below), and claimed to have found a marvelous proof
and so on. However, he wrote this statement when he was young, never claimed it publicly,
and certainly never imagined that it would be made public, so he forgot about it. It may
be possible that there does exist an elementary proof (although this is unlikely), but we can
be positively sure that Fermat did not have it, otherwise he would at least have challenged
his English colleagues as was the custom at that time.
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come from the equality 32 − 23 = 1. This problem can be naturally attacked
by the standard methods of algebraic number theory originating in the work
of Kummer. However, it came as a surprise that an elementary argument
due to Cassels (see Theorem 3.11) shows that the “first case” is impossible,
in other words that if xp − yq = 1 with p and q primes then p | y and q | x.
The next important result due to R. Tijdeman using Baker’s theory of lin-
ear forms in logarithms of algebraic numbers was that the total number of
quadruplets (m, n, x, y) satisfying the required conditions is finite. Note that
the proof of this finiteness result is completely different from Faltings’s proof
of the corresponding one for FLT, and in fact in the latter his result did not
imply the finiteness of the number of triples (x, y, n) with n ≥ 3 and xy 6= 0
such that xn + yn = 1.

Until the end of the 1990’s the situation was quite similar to that of FLT
before Wiles: under suitable conditions on the nondivisibility of the class
number of cyclotomic fields, the Catalan equation was known to have no non-
trivial solutions. It thus came as a total surprise that in 1999 P. Mihăilescu
proved that if Catalan’s equation xp − yq = 1 with p and q odd primes has a
solution then p and q must satisfy the so-called double Wieferich condition
pq−1 ≡ 1 (mod q2) and qp−1 ≡ 1 (mod p2). These conditions were known
before him, but he completely removed the conditions on class numbers.
The last step was again taken by Mihăilescu in 2001, who finished the proof
of Catalan’s conjecture. His proof was improved and simplified by several
people, including in particular Yu. Bilu and H. W. Lenstra.

The remarkable thing about the final proof is that it only uses algebraic
number theory techniques on cyclotomic fields. However it uses a large part
of the theory, including the relatively recent theorem of F. Thaine, which
has had some very important applications elsewhere. It does not use any
computer calculations, while the initial proof did.

A third example is the congruent number problem, stated by Diophan-
tus in the fourth century A.D. The problem is to find all integers n (called
congruent numbers) which are equal to the area of a Pythagorean triangle,
i.e., a right-angled triangle with all three sides rational. Very simple alge-
braic transformations show that n is congruent if and only if the Diophantine
equation y2 = x3 − n2x has rational solutions other than those with y = 0.
The problem was in an “experimental” state until the 1970’s, more precisely
one knew the congruent or noncongruent nature of numbers n up to a few
hundred (and of course of many other larger numbers). Remarkable progress
was made on this problem by J. Tunnell in 1980 using the theory of modular
forms, and especially of modular forms of half-integral weight. In effect, he
completely solved the problem, by giving an easily checked criterion for n to
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be a congruent number, assuming a weak form of the Birch–Swinnerton-Dyer
conjecture. This conjecture (for which a prize money of 1 million U.S. dollars
has been offered by the Clay foundation) is probably one of the most impor-
tant, and also one of the most beautiful conjectures in all of mathematics in
the twenty-first century.

A fourth important example is the Weil conjectures. These have to do
with the number of solutions of Diophantine equations in finite fields. Look-
ing at Diophantine equations locally, and in particular over finite fields, is
usually a first important step in its study. Let us give a simple example.
Let N(p) be the number of solutions modulo p of the equation y2 = x5 − x.
Then |N(p) − p| can never be very large compared to p, more precisely
|N(p)− p| < 4

√
p, and the constant 4 is best possible. This result is already

quite nontrivial, and the general study of the number of points on curves
culminated with work of A. Weil in 1949 proving that this phenomenon oc-
curs for all (nonsingular) curves and many other results besides. It was then
natural to ask the question for surfaces, and more generally varieties of any
dimension. This problem (in a very precise form, which in particular implied
excellent bounds on the number of solutions) became known as the Weil con-
jectures. A general strategy for solving these conjectures was put forth by
Weil himself, but the achievement of this goal was only made possible by
an amazing amount of work by numerous people. It included the creation
of modern algebraic geometry by A. Grothendieck and his students (the fa-
mous EGA and SGA treatises). The Weil conjectures were finally solved by
P. Deligne in the early 1970’s, exactly following Weil’s strategy, but using all
the tools developed since.

Note that for instance Waring’s problem (given an integer k ≥ 2, find the
smallest integer g(k) such that any nonnegative integer can be represented as
a sum of g(k) nonnegative k-th powers) or variations, will not be considered
as Diophantine equations in this course since the equation is not fixed.

1.2 Introduction to Local Methods

As is explicit or implicit in all of the examples given above (and in fact in
all Diophantine problems), it is essential to start by studying a Diophantine
equation locally, in other words prime by prime (we will see later precisely
what this means). Let p be a prime number, and let Fp ' Z/pZ be the
prime finite field with p elements. We can begin by studying our problem
in Fp (i.e., modulo p), and this can already be considered as the start of
a local study. This is sometimes sufficient, but usually not, so we refine
the study by considering the equation modulo p2, p3 and so on, i.e., by
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working in Z/p2Z, Z/p3Z... An important discovery, made by K. Hensel at
the beginning of the twentieth century, is that it is possible to regroup all
these rings with zero divisors into a single object, called the p-adic integers,
and denoted by Zp, which is an integral domain. Not only do we have the
benefit of being able to work conveniently with all the congruences modulo p,
p2, p3,... simultaneously, but we have the added benefit of having topological
properties which add a considerable number of tools that we may use, in
particular analytic methods (note that this type of limiting construction is
very frequent in mathematics, with the same type of benefits). When we
say that we study our Diophantine problem locally at p, this means that we
study it in Zp, or in the field of fractions Qp of Zp.

Let us give simple but typical examples of all this. Consider first the
Diophantine equation x2 +y2 = 3 to be solved in rational numbers or, equiv-
alently, the Diophantine equation x2 + y2 = 3z2 to be solved in rational
integers. We may assume that x and y are coprime (exercise). Looking at
the equation modulo 3, i.e., in the field F3, we see that it has no solution (x2

and y2 are congruent to 0 or 1 modulo 3, hence x2+y2 is congruent to 0 mod-
ulo 3 if and only if x and y are both divisible by 3, excluded by assumption).
Thus, our initial Diophantine equation does not have any solution.

We are here in the case of a quadratic Diophantine equation. It is crucial
to note that this type of equation can always be solved by local methods.
In other words, either we can find a solution to the equation (often helped
by the local conditions), or it is possible to prove that the equation does
not have any solutions using positivity conditions together with congruences
as above (or, equivalently, real and p-adic solubility). This is the so-called
Hasse principle, a nontrivial theorem which is valid for a single quadratic
Diophantine equation, but is in general not true for higher degree equations
or for systems of equations.

Consider now the Diophantine equation x3+y3 = 1 to be solved in nonzero
rational numbers or, equivalently, the Diophantine equation x3 + y3 = z3 to
be solved in nonzero rational integers. Once again we may assume that x, y,
and z are pairwise coprime. It is natural to consider once more the problem
modulo 3. Here, however, the equation has nonzero solutions (for example
13 + 13 ≡ 23 (mod 3)). We must go up one level, and consider the equation
modulo 9 = 32 to obtain a partial result: since it is easily checked that an
integer cube is congruent to −1, 0 or 1 modulo 9, if we exclude the possibility
that x, y, or z is divisible by 3 then we see immediately that the equation
does not have any solution modulo 9, hence no solution at all. Thus we have
proved that if x3 + y3 = z3, then one of x, y, and z is divisible by 3. This
is called solving the first case of FLT for the exponent 3. To show that the
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equation has no solutions at all, even with x, y, or z divisible by 3, is more
difficult and cannot be shown by congruence conditions alone. Indeed it is
easy to show that the equation x3 + y3 = z3 has a solution with xyz 6= 0 in
every p-adic field, hence modulo pk for any prime number p and any exponent
k (and it of course has real solutions). Thus, the Hasse principle clearly fails
here since the equation does not have any solution in rational integers. In
that case, it is necessary to use additional global arguments, whose main
tools are those of algebraic number theory developed by Kummer et al. in
the nineteenth century, and in particular class and unit groups, which are
objects of a strictly global nature.

2 Use of Local Methods

2.1 A p-adic Reminder

In this section it would be useful for the reader to have some basic knowledge
of the field of p-adic numbers Qp and its ring of integers Zp. We briefly recall
without proof what is needed:

• A homogeneous equation with integer coefficients has a nontrivial so-
lution modulo pn for all n ≥ 0 if and only if it has a nontrivial solution
in Zp (or in Qp by homogeneity).

• There is a canonical integer-valued valuation vp on Q∗
p such that, if

x ∈ Q then vp(x) is the unique integer such that x/pvp(x) can be written
as a rational number with denominator and numerator not divisible by
p.

• The elements of Qp such that vp(x) ≥ 0 are called p-adic integers, they
form a local ring Zp with maximal ideal pZp, the invertible elements of
Zp, called p-adic units, are those x such that vp(x) = 0, and if x ∈ Q∗

p

we have the canonical decomposition x = pvp(x)y where y is a p-adic
unit.

• If a ∈ Q is such that vp(a) ≥ 0 and if vp(x) ≥ 1 then the power series
(1+x)a converges. On the other hand, if vp(a) < 0 then the power series
converges for vp(x) ≥ |vp(a)|+1 when p ≥ 3, and for vp(x) ≥ |vp(a)|+2
when p = 2. In all cases, it converges to its “expected” value, for
instance if m ∈ Z \ {0} then y = (1 + x)1/m satisfies ym = 1 + x.

• Hensel’s lemma (which is nothing else than Newton’s method). We will
need only the following special case: let f(X) ∈ Qp[X] be a polynomial,
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and assume that α ∈ Qp is such that vp(f(α)) ≥ 1 and vp(f
′(α)) = 0.

Then there exists α∗ ∈ Qp such that f(α∗) = 0 and vp(α
∗ − α) ≥ 1,

and α∗ can easily be constructed algorithmically by using Newton’s
iteration.

If this is not the case, however, the reader can translate a statement such
as C(Qp) 6= ∅ as meaning that C(Z/pnZ) 6= ∅ for all n (the equations that we
will study here are homogeneous, so that there is no real difference between
C(Qp) and C(Zp)). Furthermore, consider the following statement (which
will be used below): if u ≡ 1 (mod 16Z2) there exists y ∈ Z2 such that
u = y4. The proof is as follows: if we write u = 1 + x, then y = (1 + x)1/4

is obtained by using the binomial expansion, and it converges 2-adically
because 16 | x. In “elementary” terms, this means that if we call yn ∈ Q the
truncation of the expansion of (1+x)1/4 to n terms, then the 2-adic valuation
of u−y4

n tends to infinity with n. All these statements are very easy to prove.

2.2 The Fermat Quartics x4 + y4 = cz4

Although this is certainly not the simplest kind of Diophantine equation,
we begin by studying in detail the so-called Fermat quartics x4 + y4 = cz4

because they involve very interesting notions.
Thus, let c ∈ Z, and denote by Cc the projective curve defined by the

equation x4 + y4 = cz4. To find all the integers satisfying this equation or,
equivalently, the rational points on Cc, we may clearly assume that c > 0 and
that c is not divisible by a fourth power strictly greater than 1.

The general philosophy concerning local solubility is that it is in general
possible to decide algorithmically whether a given equation is locally soluble
or not, and even whether it is everywhere locally soluble, in other words
soluble over Qp for all p, and also over R. For families of equations, such as
the ones we have here, it is also usually possible to do this, as we illustrate
in this subsection by giving a necessary and sufficient sufficient for local
solubility.

Proposition 2.1 1. Cc(Q2) 6= ∅ if and only if c ≡ 1 or 2 modulo 16.

2. If p is an odd prime divisor of c, then Cc(Qp) 6= ∅ if and only if p ≡ 1
(mod 8).

3. If p ≡ 3 (mod 4) is a prime not dividing c then Cc(Qp) 6= ∅.

4. If p ≥ 37 is a prime not dividing c then Cc(Qp) 6= ∅.

5. Cc(Q17) 6= ∅.
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6. Let p ∈ {5, 13, 29} be a prime not dividing c. Then

(a) Cc(Q5) 6= ∅ if and only if c 6≡ 3 or 4 modulo 5.

(b) Cc(Q13) 6= ∅ if and only if c 6≡ 7, 8 or 11 modulo 13.

(c) Cc(Q29) 6= ∅ if and only if c 6≡ 4, 5, 6, 9, 13, 22 or 28 modulo 29.

Proof. If (x : y : z) ∈ Cc(Qp), we may clearly assume that x, y and z
are p-adic integers and that at least one is a p-adic unit (in other words with
p-adic valuation equal to 0, hence invertible in Zp). If p - c, reduction modulo
p gives a projective curve Cc over Fp, which is smooth (nonsingular) if p 6= 2.

(1). Let u be a 2-adic unit. I claim that u ∈ Q4
2 if and only if u ≡ 1

(mod 16Z2). Indeed, if v is a 2-adic unit we can write v = 1+2t with t ∈ Z2,
and

v4 = 1 + 8t + 24t2 + 32t3 + 16t4 ≡ 1 + 8(t(3t + 1)) ≡ 1 (mod 16) .

Conversely, if u ≡ 1 (mod 16Z2) we write u = 1 + x with v2(x) ≥ 4, and
it is easy to check that the binomial expansion for (1 + x)1/4 converges for
v2(x) ≥ 4.

Now assume that x4 + y4 = cz4. Since v2(c) ≤ 3, either x or y is a 2-adic
unit. It follows that x4 + y4 ≡ 1 or 2 modulo 16, hence z is a 2-adic unit,
so that c ≡ 1 or 2 modulo 16 as claimed. Conversely, if c ≡ 1 (mod 16)
then c = t4 by my claim above, so that (t : 0 : 1) ∈ Cc(Q2), while if c ≡ 2
(mod 16), then c− 1 = t4 for some t, hence (t : 1 : 1) ∈ Cc(Q2), proving (1).

(2). Assume that p | c is odd. Since vp(c) ≤ 3, x and y are p-adic units, so
that −1 is a fourth power in Fp. If g is a generator of the cyclic group F∗p, then

−1 = g(p−1)/2, hence −1 is a fourth power in Fp if and only if p ≡ 1 (mod 8).
If this is the case, let x0 ∈ Z such that x4

0 ≡ −1 (mod p). By Hensel’s lemma
(which is trivial here since the derivative of X4 + 1 at x0 is a p-adic unit),
there exists x ∈ Zp such that x4 = −1, so that (x : 1 : 0) ∈ Cc(Qp), proving
(2).

The following lemma shows that for the remaining p it is sufficient to
consider the equation in Fp.

Lemma 2.2 Let p - 2c be a prime number. Then Cc(Qp) 6= ∅ if and only if
Cc(Fp) 6= ∅. In particular if p 6≡ 1 (mod 8) then

Cc(Qp) 6= ∅ if and only if c mod p ∈ F4
p + F4

p .

Proof. One direction is clear. Conversely, assume that Cc(Fp) 6= ∅, and let
(x0 : y0 : z0) with x0, y0, and z0 not all divisible by p such that x4

0 + y4
0 ≡ cz4

0
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(mod p). Since p - c, either p - x0 or p - y0. Assume for instance that p - x0,
and set f(X) = X4 + y4

0 − cz4
0 . Clearly vp(f

′(x0)) = 0 and vp(f(x0)) ≥ 1,
so that by Hensel’s lemma there exists t ∈ Qp such that f(t) = 0, hence
(t : y0 : z0) ∈ Cc(Qp), proving the converse.

Finally, assume that p 6≡ 1 (mod 8). If x4 + y4 ≡ cz4 (mod p) with x
or y not divisible by p, we cannot have p | z otherwise x4 ≡ −y4 (mod p)
so that −1 is a fourth power modulo p, a contradiction. Thus p - z, hence
(xz−1)4 + (yz−1)4 ≡ c (mod p), finishing the proof of the lemma. ut

(3). Let p - c, p ≡ 3 (mod 4). I claim that there exist x and y in Z such
that x4 + y4 ≡ c (mod p). Indeed, in a finite field F any element is a sum of
two squares (in characteristic 2 any element is a square so the result is trivial,
otherwise if q = |F| then there are (q +1)/2 squares hence (q +1)/2 elements
of the form c−y2, so the two sets have a nonempty intersection). Thus there
exist u and v such that c ≡ u2 + v2 (mod p). However, when p ≡ 3 (mod 4)
we have F∗p

2 = F∗p
4: indeed we have a trivial inclusion, and the kernel of the

map x 7→ x4 from F∗p into itself is ±1, so that |F∗p4| = (p − 1)/2 = |F∗p2|,
proving the equality. Thus c = x4 + y4, as claimed, and the above lemma
proves (3).

(4). If p - 2c the curve Cc is smooth and absolutely irreducible. Its genus
is at most equal to 3 (in fact equal), so that by the Weil bounds we know
that |Cc(Fp)| ≥ p + 1 − 6p1/2. This is strictly positive (for p prime) if and
only if p ≥ 37, so that (4) follows from the above lemma.

(5) and (6). Thanks to the above cases, it remains to consider the primes
p not dividing c such that 3 ≤ p ≤ 31 and p ≡ 1 (mod 4), in other words
p ∈ {5, 13, 17, 29}. For such a p, −1 is a fourth power modulo p only for
p = 17. In that case, Hensel’s lemma as usual shows that there exists t ∈ Q4

17

such that −1 = t4, proving (5) in this case. Otherwise, we compute that

F4
5 = {0, 1}, F4

13 = {0, 1, 3, 9}, F4
29 = {0, 1, 7, 16, 20, 23, 24, 25} ,

and we deduce the list of nonzero elements of F4
p + F4

p, proving (6). ut

Remark. In the above proof we have used the Weil bounds, which are not
easy to prove, even for a curve. In the present case, however, the equations
being diagonal it is not difficult to prove these bounds using Jacobi sums.

Corollary 2.3 The curve Cc is everywhere locally soluble (i.e., has points
in R and in every Qp) if and only if c > 0 and the following conditions are
satisfied.
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1. c ≡ 1 or 2 modulo 16.

2. p | c, p 6= 2 implies p ≡ 1 (mod 8).

3. c 6≡ 3 or 4 modulo 5.

4. c 6≡ 7, 8 or 11 modulo 13.

5. c 6≡ 4, 5, 6, 9, 13, 22 or 28 modulo 29.

Proof. Clear. ut

As an interesting consequence, we give the following.

Corollary 2.4 For all primes p such that p ≡ 1 (mod 1160) the curve Cp2

is everywhere locally soluble, but is not globally soluble.

Proof. It is clear that the above conditions are satisfied modulo 16, 5, and
29, and also modulo 13 since 7, 8, and 11 are nonquadratic residues modulo
13. On the other hand a classical and easy result of Fermat states that the
equation x4 + y4 = Z2 does not have any nontrivial solutions, so this is in
particular the case for our equation x4 + y4 = (pz2)2. ut

Since by Dirichlet’s theorem on primes in arithmetic progressions there
exist infinitely many primes p ≡ 1 (mod 1160) this corollary gives infinitely
many examples where everywhere local solubility does not imply global sol-
ubility.

An equation (or system of equations) is said to satisfy the Hasse principle
if everywhere local solubility implies global solubility. Important examples
are given by quadratic forms thanks to the Hasse–Minkowski theorem which
tells us that a quadratic form has nontrivial solutions over Q if and only if
it is everywhere locally soluble. Unfortunately the Hasse principle is usually
not valid, and the above result gives infinitely counterexamples.

The study of the global solubility of Fermat quartics is harder and will
be considered later.

2.3 Fermat’s Last Theorem (FLT)

Recall that FLT states that the equation xn+yn = zn has no integral solutions
with xyz for n ≥ 3, in other words that the curve xn + yn = 1 has no other
rational points than those with x or y equal to 0. Note that, although these
points are easy (!) to spot, they are not trivial, and this makes the problem
more difficult than if there were none at all.
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Thanks to Fermat’s impossibility result on the equation x4 + y4 = z2, it
is immediate to see that we may reduce to equations of the form xp +yp = zp

with p ≥ 3 prime, and x, y, and z pairwise coprime integers. As we have seen
in the introduction, it is convenient to separate FLT into two subproblems:
FLT I deals with the case where p - xyz, and FLT II with the case p | xyz.
Intuitively FLT I should be simpler since the statement is now that there
exist no solutions at all, and indeed this is the case. We will not embark on
a study of FLT, but in this section we mention what can be said using only
local methods. We begin by the following.

Proposition 2.5 The following three conditions are equivalent.

1. There exists three p-adic units α, β, and γ such that αp + βp = γp (in
other words FLT I is soluble p-adically).

2. There exists three integers a, b, c in Z such that p - abc with ap+bp ≡ cp

(mod p2).

3. There exists a ∈ Z such that a is not congruent to 0 or −1 modulo p
with (a + 1)p ≡ ap + 1 (mod p2).

Proof. From the binomial theorem it is clear that if u ≡ 1 (mod pZp) then
up ≡ 1 (mod p2Zp). Thus if u ≡ v (mod pZp) and u and v are p-adic units,
then up ≡ vp (mod p2Zp). We will use this several times without further
mention. Taking a, b and c to be residues modulo p of α, β and γ thus shows
that (1) implies (2). Conversely, assume (2). We would like to apply Hensel’s
lemma. However, the congruence is not quite good enough, so we have to do
one step by hand. Let ap + bp = cp + kp2 for some k ∈ Z, and set d = c + kp,
so that p - d. Then by the binomial theorem dp ≡ cp + kp2cp−1 (mod p3), so
that

ap + bp − dp ≡ kp2(1− cp−1) ≡ 0 (mod p3)

since p - c. We can now apply Hensel’s lemma to the polynomial f(X) =
(Xp + bp − dp)/p and to α = a: we have vp(f

′(a)) = vp(a
p−1) = 0 since p - a,

while vp(f(a)) ≥ 2 by the above, so Hensel’s lemma is applicable, proving
(1).

Clearly (3) implies (2). Conversely, assume (2), i.e., that cp ≡ ap + bp

(mod p2) with p - abc. In particular c ≡ a + b (mod p). Thus, if we set
A = ba−1 modulo p, then by the above remark Ap ≡ bpa−p (mod p2) and
(A + 1)p ≡ cpa−p (mod p2), so that (A + 1)p ≡ Ap + 1 (mod p2), proving (3)
and the proposition. ut
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Corollary 2.6 FLT I cannot be proved by congruence conditions (i.e., p-
adically) if and only if condition (3 ) of the proposition is satisfied for some a
such that 1 ≤ a ≤ (p− 1)/2.

Proof. Indeed, condition (3) is invariant when we change a modulo p, and
also under the change a 7→ p− 1− a, so the result is clear. ut

Corollary 2.7 If for all a ∈ Z such that 1 ≤ a ≤ (p − 1)/2 we have (a +
1)p − ap − 1 6≡ 0 (mod p2), then the first case of FLT is true for p.

Proof. Indeed, if ap + bp = cp with p - abc then condition (2) of the
proposition is satisfied, hence by (3), as above there exists a such that 1 ≤
a ≤ (p− 1)/2 with (a + 1)p − ap − 1 ≡ 0 (mod p2), proving the corollary. ut

For instance, thanks to this corollary we can assert that FLT I is true
for p = 3, 5, 11, 17, 23, 29, 41, 47, 53, 71, 89, 101, 107, 113, 131, 137, 149,
167, 173, 191, 197, which are the prime numbers less than 200 satisfying the
condition of the corollary.

Using global methods, and in particular the Eisenstein reciprocity law,
one can prove that it is sufficient to take a = 1 in the above corollary, in
other words that FLT I is true as soon as 2p − 2 6≡ 0 mod p2. This result is
due to Wieferich.

3 Naive Factorization over Z
We now start our study of global (as opposed to local) methods, and begin
by the most naive approach, which sometimes work: factorization of the
equation over Z. We give two important examples where the results are
quite spectacular: once again a result on FLT I, called Wendt’s criterion.
What is remarkable about it, apart from the simplicity of its proof, is that it
is highly probable that is applicable to any prime number p, and this would
give an alternate proof of FLT I if this could be shown. Unfortunately, to
prove that it is indeed applicable to all p would involve proving results in
analytic number theory which are at present totally out of reach. The second
example is the theorem of Cassels on Catalan’s equation.

3.1 Wendt’s Criterion for FLT I

Proposition 3.1 (Wendt) Let p > 2 be an odd prime, and k ≥ 1 be an
integer. Assume that the following conditions are satisfied.
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1. k ≡ ±2 (mod 6).

2. q = kp + 1 is a prime number.

3. q - (kk−1)R(Xk−1, (X +1)k−1), where R(P, Q) denotes the resultant
of the polynomials P and Q.

Then FLT I is valid, in other words if xp + yp + zp = 0 then p | xyz.

Proof. Assume that xp + yp + zp = 0 with p - xyz and as usual x, y, and
z pairwise coprime. We can write

−xp = yp + zp = (y + z)(yp−1 − yp−2z + · · ·+ zp−1) .

Clearly the two factors are relatively prime: we cannot have p | (y + z)
otherwise p | x, and if r 6= p is a prime dividing both factors then y ≡
−z (mod r) hence the second factor is congruent to pyp−1 modulo r, and
since r 6= p we have r | y, hence r | z contradicting the fact that y and z
are coprime. Since p is odd (otherwise we would have to include signs), it
follows that there exist coprime integers a and s such that y + z = ap and
yp−1 − yp−2z + · · · + zp−1 = sp. By symmetry, there exist b and c such that
z + x = bp and x + y = cp.

Consider now the prime q = kp + 1. The Fermat equation implies that

x(q−1)/k + y(q−1)/k + z(q−1)/k ≡ 0 (mod q) .

I claim that q | xyz. Indeed, assume by contradiction that q - xyz, and let
u = (x/z)(q−1)/k mod q, which makes sense since q - z. Since q - x we have
uk − 1 ≡ 0 (mod q). On the other hand u + 1 ≡ −(y/z)(q−1)/k (mod q),
and since k is even and q - y we deduce that (u + 1)k − 1 ≡ 0 (mod q). It
follows that the polynomials Xk − 1 and (X +1)k − 1 have the common root
u modulo q, contradicting the assumption that q - R(Xk − 1, (X + 1)k − 1).

Thus q | xyz, and by symmetry we may assume for instance that q | x.
Thus

0 ≡ 2x = (x + y) + (z + x)− (y + z) = cp + bp + (−a)p

= c(q−1)/k + b(q−1)/k + (−a)(q−1)/k (mod q) .

As above, it follows that q | abc. Since q | x and x, y and z are pairwise
coprime, we cannot have q | bp = z + x or q | cp = x + y. Thus q | a. It
follows that y ≡ −z (mod q), hence sp ≡ pyp−1 (mod q). On the other hand
y = (x + y)− x ≡ cp (mod q), so that

s(q−1)/k = sp ≡ pc((q−1)/k)(p−1) (mod q) ,

13



and since q - c we have p ≡ d(q−1)/k (mod q) with d = s/cp−1 modulo q. Since
a and s are coprime we have q - s hence q - d, so pk ≡ 1 (mod q). Since k is
even it follows that

1 = (−1)k = (kp− q)k ≡ kkpk ≡ kk (mod q) ,

contradicting the assumption that q - kk − 1. ut

Note that we have not used explicitly the assumption that k 6≡ 0 (mod 6).
However, if k ≡ 0 (mod 6) then exp(2iπ/3) is a common root of Xk − 1 and
(X +1)k−1 in C, hence the resultant of these polynomials is equal to 0 (over
C, hence over any ring), so that the condition on q can never be satisfied. In
other words (2) and (3) together imply (1).

A computer search shows that for every prime p ≥ 3 up to very large
bounds we can find an integer k satisfying the conditions of the proposition,
and as mentioned at the beginning of this section it can reasonably be con-
jectured that such a k always exists, so that in practice FLT I can always be
checked thanks to this criterion. Of course, thanks to the work of Wiles et
al., this is not really necessary, but it shows how far one can go using very
elementary methods.

A special case of Wendt’s criterion due to S. Germain was stated and
proved some years before:

Corollary 3.2 Let p > 2 be an odd prime, and assume that q = 2p + 1 is
also a prime. Then FLT I is valid, in other words if xp + yp + zp = 0 then
p | xyz.

Proof. Since for k = 2 we have (kk − 1)R(Xk − 1, (X + 1)k − 1) = −32,
the condition of the proposition is q 6= 3, which is always true. ut

3.2 Special Cases of the Equation y2 = x3 + t

This subsection is meant to give additional examples, but should be consid-
ered as supplementary exercises, and skipped on first reading.

The equation y2 = x3 + t is famous, and has been treated by a wide
variety of methods. In the present subsection, we give two class of examples
which can easily be solved by factoring over Z.

Proposition 3.3 Let a and b be odd integers such that 3 - b, and assume
that t = 8a3− b2 is squarefree but of any sign. Then the equation y2 = x3 + t
has no integral solution.
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Note that the case t = 7 of this proposition was already posed by Fermat
to his English contemporaries.

Proof. We rewrite the equation as

y2 + b2 = (x + 2a)((x− a)2 + 3a2) .

Note that x must be odd otherwise y2 = x3 + t ≡ t ≡ 7 (mod 8), which
is absurd. Since a is also odd it follows that (x − a)2 + 3a2 ≡ 3 (mod 4),
and since this is a positive number (why is this needed?) this implies that
there exists a prime p ≡ 3 (mod 4) dividing it to an odd power. Thus
y2 + b2 ≡ 0 (mod p). Since −1 is not a square in Fp when p ≡ 3 (mod 4),
this implies that p divides b and y. I claim that p - x + 2a. Indeed, since
(x−a)2 +3a2 = (x+2a)(x− 4a)+12a2 the condition p | x+2a would imply
p | 12a2, hence either p | a or p = 3 (p = 2 is impossible since p ≡ 3 (mod 4)).
But p | a implies p2 | t = 8a3 − b2, a contradiction since t is squarefree, and
p = 3 implies 3 | b, which has been excluded, proving my claim. Thus the
p-adic valuation of y2 + b2 is equal to that of (x− a)2 + 3a2 hence is odd, a
contradiction since this would again imply that −1 is a square in Fp. ut

Another similar result is the following.

Proposition 3.4 Let a be an odd integer, let b be an integer such that 3 - b,
and assume that t = a3 − 4b2 is squarefree, not congruent to 1 modulo 8, but
of any sign. Then the equation y2 = x3 + t has no integral solution.

Proof. I claim that x is odd. Indeed, otherwise, since t is odd, y would
be odd, hence y2 ≡ 1 (mod 8), hence t ≡ 1 (mod 8), contradicting our
assumption. Thus x is odd and y is even. Writing y = 2y1 we obtain

4(y2
1 + b2) = x3 + a3 = (x + a)(x(x− a) + a2) .

Since x−a is even and a is odd, it follows that 4 | x+a. Writing x+a = 4x1,
we obtain

y2
1 + b2 = x1((4x1 − a)(4x1 − 2a) + a2) = x1(16x

2
1 − 12ax1 + 3a2) .

Since a is odd we have 16x2
1 − 12ax1 + 3a2 ≡ 3 (mod 4), hence as in the

preceding proof there exists a prime p ≡ 3 (mod 4) dividing it to an odd
power. As above, this implies that p divides y1 and b. I claim that p - x1.
Indeed, otherwise p | 3a2, hence either p | a or p = 3. As above p | a is
impossible since it implies p2 | t, a contradiction since t is squarefree, and
p = 3 implies 3 | b, which has been excluded. Thus the p-adic valuation of
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y2
1 + b2 is odd, a contradiction since this would imply that −1 is a square in

Fp. ut

A computer search shows that the squarefree values of t such that |t| ≤
100 which can be treated by these propositions are the following: −97, −91,
−79, −73, −71, −65, −57, −55, −43, −41, −37, −33, −31, −17, −15, −5,
−3, 7, 11, 13, 23, 39, 47, 53, 61, 67, 83, 87, and 95. Another computer search
finds solutions for the following squarefree values of t such that |t| ≤ 100:
−95, −89, −87, −83, −79, −74, −71, −67, −61, −55, −53, −47, −39, −35,
−26, −23, −19, −15, −13, −11, −7, −2, −1, 1, 2, 3, 5, 10, 15, 17, 19, 22,
26, 30, 31, 33, 35, 37, 38, 41, 43, 55, 57, 65, 71, 73, 79, 82, 89, 91, 94, and 97.
This still leaves 45 squarefree values of t, which can all be treated by other
methods.

3.3 Introduction to Catalan’s Equation

Catalan’s conjecture, now a theorem, is the following:

Theorem 3.5 (Mihăilescu) If n and m are greater than or equal to 2 the
only nonzero integral solutions to

xm − yn = 1

are m = 2, n = 3, x = ±3, y = 2.

This conjecture was formulated by Catalan in 1844 and received much
attention. It was finally solved in 2002 by P. Mihăilescu. Complete proofs
are available on the Web (see in particular [4]), and at least two books are
being written on the subject.

The goal of this section is to prove a result on this equation, due to
Cassels, which has been crucial for the final proof.

The cases m = 2 or n = 2, which are not excluded, are treated separately.
The proof of the case n = 2, in other words of the equation xm − y2 = 1,
is due to V.-A. Lebesgue in 1850. It is not difficult, but uses the factoring
of the equation over Z[i], and not over Z. Knowing this, the reader can try
his/her hand at it, perhaps after reading the section dealing with factoring
over number fields.

On the other hand, quite surprisingly, the proof of the case m = 2, in
other words of the equation x2 − yn = 1 is considerably more difficult, and
was only obtained in the 1960’s by Ko Chao. In retrospect, it could have
been obtained much earlier, since it is an easy consequence of a theorem of
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Nagell which only uses the structure of the unit group in a real quadratic
order.

Once these two cases out of the way, it is clear that we are reduced to the
equation xp − yq = 1, where p and q are odd primes. Before continuing, we
make the trivial but crucial observation that this equation is now symmetrical
in p and q, in that if (p, q, x, y) is a solution, then (q, p,−y,−x) is also a
solution, since p and q are odd.

Cassels’s results, which we will prove in this section, involve factoring the
equation over Z, clever reasoning, and an analytic method called “Runge’s
method”, which boils down to saying that if x ∈ R is such that |x| < 1 and
x ∈ Z then x = 0. Even though this looks like a triviality, all proofs using
Diophantine approximation techniques (of which Runge’s method is one) boil
down to that. As an exercise, find all integer solutions to y2 = x4 +x3 +x2 +
x+1 by introducing the polynomial P (x) such that P (x)2−(x4+x3+x2+x+1)
has lowest degree.

For the proof of Cassel’s results we will need one arithmetic and two
analytic lemmas.

Lemma 3.6 Set w(j) = j+vq(j!). Then qw(j)
(

p/q
j

)
is an integer not divisible

by q, and w(j) is a strictly increasing function of j.

Proof. If ` is a prime number different from q we know that
(

p/q
j

)
is an `-

adic integer (note that this is not completely trivial), and it is an immediate
exercise that its q-adic valuation is equal to−w(j), proving the first assertion.
Since w(j+1)−w(j) = 1+vq(j+1) ≥ 1 the second assertion is also clear. ut

The first analytic result that we need is the following.

Lemma 3.7 1. For all x > 0 we have (x + 1) log(x + 1) > x log(x).

2. Let b ∈ R>1. The function (bt + 1)1/t is a decreasing function of t from
R>0 to R>0 and the function (bt − 1)1/t is an increasing function of t
from R>0 to R>0.

3. Assume that q > p ∈ R>0. If a ∈ R≥1 then (aq + 1)p < (ap + 1)q and if
a ∈ R>1 then (aq − 1)p > (ap − 1)q.

Proof. Easy undergraduate exercise, left to the reader. ut

The second analytic result that we need is more delicate.
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Lemma 3.8 Assume that p > q, set F (t) = ((1 + t)p − tp)1/q, let m =
bp/qc+ 1, and denote by Fm(t) the sum of the terms of degree at most equal
to m in the Taylor series expansion of F (t) around t = 0. Then for all t ∈ R
such that |t| ≤ 1/2 we have

|F (t)− Fm(t)| ≤ |t|m+1

(1− |t|)2
.

I could leave the proof as an exercise, but since it is not entirely trivial I
prefer to give it explicitly. I am indebted to R. Schoof for it.

Proof. Set G(t) = (1 + t)p/q. It is clear that the Taylor coefficients of
F (t) and G(t) around t = 0 are the same to order strictly less than p, and
in particular to order m since m ≤ p/3 + 1 < p (since p ≥ 5). In what
follows, assume that |t| < 1. By the Taylor–Lagrange formula applied to the
functions x1/q and G(x) respectively there exist t1 and t2 such that

|F (t)− Fm(t)| ≤ |F (t)−G(t)|+ |G(t)− Fm(t)|

≤ |t|p

q
t
1/q−1
1 + |t|m+1 1

(m + 1)!
G(m+1)(t2)

≤ |t|p

q
t
1/q−1
1 + |t|m+1

(
p/q

m + 1

)
(1 + t2)

p/q−m−1 ,

with t1 between (1 + t)p and (1 + t)p − tp, and t2 between 0 and t. Now
note that p/q < m ≤ p/q + 1, so that −1 ≤ p/q −m < 0 and for all j ≥ 1
0 < p/q − (m− j) = j − (m− p/q) < j hence

0 <
∏

1≤j≤m

(p/q − (m− j)) <
∏

1≤j≤m

j = m! .

It follows that∣∣∣∣( p/q

m + 1

)∣∣∣∣ =
(m− p/q)

m + 1

∏
1≤j≤m(p/q − (m− j))

m!
≤ 1

m + 1
.

Since 1/q − 1 < 0 and p/q − m − 1 < 0 we must estimate t1 and 1 + t2
from below. If t > 0 both (1 + t)p and (1 + t)p − tp are greater than 1, so
t1 > 1 > 1 − tp. If t < 0 then (1 + t)p = (1 − |t|)p and (1 + t)p − tp =
(1− |t|)p + |t|p > (1− |t|)p, so that t1 > (1− |t|)p in all cases. On the other
hand we have trivially |1 + t2| ≥ 1 − |t|. Putting everything together we
obtain

|F (t)− Fm(t)| ≤ |t|p

q
(1− |t|)−p+p/q +

|t|m+1

m + 1
(1− |t|)p/q−m−1 .
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The above inequality is valid for all t such that |t| < 1. If we assume that
|t| ≤ 1/2 then |t|p−m−1 ≤ (1 − |t|)p−m−1 (since m ≤ p − 1), hence |t|p(1 −
|t|)−p+p/q ≤ |t|m+1(1− |t|)p/q−m−1. It follows that

|F (t)− Fm(t)| ≤
(

1

q
+

1

m + 1

)
|t|m+1(1− |t|)p/q−m−1 .

Since p/q −m− 1 ≥ −2 and 1/q + 1/(m + 1) ≤ 1 the lemma follows. ut

3.4 Cassels’s Results on Catalan’s Equation

Lemma 3.9 Let p be prime, let x ∈ Z be such that x 6= 1, and set rp(x) =
(xp − 1)/(x− 1).

1. If p divides one of the numbers (x− 1) or rp(x) it divides both.

2. If d = gcd(x− 1, rp(x)) then d = 1 or d = p.

3. If d = p and p > 2, then rp(x) ≡ p (mod p2).

Proof. Expanding rp(x) = ((x − 1 + 1)p − 1)/(x − 1) by the binomial
theorem we can write

rp(x) = (x− 1)p−1 + p + (x− 1)

p−2∑
k=1

(
p

k + 1

)
(x− 1)k−1

and all three results of the lemma immediately follow from this and the fact
that p |

(
p

k+1

)
for 1 ≤ k ≤ p− 2. Note that (3) is trivially false for p = 2. ut

Corollary 3.10 Let (x, y, p, q) be such that xp−yq = 1. Then gcd(rp(x), x−
1) = p if p | y and gcd(rp(x), x− 1) = 1 otherwise.

Proof. Since yq = (x − 1)rp(x) it follows that p | y if and only if p
divides either x − 1 or rp(x), hence by the above lemma, if and only if
gcd(rp(x), x− 1) = p. ut

We can now state and prove Cassels’s results.

Theorem 3.11 (Cassels) Let p and q be primes, and let x and y be nonzero
integers such that xp − yq = 1. Then p | y and q | x.

Before proving this theorem, we state and prove its most important corol-
lary.
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Corollary 3.12 If x and y are nonzero integers and p and q are odd primes
such that xp − yq = 1 there exist nonzero integers a and b, and positive
integers u and v with q - u and p - v such that

x = qbu, x− 1 = pq−1aq,
xp − 1

x− 1
= pvq,

y = pav, y + 1 = qp−1bp,
yq + 1

y + 1
= qup .

Proof. Since p | y, by the above corollary we have gcd(rp(x), x−1) = p, so
by Lemma 3.9 (3) we have rp(x) ≡ p (mod p2), and in particular vp(rp(x)) =
1. Thus the relation yq = (x − 1)rp(x) implies that there exist integers a
and v with p - v such that x − 1 = pq−1aq, rp(x) = pvq, hence y = pav,
and since rp(x) > 0, we also have v > 0. This shows half of the relations of
the theorem, and the other half follow by symmetry, changing (x, y, p, q) into
(−y,−x, q, p) and noting that p and q are odd. ut

The proof of Cassels’s Theorem 3.11 is split in two, according to whether
p < q or p > q. We begin with the case p < q which is considerably simpler.

Proposition 3.13 Let x and y be nonzero integers and p and q be odd primes
such that xp − yq = 1. Then if p < q we have p | y.

Proof. Assume on the contrary that p - y. It follows from Corollary 3.10
that x − 1 and rp(x) are coprime, and since their product is a q-th power,
they both are. We can thus write x − 1 = aq for some integer a, and a 6= 0
(otherwise y = 0) and a 6= −1 (otherwise x = 0), hence (aq + 1)p − yq = 1.
Consider the function f(z) = (aq +1)p−zq−1, which is trivially a decreasing
function of z. Assume first that a ≥ 1. Then f(ap) = (aq + 1)p − apq − 1 > 0
by the binomial expansion, while f(ap +1) = (aq +1)p− (ap +1)q − 1 < 0 by
(3) of Lemma 3.7. Since f is strictly decreasing it follows that y which is such
that f(y) = 0 is not an integer, a contradiction. Similarly, assume that a < 0,
so that in fact a ≤ −2, and set b = −a. Then since p and q are odd f(ap) =
(aq+1)p−apq−1 = −((bq−1)p−bpq+1) > 0 by the binomial expansion, while
f(ap + 1) = (aq + 1)p − (ap + 1)q − 1 = −((bq − 1)p − (bp − 1)q + 1) < 0 again
by (3) of the Lemma 3.7 since b > 1. Once again we obtain a contradiction,
proving the proposition. ut

The following corollary, essentially due to S. Hyyrö, will be used for the
case p > q.

Corollary 3.14 With the same assumptions as above (and in particular p <
q)we have |y| ≥ pq−1 + p.
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Proof. Since by the above proposition we have p | y, as in Corollary 3.12
we deduce that there exist integers a and v with a 6= 0 and v > 0 such
that x − 1 = pq−1ap, (xp − 1)/(x − 1) = pvq and y = pav. Set P (X) =
Xp − 1− p(X − 1). Since P (1) = P ′(1) = 0, it follows that (X − 1)2 | P (X),
hence that (x − 1) | (xp − 1)/(x − 1) − p = p(vq − 1). Since pq−1 | x − 1
it follows that vq ≡ 1 (mod pq−2). However the order of the multiplicative
group modulo pq−2 is equal to pq−3(p− 1), and since q > p this is coprime to
q. As usual this implies that v ≡ 1 (mod pq−2).

On the other hand, I claim that v > 1. Indeed, assume otherwise that
v = 1, in other words xp−1 + · · · + x + 1 = p. If x > 1 then 2p−1 > p
so this is impossible. Since p and q are odd primes and a 6= 0 we have
|x− 1| = pq−1|a|p ≥ 9, hence when x ≤ 1 we must have in fact z = −x ≥ 8.
But then since p− 1 is even we have

p = zp−1 − zp−2 + · · ·+ 1 ≥ zp−1(z − 1) ≥ zp−1 ≥ 2p−1 ,

a contradiction which proves my claim. Since v ≡ 1 (mod pq−2), it follows
that v ≥ pq−2 +1, hence |y| = pav ≥ pv ≥ pq−1 +p, proving the corollary. ut

We now prove the more difficult case p > q of Cassels’s theorem.

Proposition 3.15 Let x and y be nonzero integers and p and q be odd primes
such that xp − yq = 1. Then if p > q we have p | y.

Proof. We keep all the notation of Lemma 3.8 and begin as for the
case p < q (Proposition 3.13): assuming by contradiction that p - y and
using Corollary 3.10, we deduce that there exists a ∈ Z \ {0} such that
x− 1 = aq, hence yq = (aq + 1)p − 1, so that y = apF (1/aq). Thus if we set
z = amq−py− amqFm(1/aq) we have z = amq(F (1/aq)−Fm(1/aq)). Applying
Lemma 3.8 to t = 1/aq (which satisfies |t| ≤ 1/2 since a 6= ±1) we obtain

|z| ≤ |a|q

(|a|q − 1)2
≤ 1

|a|q − 2
≤ 1

|x| − 3
.

By Taylor’s theorem we have tmFm(1/t) =
∑

0≤j≤m

(
p/q
j

)
tm−j, and by Lemma

3.6 D = qm+vq(m!) is a common denominator of all the
(

p/q
j

)
for 0 ≤ j ≤ m.

It follows that DamqFm(1/aq) ∈ Z, and since mq ≥ p that Dz ∈ Z. We now
estimate the size of Dz. By Hyyrö’s Corollary 3.14 (with (p, q, x, y) replaced
by (q, p,−y,−x)) we have |x| ≥ qp−1 +q ≥ qp−1 +3, so by the above estimate
for |z| we have

|Dz| ≤ D

|x| − 3
≤ qm+vq(m!)−(p−1) .
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Now for m ≥ 1 we have vq(m!) < m/(q − 1), and since m < p/q + 1 we have

m + vq(m!)− (p− 1) < m
q

q − 1
− (p− 1) =

3− (p− 2)(q − 2)

q − 1
≤ 0

since q ≥ 3 and p ≥ 5 (note that it is essential that the above inequality be
strict). Thus |Dz| < 1, and since Dz ∈ Z, it follows that Dz = 0. However
note that

Dz = Damq−py −
∑

0≤j≤m

D

(
p/q

j

)
aq(m−j) ,

and by Lemma 3.6 we have

vq

((
p/q

j

))
< vq

((
p/q

m

))
= vq(D)

for 0 ≤ j ≤ m − 1, so that 0 = Dz ≡ D
(

p/q
m

)
6≡ 0 (mod q) by the same

lemma. This contradiction finishes the proof of the proposition hence of
Cassels’s theorem. ut

4 Factorization over Number Fields

Although factorization over Z can sometimes give interesting results, it is in
general much more fruitful to factor over a number field. In fact, as already
mentioned, the theory of number fields, essentially algebraic number theory,
arose mainly from the necessity of inventing the tools necessary to solve
Diophantine equations such as FLT.

4.1 An Algebraic Reminder

The prerequisites for this section is any classical course on algebraic number
theory. We briefly review what we will need.

• A number field K is a finite extension of Q. By the primitive element
theorem it can always be given as K = Q(α), where α is a root of some
nonzero polynomial A ∈ Q[X].

• An algebraic integer is a root of a monic polynomial with integer co-
efficients. The element α such that K = Q(α) can always be chosen to
be an algebraic integer. The set of algebraic integers of K forms a ring,
which we will denote by ZK , which contains (with finite index) Z[α],
when α is chosen to be an algebraic integer. It is a free Z-module of
rank n = [K : Q], and a Z-basis of ZK is called an integral basis.

22



• The ring ZK is a Dedekind domain. Whatever that means, the main im-
plication for us is that any fractional ideal can be decomposed uniquely
into a power product of prime ideals. This is in fact the main motiva-
tion. Note the crucial fact that Z[α] is never a Dedekind domain when
it is not equal to ZK , so that prime ideal decomposition does not work
in Z[α].

• If p is a prime number, let pZK =
∏

1≤i≤g pei
i be the prime power

decomposition of the principal ideal pZK . The ideals pi are exactly the
prime ideals “above” (in other words containing) p, the ei are called
the ramification indexes, the field ZK/pi is a finite field containing
Fp = Z/pZ, and the degree of the finite field extension is denoted by
fi. Finally we have the important relation

∑
1≤i≤g eifi = n = [K : Q].

• The class group Cl(K) defined as the quotient of the group of fractional
ideals by the group of principal ideals, is a finite group whose cardinality
is often denoted h(K).

• The unit group U(K), in other words the group of invertible elements
of ZK , or again the group of algebraic integers of norm equal to ±1,
is a finitely generated abelian group of rank r1 + r2 − 1, where r1 and
2r2 are the number of real and complex embeddings, respectively. Its
torsion subgroup is finite and equal to the group µ(K) of roots of unity
contained in K.

• A quadratic field is of the form Q(
√

t), where t is a squarefree integer
different from 1. Its ring of integers is either equal to Z[

√
t] = {a +

b
√

t, a, b ∈ Z} when t ≡ 2 or 3 modulo 4, or is the set of (a + b
√

t)/2,
where a and b are integers having the same parity.

• A cyclotomic field is a number field of the form K = Q(ζ`), where ζ`

is a primitive m-th root of unity for some m. The main result that we
will need is that the ring of integers of a cyclotomic field is equal to
Z[ζ`], and no larger.

4.2 FLT I

We begin by the historically most important example, that of FLT I. In
retrospect, Kummer’s criterion that we will prove below does not seem to
be very interesting since it has infinitely many exceptions, while the much
more elementary criterion of Wendt has probably none. However congruence
methods or approaches a la Wendt are totally useless for the second case
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of FLT, and in that case Kummer’s methods can be adapted, with some
difficulty, and in fact Kummer’s initial criterion remains valid.

In the sequel, we let ζ` = ζp be a primitive p-th root of unity in C,
we let K = Q(ζ`), and we recall that the ring of integers of K is equal to
Z[ζ`]. We set π = 1 − ζ`, and recall that the ideal πZK is a prime ideal
such that (πZK)p−1 = pZK , and p is the only prime number ramified in K.
The first successful attacks on FLT were based on the possibility of unique
factorization in Z[ζ`]. Unfortunately this is true for only a limited number
of small values of p. With the work of E. Kummer it was realized that
one could achieve the same result with the much weaker hypothesis that p
does not divide the class number hp of ZK . Such a prime is called a regular
prime. Note that it is known that there are infinitely many irregular (i.e.,
nonregular) primes, but that it is unknown (although widely believed) that
there are infinitely many regular primes. In fact, there should be a positive
density equal to 1 − 1/e of regular primes among all prime numbers. The
irregular primes below 100 are p = 37, 59, and 67.

Let us begin by considering the case where there is unique factorization
in Z[ζ`], so as to see below the “magic” of ideals. We prove the following
lemma.

Lemma 4.1 Assume that Z[ζ`] has unique factorization, in other words that
it is a principal ideal domain. If xp + yp = zp with p - xyz then there exists
α ∈ Z[ζ`] and a unit u of Z[ζ`] such that

x + yζ` = uαp .

Proof. As usual we may assume that x, y, and z are pairwise coprime.
The equation xp + yp = zp can be written

(x + y)(x + yζ`) · · · (x + yζ`
p−1) = zp .

I claim that the factors on the left are pairwise coprime (this makes sense,
since Z[ζ`] is a PID): indeed, if some prime element ω divides x + yζ`

i and
x + yζ`

j for i 6= j, it divides also y(ζ`
i − ζ`

j) and x(ζ`
j − ζ`

i), hence ζ`
i − ζ`

j

since x and y are coprime. Since the norm of ζ`
i − ζ`

j is equal to p it follows
that ω | p, so that ω | z, hence p | z, contrary to our hypothesis. We thus
have a product of pairwise coprime elements in Z[ζ`] which is equal to a p-th
power. Since Z[ζ`] is a PID, it follows that each of them is a p-th power, up
to multiplication by a unit, proving the lemma. ut

Unfortunately this lemma is not of much use since Z[ζ`] is a PID for only
a small finite number of primes p. This is where ideals come in handy, since
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in the ring of integers of a number field there is always unique factorization
of ideals into prime ideals:

Lemma 4.2 The result of the above lemma is still true if we only assume
that p - hp, in other words that p is a regular prime.

Proof. The above proof is valid verbatim if we replace “prime element”
by “prime ideal”, so each ideal ai = (x + yζ`

i)ZK is equal to the pth power
of an ideal, say ai = bp

i . Now comes the crucial additional step: since the
class number hp is finite, we know that any ideal raised to the hpth power is

a principal ideal. Thus, both bp
i = (x + yζ`

i)ZK and b
hp

i are principal ideals.
Since p - hp there exists integers u and v such that up + vhp = 1, so that

bi = (bp
i )

u(b
hp

i )v is also a principal ideal. Thus, if we write b1 = αZK , we
have

a1 = (x + yζ`)ZK = αpZK = bp
1 .

Since two generators of a principal ideal differ multiplicatively by a unit, it
follows that x + yζ` = uαp for some unit u. ut

Proposition 4.3 If p ≥ 3 is a regular prime then FLT I holds.

Proof. First note that if p = 3 and p - xyz we have x3, y3, and z3

congruent to ±1 modulo 9, which is impossible if x3 + y3 = z3, so we may
assume that p ≥ 5. By the above lemma, there exists α ∈ Z[ζ`] and a unit u
such that x + yζ` = uαp. Denote complex conjugation by . An elementary
but crucial lemma on cyclotomic fields asserts that if u is a unit of Z[ζ`], then
u/u is a root of unity, and since the only roots of unity are ±ζ`

m for some
m, we have u/u = η = ±zm. Recall that we have set π = 1 − ζ`. Thus π |
(ζ`

j − ζ`
−j) for all j, so that for any β ∈ Z[ζ`] we have β ≡ β (mod π), hence

α ≡ α (mod π). Since π - z, it follows that π - α, hence α/α ≡ 1 (mod π).
Using the binomial expansion and the fact that π(p−1) | pZK , we deduce
that (α/α)p ≡ 1 (mod πp). Dividing x + ζ`y by its complex conjugate (and
remembering that both are coprime to π), we obtain (x+ζ`y)/(x+ζ`

−1y) ≡ η
(mod πp), in other words

x + ζ`y − η(x + ζ`
−1y) ≡ 0 (mod πp) .

I claim that m = 1. Indeed, assume otherwise. If m = 0 we multiply the
above congruence by ζ`, and if m = p − 1 we multiply it by ζ`

2, otherwise
we do nothing. Thus we see that there exists a polynomial f(T ) ∈ Z[T ] of
degree at most equal to p−2 ≥ 3 (since we have assumed p ≥ 5), not divisible
by p, and such that f(ζ`) ≡ 0 (mod πp). Set g(X) = f(1−X). It is also of
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degree at most equal to p− 2 and not divisible by p, and g(π) ≡ 0 (mod πp).
However it is clear that different monomials in g(π) have valuations which
are noncongruent modulo p−1, hence are distinct, a contradiction. It follows
that m = 1, proving my claim. Thus η = ±ζ`, and our congruence reads
x + ζ`y∓ (xζ` + y) = (x∓ y)(1∓ ζ`) ≡ 0 (mod πp) hence x∓ y ≡ 0 (mod p).
We cannot have x + y ≡ 0 (mod p), otherwise p | z. Thus y ≡ x (mod p).
We may now apply the same reasoning to the equation (−x)p + zp = yp and
deduce that −z ≡ x (mod p). It follows that 0 = xp +yp−zp ≡ 3xp (mod p),
and since p - x, we obtain p = 3 which has been excluded and treated directly,
finishing the proof of FLT I when p is a regular prime. ut

For instance, the irregular primes less than or equal to 200 are p = 37,
59, 67, 101, 103, 131, 149, 157, so that FLT I is true up to p = 200 for all
but those primes. This of course also follows (for all primes) from Wendt’s
criterion.

Asymptotically, it is conjectured that the proportion of regular prime
numbers is equal to exp(−1/2) = 0.607 . . . , although it is not even known
that there are infinitely of them, while it is easy to show that there are
infinitely many irregular primes.

To finish this section on FLT, note that with more work it is possible to
extend Kummer’s theorem verbatim to FLT II.

4.3 The Equation y2 = x3 + t Revisited

We come back to this equation which we have already solved in many cases
above, but now using the techniques of algebraic number theory. Note that
most of what we are going to say also applies to the more general equations
y2 = xp + t with p ≥ 3 prime.

Proposition 4.4 Let t be a squarefree negative integer not congruent to 1
modulo 8 and such that 3 does not divide the class number of the imaginary
quadratic field Q(

√
t).

1. When t ≡ 2 or 3 modulo 4 then if t is not of the form t = −(3a2 ± 1)
the equation y2 = x3 + t has no integral solutions. If t = −(3a2 + ε)
with ε = ±1, the integral solutions are x = 4a2 + ε, y = ±(8a3 + 3εa).

2. When t ≡ 5 (mod 8) then if t is not of the form t = −(12a2 − 1) or
−(3a2 ± 8), both with a odd, the equation y2 = x3 + t has no integral
solutions. If t = −(12a2 − 1) with a odd, the integral solutions are
x = 16a2 − 1, y = ±(64a3 − 6a). If t = −(3a2 + 8ε) with ε = ±1 and
a odd, the integral solutions are x = a2 + 2ε, y = ±(a3 + 3aε).
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Note that the case t = −2 of the above equation was already solved by
Fermat, who also posed it as a challenge problem to his English contempo-
raries.

Proof. Let (x, y) be a solution to the equation y2 = x3 + t. I first
claim that x is odd. Indeed, is x is even then y is odd (since otherwise
4 | t, contradicting the fact that t is squarefree), hence t = y2 − x3 ≡ 1
(mod 8), contradicting the assumption of the proposition. In the quadratic
field K = Q(

√
t) we factor our equation as (y −

√
t)(y +

√
t) = x3. I claim

that the ideals generated by the two factors on the left are coprime. Indeed,
assume otherwise, and let q be a prime ideal of ZK dividing both factors. It
thus divides their sum and difference, hence if q is the prime number below
q we have q | 2y and q | 2t. Since we have seen that x is odd q cannot be
above 2, so q | gcd(y, t), hence q | x so q2 | t, contradicting the fact that t
is squarefree and proving my claim. Since the product of the two coprime
ideals (y−

√
t)ZK and (y +

√
t)ZK is a cube, it follows that (y +

√
t)ZK = a3

for some ideal a of ZK . As in the proof of FLT I for regular primes, since we
have assumed that 3 does not divide the class number of K it follows that
a itself is a principal ideal, hence that there exists a unit u ∈ K such that
y +

√
t = uα3. However, since K is an imaginary quadratic field, there are

not many units, and more precisely the group of units is {±1} except for
t = −1 and t = −3 for which it has order 4 and 6 respectively. Thus the
apart from the case t = −3, the order of the group of units not divisible by
3, hence any unit is a cube, so in these cases we are reduced to the equation
y +

√
t = α3 with α ∈ ZK . We postpone for later the special case t = −3.

Since the ring of integers of a quadratic field is well known, we can write
α = (a + b

√
t)/d with a and b integral, where either d = 1, or, only in the

case t ≡ 5 (mod 8), also d = 2 and a and b odd. Expanding the relation
y +

√
t = α3 gives the two equations

d3y = a(a2 + 3b2t) and d3 = b(3a2 + b2t) .

Note that we may assume a ≥ 0 since changing a into −a does not change
the second equation, and changes y into −y in the first. From the second
equation we deduce that b | d3, and since b is coprime to d this means that
b = ±1. It follows that d3 = ±(3a2 + t) and d3y = a(a2 +3t). Separating the
cases d = 1 and d = 2 (in which case a must be odd), and using the formula
x = NK/Q(α) = (a2−b2t)/d2 = (a2− t)/d2 proves the proposition for t 6= −3.

Consider now the case t = −3. We have seen above that y+
√

t = uα3 for
some unit u. Thus either we are led to the equations of the proposition (if u =
±1), or there exists ε = ±1 such that y +

√
t = ((a + b

√
t)/2)3(−1 + ε

√
t)/2.
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Equating coefficients of
√

t gives

16 = ε(a3 − 9b2a)− 3b(a2 − b2) .

If a ≡ 0 (mod 3), the right hand side is divisible by 3, a contradiction. If
b ≡ 0 (mod 3), the right hand side is congruent to ±1 modulo 9 since a cube
is such, again a contradiction. Thus neither a nor b is divisible by 3, hence
a2 ≡ b2 ≡ 1 (mod 3), so the right hand side is still congruent to ±1 modulo
9, a contradiction once again, so there are no solutions for t = −3. ut

Remarks.

1. When t is not squarefree, it not difficult to obtain similar, but more
complicated results.

2. In the other cases that we have not treated (t ≡ 1 (mod 8), t > 0, or 3
dividing the class number of Q(

√
t)) the problem is considerably more

difficult but can be solved for a given value of t by the use of so-called
Thue equations.

5 The Super-Fermat Equation

An equation of the form xp + yq = zr, where p, q, and r are given positive
exponents (greater than or equal to 2, otherwise there is no problem) is called
a super-Fermat equation, and we search for integral solutions. Note that the
equation is not homogeneous, so some new phenomena appear. In particular,
it is now reasonable to add the supplementary condition that x, y, and z be
pairwise coprime (in the homogeneous case this could be assumed without
loss of generality). Indeed, as an easy but important exercise, the reader is
invited to show that for instance if the exponents p, q, and r are pairwise
coprime, there exist an infinity of solutions to the equation. We thus make
the coprimeness assumption from now on.

A detailed study of what is known on these equations is fascinating, but
we will have to restrict to a few facts. The behavior of the solution set
depends in an essential way on the quantity χ = 1/p + 1/q + 1/r associated
to the equation. It can be shown that if χ > 1 there exist infinitely many
(coprime) solutions, which can be given by a finite number of explicitly given
disjoint parametric families. For χ = 1 there are only finitely many (known)
solutions, although if we had taken different coefficients in front of xp, yq,
and zr, there could be infinitely many. Finally, for χ < 1 it is known that
there are finitely many solutions, but not effectively. For instance it is widely
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believed that the equation x3 + y5 = z7 has no coprime solutions, but this
problem seems presently out of reach.

We will give a few examples of complete parametric solutions, and an
example for χ < 1 where it is not too difficult to give the solution set, using
tools that we will only introduce later.

5.1 The Equations x2 + y2 = z2 and x2 + 3y2 = z2

We begin by a very simple and classical result.

Proposition 5.1 The general coprime integer solution to the equation x2 +
y2 = z2 is given by the two disjoint parametrizations

(x, y, z) = (2st, s2− t2,±(s2 + t2)) and (x, y, z) = (s2− t2, 2st,±(s2 + t2)) ,

where s and t are two coprime integers of opposite parity.

Proof. Exchanging if necessary x and y, we may assume that x is even,
hence y and z are odd. Also, changing signs if necessary we may assume
that x, y, and z are nonnegative. Since z and y are coprime, so are (z− y)/2
and (z + y)/2 (consider the sum and difference), hence from the equation
(x/2)2 = ((z − y)/2)((z + y)/2) we deduce that (z − y)/2 and (z + y)/2
are both squares (since they are nonnegative). The proposition follows by
setting (z− y)/2 = t2 and (z + y)/2 = s2, which are coprime and of opposite
parity. ut

Note that the change of signs of x and/or y are accounted for by a change
of sign of s or the exchange of s and t.

Proposition 5.2 The general coprime integer solution of the equation x2 +
3y2 = z2 is given by the two disjoint parametrizations

(x, y, z) = (±(s2 − 3t2), 2st,±(s2 + 3t2)) ,

where s and t are coprime integers of opposite parity such that 3 - s, and

(x, y, z) = (±(s2 + 4st + t2), s2 − t2,±2(s2 + st + t2)) ,

where s and t are coprime integers of opposite parity such that s 6≡ t (mod 3).

Proof. I first claim that x is odd. Indeed, if x is even y and z are odd,
so that x2 = z2 − 3y2 ≡ 6 (mod 8), which is absurd. We write 3y2 =
(z − x)(z + x). Since x and z are coprime the GCD of z − x and z + x is
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either equal to 1 (when z is even) or to 2 (when z is odd). Assume first that
gcd(z − x, z + x) = 1, so that z is even. Changing x into −x and z into
−z if necessary, there exist integers a and b, necessarily coprime, such that
z + x = 3a2, z − x = b2, and y = ab. Since z is even and x odd, a and b
are both odd, so that if we write s = (a + b)/2 and t = (a− b)/2 we obtain
z = 2(s2 + st + t2) and x = s2 + 4st + t2, giving the second parametrization.
Since a and b are odd, s and t have opposite parity, and since z +x and z−x
are coprime we have 3 - b = s − t. Assume now that gcd(z − x, z + x) = 2,
so that z is odd and y is even. Writing 3(y/2)2 = ((z− x)/2)((z + x)/2) and
changing once again the signs of x and z, there exist coprime integers s and t
such that (z+x)/2 = s2 and (z−x)/2 = 3t2, giving the first parametrization.
Since x and z are odd s and t have opposite parity, and since (z + x)/2 and
(z − x)/2 are coprime we have 3 - s. ut

5.2 The Equation x3 + y2 = z2 and x2 + y2 = z3

Proposition 5.3 The general coprime integer solution of the equation x3 +
y2 = z2 is given by the two disjoint parametrizations

(x, y, z) = (s(s2 + 3t2), t(3s2 + t2), (s− t)(s + t)) ,

where s 6≡ t (mod 2), and

(x, y, z) = (±(2s3 + t3), 2s3 − t3, 2ts) ,

where 2 - t.

Proof. Here we simply write (z − y)(z + y) = x3, and separate the cases
where z and y have opposite or the same parity. The details are left as an
exercise for the reader. ut

Proposition 5.4 The general coprime integer solution of the equation x2 +
y2 = z3 is given by the parametrization

(x, y, z) = (s(s2 − 3t2), t(3s2 − t2), s2 + t2) ,

where s and t are coprime integers of opposite parity.

Proof. Here we work in the PID Z[i]. Set a = x + iy, b = x− iy so that
ab = z3. If we had x ≡ y ≡ 1 (mod 2), we would have z3 ≡ 2 (mod 8),
which is impossible. Since x and y are coprime it follows that x and y have
opposite parity and a and b are coprime in the PID Z[i]. It follows that
there exist α = s + it ∈ Z[i] and some unit u of Z[i] such that x + iy = uα3.
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Since the unit group has order 4 every unit is a cube, so that, changing α if

necessary we can write x + iy = α3, hence x − iy = α
3
, z = αα, giving the

parametrization of the proposition. It is immediate to see that the condition
that x and y be coprime is equivalent to s and t being coprime of opposite
parity. ut

5.3 The Equation x2 + y4 = z3

We note that here we cannot have x and y both odd, otherwise z3 ≡ 2
(mod 8), absurd. We work in Z[i] and factor the equation as (x + iy2)(x −
iy2) = z3. Since x and y are coprime and not both odd, x + iy2 and x− iy2

are coprime in Z[i]. Thus there exists α ∈ Z[i] such that x + iy2 = α3, hence

x−iy2 = α
3
, z = αα, where the possible power of i can be absorbed in α. We

write α = u+iv, so that z = u2+v2, x = u3−3uv2, and y2 = 3u2v−v3. Thus,
we must solve this equation. Note that since x and y are coprime, we have
gcd(u, v) = 1 and u and v have opposite parity. We write y2 = v(3u2 − v2)
and consider two cases.

Case 1: 3 - v

Then v and 3u2− v2 are coprime, hence v = εa2, 3u2− v2 = εb2, y = ±ab
with ε = ±1, and then a and b are coprime, b is odd, and 3 - ab. We note
that 3u2−v2 ≡ −(u2 +v2) ≡ −1 (mod 4) since u and v have opposite parity,
hence we must have ε = −1, so the equations to be solved are v = −a2 and
3u2 = v2 − b2. Since 3 - v and 3 - b, changing if necessary b into −b, we
may assume that 3 | v− b, so the second equation is u2 = ((v− b)/3)(v + b).
Note that v and b are coprime. I claim that v is odd. Indeed, otherwise
a is even, hence 4 | v = −a2, hence v2 − b2 ≡ 7 (mod 8), while 3u2 ≡ 3
(mod 8), a contradiction. Thus v is indeed odd, so u is even and v − b and
v + b are even with (v − b)/2 and (v + b)/2 coprime. Thus we can write
v− b = 6ε1c

2, v + b = 2ε1d
2, u = 2cd (where the sign of u can be removed by

changing c into −c) with c and d coprime, and 3 - d. Thus v = ε1(3c
2 + d2),

b = ε1(d
2 − 3c2), and since v = −a2 we have ε1 = −1, the last remaining

equation to be solved is the second degree equation d2+3c2 = a2. Proposition
5.2 gives us à priori the two parametrizations d = ±(s2 − 3t2), c = 2st,
a = ±(s2 + 3t2) with coprime integers s and t of opposite parity such that
3 - s, and d = ±(s2 +4st+ t2), c = s2− t2, a = ±2(s2 +st+ t2), with coprime
integers s and t of opposite parity such that s 6≡ t (mod 3). However, since
v = −a2 is odd, a is odd hence this second parametrization is impossible.
Thus there only remains the first one, so replacing everywhere gives the first
parametrization
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
x = 4ts(s2 − 3t2)(s4 + 6t2s2 + 81t4)(3s4 + 2t2s2 + 3t4)

y = ±(s2 + 3t2)(s4 − 18t2s2 + 9t4)

z = (s4 − 2t2s2 + 9t4)(s4 + 30t2s2 + 9t4) ,

where s 6≡ t (mod 2) and 3 - s.

Case 2: 3 | v
Set w = v/3. Then 3 - u, w and u2 − 3w2 are coprime, hence v = ε3a2,

u2 − 3w2 = εb2, y = ±3ab with ε = ±1, and then a and b are coprime and b
is odd. Since u and v (hence w) have opposite parity, we have u2 − 3w2 ≡
u2 + w2 ≡ 1 (mod 4), hence we must have ε = 1, so the equations to be
solved are w = a2 and u2−3w2 = b2. Proposition 5.2 tells us that there exist
coprime integers c and d of opposite parity such that either u = c2 + 3d2,
w = 2cd, b = c2 − 3d2 with 3 - c, or u = 2(c2 + cd + d2), w = c2 − d2,
b = c2 + 4cd + d2 with c 6≡ d (mod 3), where the signs can be absorbed as
usual either by changing x into −x or b into −b. Thus in the first case the
final equation to be solved is 2cd = a2, so that there exists coprime s and t
with 3 - s such that either c = 2s2, d = t2, a = ±2st and t odd, or c = s2,
d = 2t2, a = ±2st and s odd. Replacing everywhere gives the second and
third parametrizations:

x = ±(4s4 + 3t4)(16s8 − 408t4s4 + 9t8)

y = 6ts(4s4 − 3t4)

z = 16s8 + 168t4s4 + 9t8 ,

where t is odd and 3 - s.
x = ±(s4 + 12t4)(s8 − 408t4s4 + 144t8)

y = 6ts(s4 − 12t4)

z = s8 + 168t4s4 + 144t8 ,

where s is odd and 3 - s.

In the second case the final equation to be solved is c2 − d2 = a2 with c
and d of opposite parity, hence with a odd, so that by the solution to the
Pythagorean equation there exists coprime integers s and t of opposite parity
such that c = s2 + t2, d = 2st, a = s2 − t2 with s 6≡ t (mod 3) Replacing
everywhere gives the fourth and final parametrization:
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

x = ±2(s4 + 2ts3 + 6t2s2 + 2t3s + t4)(23s8 − 16ts7 − 172t2s6 − 112t3s5

− 22t4s4 − 112t5s3 − 172t6s2 − 16t7s + 23t8)

y = 3(s− t)(s + t)(s4 + 8ts3 + 6t2s2 + 8t3s + t4)

z = 13s8 + 16ts7 + 28t2s6 + 112t3s5 + 238t4s4

+ 112t5s3 + 28t6s2 + 16t7s + 13t8 ,

where s 6≡ t (mod 2) and s 6≡ t (mod 3).
We have thus shown the following theorem:

Theorem 5.5 The equation x2 +y4 = z3 in integers x, y, z with gcd(x, y) =
1 can be parametrized by one of the above four parametrizations, where s and
t denote coprime integers with the indicated congruence conditions modulo 2
and 3. In addition these parametrizations are disjoint, in that any solution
to our equation belongs to a single parametrization.

5.4 An Example with 1/p + 1/q + 1/r < 1: the Equation
x6 − y4 = z2

As already mentioned, the cases 1/p + 1/q + 1/r < 1 are considerably more
difficult, essentially because they can be reduced to finding rational points
on curves of genus 1 or higher. We give one example of this. To treat it, we
will need to find all the rational points on two elliptic curves. In the cases
that we will consider this can be done using 2-descent methods. All this is
implemented in an extremely useful program mwrank of J. Cremona, that we
will therefore use as a black box. We will see later a sketch of how it works.

Proposition 5.6 The equation x6 − y4 = z2 has no solution in nonzero
coprime integers x, y, z.

Proof. Thanks to Proposition 5.4, we see that x6 − y4 = z2 is equivalent
to x2 = s2 + t2, y2 = s(s2 − 3t2), z = t(3s2 − t2) where s and t are coprime
integers of opposite parity. By Proposition 5.1, up to exchange of s and t the
first equation is equivalent to s = 2uv, t = u2 − v2, x = ±(u2 + v2), where u
and v are coprime integers of opposite parity. We consider both cases.
Case 1: 2 | s

Set a = u + v, b = u − v, which are coprime and both odd. Then
s = (a2 − b2)/2 and t = ab, so the last equation to be solved can be written
8y2 = (a2 − b2)(a4 − 14a2b2 + b4). Since b is odd, we can set Y = y/b3,
X = a2/b2, and we obtain the equation 8Y 2 = (X − 1)(X2 − 14X + 1)
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or, equivalently Y 2
1 = (X1 − 2)(X2

1 − 28X1 + 4) after multiplying by 8 and
setting Y1 = 8Y and X1 = 2X. This is the equation of an elliptic curve in
Weierstrass form, and the mwrank program or 2-descent methods tell us that
the only rational point has Y1 = 0, which does not correspond to a solution
of our equation.
Case 2: 2 - s

Here s = u2 − v2, t = 2uv, so that the last equation to be solved can be
written y2 = (u2 − v2)(u4 − 14u2v2 + v4). We cannot have v = 0, otherwise
t = 0 hence z = 0, which is impossible. Thus, we can set Y = y/v3,
X = u2/v2 and we obtain the elliptic curve Y 2 = (X − 1)(X2 − 14X + 1).
The mwrank program again tells us that the only rational point has y = 0,
which does not correspond to a solution of our equation. ut

6 Introduction to Elliptic Curves

It is of course out of the question in this short text to explain the incredibly
rich theory of elliptic curves. As we have done above with p-adic numbers
and with algebraic number theory, we simply recall without proof a number
of basic definitions and facts.

For many more details and examples, see Chapter 8 (pages 495 to 587)
of the accompanying pdf file.

6.1 An Elliptic Curve Reminder

• The “abstract” definition of an elliptic curve is a curve of genus 1 to-
gether with a point defined on the base field. In practice, an elliptic
curve can be given in a number of ways: the simplest is as a simple
Weierstrass equation y2 = x3 + ax2 + bx + c, or as a generalized Weier-
strass equation y2 + a1xy + a3y = x3 + a2x

2 + a4x + a6 (the numbering
is canonical!), together with the condition that the curve be nonsingu-
lar, condition which is understood in the subsequent examples. More
generally it can be given as a nonsingular plane cubic, as a hyperellip-
tic quartic y2 = a2x4 + bx3 + cx2 + dx + e, as the intersection of two
quadrics, and so on. All these other realizations can algorithmically be
transformed into Weierstrass form, so we will assume from now on that
this is the case.

• The set of projective points of an elliptic curve (in the case of y2 =
x3 + ax2 + bx + c, these are the affine points plus the point at infinity
Ø with projective coordinates (0 : 1 : 0)) form an abelian group under
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the secant and tangent method of Fermat (if you do not know what
this is, here is a brief explanation: if P and Q are distinct points on
the curve, draw the line joining P and Q; it meets the curve in a third
point R, and we define P + Q to be the symmetrical point of R with
respect to the x-axis. If P = Q, do the same with the tangent).

• If the base field is C the group E(C) of complex points of an elliptic
curve E is in canonical bijection with the quotient C/Λ, where Λ is a
lattice of C, thanks to the Weierstrass ℘ function and its derivative.

• If the base field is a finite field Fq, we have the important Hasse bound
|E(Fq)− (q + 1)| ≤ 2

√
q.

• If the base field is equal to Qp (or more generally to a finite extension
of Qp), we have a good understanding of E(Qp).

The reader will of course have noticed that I do not mention the most
interesting case where the base field is equal to Q, or more generally a number
field. Indeed, this deserves a theorem:

Theorem 6.1 (Mordell–Weil) Let K be a number field. The group E(K)
is a finitely generated abelian group, called the Mordell–Weil group of E (over
K).

Thus E(K) ' E(K)tors⊕Zr, where E(K)tors is a finite group, and r is of
course called the rank of E(K). The finite group E(K)tors can be computed
algorithmically (and there are only a finite number of possibilities for it,
which are known for instance for K = Q). On the other hand, one of the
major unsolved problems on elliptic curves is to compute algorithmically the
rank r, together with a system of generators.

The goal of the next sections is to explain some methods which can be
used to compute the Mordell–Weil group over Q, either rigorously in certain
cases, or heuristically. Keep in mind that there is no general algorithm,
but only partial ones, which luckily work in “most” cases. We will mention
the 2 and 3-descent techniques, the use of L-functions, and finish with the
beautiful Heegner point method, one of the most amazing and useful tools
in the theory, both for the theory and in practice.

7 2-Descent with Rational 2-Torsion

See Section 8.2, pages 510–525.
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8 General 2-Descent

See Section 8.3, pages 526–534.

9 3-Descent with Rational 3-Torsion Subgroup

See Section 8.4, pages 534–544.
Look in particular at the beautiful application to ax3 + by3 + cz3 = 0 in

Section 8.4.5, pages 542–544.

10 Use of L(E, s)

See Section 8.5, pages 544–560.

11 The Heegner Point Method

See Section 8.6, pages 560–573.

12 Computation of Integral Points

See Section 8.7, pages 573–580.
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