6. Some Diophantine Equations

6.1 Introduction

This chapter can be considered as the culmination of the tools that we have
introduced in this course. We have already solved a number of Diophantine
problems, but here we are going to solve many more. Although we have al-
ready mentioned that each Diophantine equation poses a new problem, there
do exist a large number of general techniques, and in this introduction we will
briefly describe these techniques and give a simple example of each (where
“simple” is relative to the technique: for instance FLT is the “simplest” ex-
ample of the use of Ribet’s level lowering theorem!).

Whatever method is used, a general principle is that it is usually easier to
show that a Diophantine equation has no solutions at all, than it is to show
that it has only a specific nonempty set of solutions. A case in point is FLT
since it unfortunately has the solution 17 + (—1)? = 0, which in a certain
sense is nontrivial.

6.1.1 The Use of Finite Fields

We can use finite fields in two opposite ways. The first is when we want to
prove that an equation does not have a solution. In that case the finite field
which is used is I, for a suitable prime p. We have seen in Chapter 1 the toy
example z2 4+ y? = 322 which is seen to have no nonzero solutions by working
in ]F3 .

The second way is on the contrary to prove that an equation does have
a solution in a finite field. If both the equation and the finite field are given,
this is at least in theory very easy since we simply make the variables of the
equation range over the finite number of elements of our field. The situation
changes completely when we are either studying a fixed equation, but over
all finite fields at once, or a family of equations over a finite field, or both.
In that case we must use general theorems such as those given in Chapter
2, and in particular the very powerful Weil bounds (Corollary 2.5.27), either
due to Weil himself in the case of curves, or from Deligne’s proof of the Weil
conjectures in the general case.

As an example we prove the following proposition.
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Proposition 6.1.1. Let £ > 3 be prime and let C be the affine equation
y? = a* +t for some fived t € 7. This equation has a solution in Z, for
all p if and only if it has one for primes p of the form p = 2kl + 1 with

1< k< (0—3)/2.

Proof. Consider first the corresponding projective curve over F,. Even
though the equation is singular at infinity when £ > 5, if ¢t # 0 in [F, and the
characteristic of IF,, is different from 2 and ¢ the Weil bounds apply, and since
it is a hyperelliptic curve its genus is equal to (£ —1)/2, so we have

—(=1)p'”? <|C(E)| — (p+1) < (¢~ 1)p/?.

In fact it is easy to compute directly |C(F, )| in the cases ¢ = 0 or characteristic
2 or £ and to see that these bounds are still valid, see Exercise 3.

In particular |C(F,)| > p+ 1 — (£ — 1)p'/2, and this is strictly greater
than 1 for p > (¢ — 1)?, hence |C(F,)| > 2 for such p. In addition, if p # 1
(mod £) the map = + z‘ is a bijection from F, to itself, so that for a given
y, z* = y? — t has one solution, so |C(F,)| = p+ 1 > 2 also for such p.

Since we must exclude the point at infinity, it follows in particular that
there exists an affine nonsingular point in C'(F,) for all p > (£ — 1)? and for
p # 1 (mod £). Then a standard Hensel type argument shows that we can
lift this solution to @, showing that C is locally soluble for such p. On the
other hand if p < ({—1)2 and p = 1 (mod /) we can clearly write p = 2k{+ 1
with 1 <k < (¢ —3)/2. m|

Remark. The equation y? = zf +t is always locally soluble, in other words it
always has a solution in every Q,, as opposed to Z,: simply choose z = 1/p?,
and y = (1/p*)(1 + p*“t)*/2, which is p-adically convergent.

Corollary 6.1.2. Let £ be a prime such that 3 < ¢ < 31. The equation
y? = x*+1t has a solution in Z,, for all p if and only if the following conditions
are satisfied.

(1) For¢=3,7,13,17, 19, and 31, no condition.

(2) For £=15,t# 7 (mod 11).
(3) For £ =11, t # 21 or 22 modulo 23.
(4) For £ = 23, t # 30, 39, 40, 44 or 45 modulo 47, and t Z 18, 60 or 61

modulo 139.
(5) For £ =29, t # 31, 32, 33, 38, 39, 43, 55 modulo 59.

Proof. Since the above proposition reduces the problem to a reasonably
small finite computation, this corollary is proved by a simple computer search,
and can be extended at will. O

We will come back to this equation in Section 6.7.
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6.1.2 Local Methods

We have of course already used local methods in the above examples, since we
have performed Hensel lifts. Local methods can be used in several ways. One
of the most common, as above, is to show that a Diophantine equation does
not have any solutions in Z, or at least to specify as much as possible which
congruence classes can a possible solution belong to. We have seen in Chapter
5 the important example of quadratic forms, for which the Hasse—-Minkowski
theorem asserts that everywhere local solubility is a necessary and sufficient
condition for global solubility, and we have also given methods to check local
solubility at the finite number of places where this must be done.

As an additional isolated example taken almost at random from Chapter
14, consider the Diophantine equation to be solved in integers

y? = =2z — 122722 + 62* .

We of course exclude the trivial solution (z,y, z) = (0,0,0). Otherwise, if d =
ged(z, ) then d* | 42, hence d? | y, so replacing (z,y,2) by (z/d,y/d?,z/d)
we may assume that ged(z, z) = 1. We must have 2 | y, hence setting y = 2y,
we obtain 2y? = —z* — 62222 + 32%. Thus = and 2 have the same parity, and
since they are coprime they are both odd. Since the square of an odd number
is congruent to 1 modulo 8 it follows that 2y? = —1 — 6 + 3 = —4 (mod 8),
so y2 = —2 (mod 4) which is clearly impossible. We have thus shown the
impossibility of our Diophantine equation by working in Zs, and not only
modulo powers of 2. More precisely, if we do not remove the GCD then
modulo 2™ we always have the nonzero solution z = y = 0 and z = 2[™/41,
which tends 2-adically to the trivial solution. On the other hand after removal
of the GCD, our proof shows that the equation does not have any solution
modulo 16, but (1,0,1) is clearly a solution modulo 8.

A legitimate question is to ask how one checks the local solubility of
an equation. As we have seen above the usual way is to prove solubility in
the residue field, and then apply a Hensel lift. It is sometimes necessary to
work modulo higher powers of the prime before performing the lift. Generally
speaking, checking local solubility for a given prime is easy, and usually to
check everywhere local solubility one needs to consider only a finite number
of primes.

A more sophisticated use of local methods is through p-adic analysis, for
instance Strassmann’s theorem, see Section 4.5.3 for examples. Here the fact
that we do not only work modulo p* for all k but in the characteristic zero
field Q, gives us new tools of analytic nature.

6.1.3 Global Methods

Given a Diophantine problem, the first thing to do is always to see whether
the problem has a solution locally, using one of the methods mentioned above.
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If has none, the problem is solved since we know that our equation has no
solution. Evidently the only interesting problems are those for which the
equations are everywhere locally soluble. The local information that we obtain
may already completely solve the problem, or may give useful information on
the global problem through local to global principles. However such principles
are rather rare (see Chapter 5), so it is necessary to study the equation
globally, possibly by working in some appropriate number field K. There are
now many methods for doing this, which we mention briefly in turn, since we
will come back to them in much more detail in the rest of this book.

e The first and most classical method, originating with Fermat, Euler,
Gauss, and especially Kummer, applies when it is possible to factor the Dio-
phantine equation in K, a typical example being FLT where one factors the
equation in the cyclotomic field K = Q((p). It is then essential to know
explicitly the structure of the class group of K, of the unit group (i.e., a
system of fundamental units), and to be able to find explicitly a generator of
a principal ideal.

It is important to note that, being in the twentyfirst century, these compu-
tational problems can (for reasonable K) be solved at the click of a computer
mouse button using computer algebra systems specialized in such tasks, such
as Kant/Kash, magma or Pari/GP. We will therefore always assume that we
have available the basic data concerning the number fields which occur. This
method will be used at length in the present chapter, as well as in Chapter
14.

e A second global method for solving Diophantine equations is based on
Diophantine approximation techniques, and on Baker type results on linear
forms in logarithms of algebraic numbers, and I refer to Chapter 12 for a
survey of the method. It is used in particular to solve Thue equations, in
other words equations of the form f(z,y) = m, where f is a homogeneous
polynomial in two variables. This is now in complete but quite technical
algorithmic form. In Section 8.7 We will study in detail a variant which
involves linear forms in elliptic logarithms, which paradoxically is easier to
explain. This will enable us to find in reasonable cases all integral points on
an elliptic curve.

e A third global method for solving certain types of Diophantine equa-
tions, mostly those that can be reduced to a cubic, is the use the Birch and
Swinnerton-Dyer conjecture (BSD for short) which we will state and study
in detail in Chapter 8. As mentioned in the introduction this remarkable con-
jecture enables us to predict the Z-rank of the group of points of an elliptic
curve over Q by computing a purely analytic quantity, and in particular tells
us whether this group is infinite or not. The fact that this method is based
on a conjecture is not important since either the analytic result says that
the group is finite, and in that case BSD is proved, or it says that the group
is infinite, and we can then search for generators of the group using other
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techniques. All this will become much clearer in the numerous examples that
we will give.

e The most modern and sophisticated method for solving Diophantine
equations is that used by Ribet, Wiles, and Taylor—Wiles for solving com-
pletely Fermat’s last theorem, using modular forms and Galois representa-
tions. The kind of Diophantine equations that it is able to solve is usually of
the form a+b+c¢ = 0, where a, b, and ¢ are highly divisible by certain integers
(FLT being a typical example). This is linked to the famous abe conjecture
(Conjecture 14.6.4). This method is based on a combination of a theorem of
Ribet on “level lowering” of modular forms with the theorem of Wiles and
Taylor—Wiles saying that the L-function attached to an elliptic curve defined
over Q is in fact the L-function of a modular form. The proof of these theo-
rems is very difficult, and Wiles’s theorem has justly been celebrated as one
of the great mathematical achievements of the end of the twentieth century.
However it is not necessary to understand the proof to use the theorems,
if one understands the underlying concepts. Thanks to S. Siksek, I have in-
cluded as Chapter 15 a detailed black box explanation of the method. I advise
the reader to look also at the expository paper by M. Bennett [Ben2] (see
also [Ben-Ski]), which has a similar purpose.

6.2 Diophantine Equations of Degree 1

The simplest of all Diophantine equations are equations of degree 1. The
two variable case is well-known: the equation az + by = ¢ has a solution in
integers z, y if and only if ged(a,bd) divides ¢, and in that case if (zo,yo) is
a particular solution, the general solution is given by = o + kb/ ged(a, b),
y = yo — ka/ ged(a, b) for any integer k. Furthermore a particular solution
can easily be found with the extended Euclidean algorithm.

The case of more than two variables is slightly more difficult, because
of the necessity of writing down explicitly the solution to the homogeneous
equation (once again it is easy to find a particular solution with the extended
Euclidean algorithm). For example, in the case of three variables, the equation
az + by +cz = d has a solution if and only if gcd(a, b, ¢) divides d, and in that
case if (xo,¥0,20) is a particular solution, the general solution is given by
x = x9 + mb/ ged(a, b) — e/ ged(a, ¢), y = yo + kc/ ged(b, ¢) — ma/ ged(a, b),
z = 29 +fa/ ged(a, ¢) — kb/ ged(b, ¢) for any integers k, £ and m, see Exercise
4.

To state the solution in the case of n variables, we must use the notion
of Hermite normal form (HNF) of an integer matrix. However, it is not
simpler to state it in that case than in the general case of a system of m
linear Diophantine equations in n variables. The definition and result are as
follows.
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Definition 6.2.1. Let H = (h;;) be an m x n matriz with m > n. We
will say that H is in Hermite normal form (HNF) if there exists a strictly
increasing function f from [1,n] to [1,m] such that for all j < n we have
My, = 1, mij =0 fori> f(j), and 0 < my) p < my(jy,; for k> j.

For instance, if m = n we have necessarily f(j) = j, so in that very
common and important case an integer matrix H is in HNF if and only
if it is upper triangular with strictly positive diagonal elements, and its off-
diagonal elements are nonnegative and strictly less than the diagonal element
in the same row.

Proposition 6.2.2. Let A be an m x n integer matriz, and let B be an m-
component integer column vector. There exists a matrizx U € GL,(Z) and a
matriz H in HNF such that AU = (0|H). If k is the number of zero columns
in the right hand side, write U = (U1|Us), where Uy and Uy are n X k and
n X (n — k) matrices respectively. Then the Diophantine system AX = B has
a solution if and only if there exists an inverse image Zo of B by H (which
can be checked immediately), and in that case the general solution is given
by UsZs + U Y, for any k-component integer vector Y .

Proof. Recall that GL,,(Z) denotes the group of integer matrices which are
invertible, i.e., of determinant +1. The first statement is proved in a manner
very similar to the existence of the column echelon form (proved using Gaus-
sian elimination). Here, we must perform all operations using only integer
matrices of determinant +1. This is done by using as elementary operations
either column exchanges, or operations transforming a matrix ( ) into a

matrix of the form (4 B) by right multiplication by (;I;/gifﬂgaig) Z), where

u and v are such that au + bv = gecd(a,b). We leave the (well-known) details
to the reader (see [Coh0], Section 2.4.2).

Once this basic statement proved, the rest is immediate: the equation
AX = Bisequivalent to AUX; = B (with X; = U~'X), hence to (0|H)X; =
B, which is soluble if and only if HZ; = B is soluble. This last equation is
in echelon form, so its solubility can be checked immediately one component
after the other. If such a vector Z, exists, we can choose for X; the vector
(Zi) with evident notation. We then have X = UX; = (U1|U2)X; =

2
Uy Zy as claimed. Finally, if X; is a general solution to AUX; = B, then

AU (Xl - (;)) = 0, hence (0|H) (Xl - (;)) = 0. If we write X; —
2

2
Y
(;) = (%), then we obtain HY, = 0, and since H is in HNF and in
2 2
particular in column echelon form, the columns of H are linearly independent
Y
hence Y5 = 0. Thus X; = (Z—l), so that X = (U1|Us) X1 = U1 Y7 + Uy Zs,
2

finishing the proof of the proposition. O
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In the special case where A = (a;) has a single row, thus corresponding
to a single linear Diophantine equation, the equation AX = b has a solution
if and only if the GCD of the a; divides b, but the general solution must be
written as explained in the proposition.

6.3 Diophantine Equations of Degree 2

We have already studied Diophantine equations of degree 2 in Section 5.3.2
in the context of the Hasse-Minkowski theorem. We will study them in more
detail in this section.

6.3.1 The General Homogeneous Equation

Let f(z1,---,z,) be a quadratic form in n variables with integer coefficients,
represented by a symmetric matrix ) with integral diagonal entries and half-
integral off-diagonal entries. If X = (z1,...,2,)" is a column vector, then
f(z1,...,2,) = X!QX. The discriminant D of the form f is by definition
D = (=1)"(=1/2 det(2Q). We will always assume that f is nonsingular, in
other words that D # 0 (a singular quadratic form is in fact equivalent to
a quadratic form with a strictly smaller number of variables, so we do not
lose any generality). Since we are looking for rational solutions, we will also
always assume that f is not positive definite or negative definite, so that the
condition at the place at infinity of the Hasse-Minkowski theorem is satisfied.
In this case, we will simply say that f is indefinite.

By the Hasse-Minkowski theorem, we can determine whether a nontrivial
rational solution to f = 0 exists by looking at the equation locally. More
precisely, we have the following proposition.

Proposition 6.3.1. The Diophantine equation f(x1,...,z,) = 0 has a non-
trivial rational solution if and only if it has a nontrivial solution in every Q,
for every p such that p | 2D.

Proof. The necessity of the conditions is clear. Conversely, assume that
they are satisfied. By the Chevalley—Warning Theorem 2.5.2, if n > 3 the
equation has a nontrivial solution Xo = (2o,1,-..,%0,n)! € I} for all p. Now
if p t 2D, the partial derivatives of f cannot all vanish modulo p at Xg. If
for instance g_L(XO) # 0 (mod p), the simple form of Hensel’s lemma 4.1.37
tells us that there exists «; € Z, such that f(zo1,...,%,...,Zon) =0, SO
that there exists a local solution for all these p. We conclude by the Hasse—
Minkowski theorem.

For n = 2 we reason differently. Write f(z1,22) = ax? + bxixs + c22,
so that D = b? — 4ac. For any field K of characteristic zero it is clear that
f(z1,22) = 0 has a nontrivial solution in K if and only if D is a square in
K. Thus by assumption D is a square in every @, such that p | 2D. But in
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particular this means that v,(D) is even for every p | D, in other words that
D is a square in Q, so that f(z1,z2) = 0 has a nontrivial rational solution.
Finally for n = 1 the equation evidently has no nontrivial solutions.

0O

To test local solubility at the “bad” primes p dividing 2D is done by
looking modulo p* for a suitable k for which Hensel’s lemma, can be used,
hence is easy. The only difficult part is thus factoring the discriminant D.

Finding explicitly a nontrivial rational solution can be done using an
efficient algorithm. We will see below such an algorithm in the important
special case n = 3.

Once a solution Xo = (21,0, -.,%n0)’ is found, we can ask for the gen-
eral solution in rational numbers (the general solution in integers is a more
difficult task which we will consider only in special cases). The result is as
follows.

Proposition 6.3.2. Let Xo = (z1,0,...,Zn,0)" be a nontrivial solution of the
Diophantine equation f(x1,...,2,) = X'QX = 0.

(1) The general solution X to the equation in rational numbers such that
XtQXy # 0 is given by X = d(RIQR)Xo —2(R'QXo)R), where R € Q*
is a vector of parameters such that R1QXy # 0, and d € Q*.

(2) In addition, if we choose a matriz M € GL,(Q) whose last column M,
is equal to Xo, we may assume that R is a Z-linear combination of the
first n — 1 columns of M, with the GCD of the coefficients equal to 1.

(3) In (2), the matriz R is unique up to changing R into —R, and the coef-
ficient d € Q is unique.

Proof. (1). Since f is homogeneous, we consider nontrivial solutions of
f =0 as elements of the projective space P,(Q). The parametric equation of
a general line passing through Xg is X = uXo + vR with (u,v) € P2(Q), for
some fixed R € P,(Q) not equal (projectively) to Xo. Let us find the values
of (u,v) for which such an X is a solution of our equation. We write

0=X'QX = v’ X{QXo + 2uvR'QXo + v’R'QR = v(2uR'QX, + vR'QR) .

Solutions with X*QX, # 0 correspond to vR'Q Xy # 0, hence to v # 0 and
R'QXo # 0, so that we can choose (u,v) = (RIQR, —2R'QX,) € P»(Q).
Since we have considered X as an element of the projective space, to obtain
all solutions we must multiply by an arbitrary d € Q*, proving (1).

(2). Since X is nonzero, there exists a matrix M such that M € GL,,(Q)
whose last column M, is equal to Xo. If we set S = MR = (y1,...,yn)t,
then R=MS = Elsjgn yiM; =T + y,Xo, so that

(R'QR) X, — 2(R'QXo)R = (T'QT + 2y, T*'QX) Xo — 2(T*QX0)(T + ynXo)
= (T'QT)Xo — 2(T*'QXo)T ,
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proving that we can replace R by T, in other words take only a linear com-
bination of the first n — 1 columns of M. Furthermore, if u is the unique
positive rational number such that the y;/u for 1 < ¢ < n — 1 are integers
with global GCD equal to 1, we may replace T by T/u and d by du?, proving
(2).

(3). For simplicity, let us say that a Z-linear combination is primitive if
the GCD of the coefficients is equal to 1. If we set M ~1X = (y1,...,y,)? for
some y; € Q, we have X = Z1<z’<n y; M;. Since XtQXo # 0, the vector R
has the form R = aX + bX( for some a, b in Q. It follows that

R = Z (ayz')Mi + (ayn + b)Mn ,

1<i<n—1

and since the columns of M are linearly independent, if R is a primitive Z-
linear combination of the first n — 1 columns this means that ay, + b = 0
and that for 1 < ¢ < n — 1 the ay; are integers with global GCD equal to 1.
Thus, if as in (2) we denote by u the unique positive rational number such
that the y;/u for 1 < i < n — 1 are integers with global GCD equal to 1, we
have necessarily a = +1/u, hence b = +y,,/u, so that R is indeed determined
up to sign, as claimed. In addition, we have

(RPQR)Xo — 2(R'QXo)R = 2ab(X'Q X)Xy — 2a(X?QX0)(aX + bXy)
= —2a*(X'QX0)X ,

and this is equal to X/d with d = —1/(2a2X*Q X)), so that d is also uniquely
determined. O

Note that clearly the solutions of our Diophantine equation such that
XtQXo = 0 cannot be attained by this parametrization, since XtQXy = 0
is equivalent to R*QX, = 0, which is excluded.

6.3.2 The Homogeneous Ternary Quadratic Equation

As we have seen during the proof of the Hasse—Minkowski theorem, the case
n = 3 is the most important. In that case, the above proposition can be
refined. We begin by a lemma.

Lemma 6.3.3. Let QQ be a nonsingular 3 x 3 real symmetric matriz, and let
Xo be a nonzero real vector such that XtQXo = 0. For X € R, X!QX =
XtQXo = 0 is equivalent to X = A\Xy for some X € R.

Proof. By diagonalizing (), we may assume that @) is a diagonal matrix
with real nonzero diagonal entries a, b, ¢. Thus X*QX = X*QX, = 0 is equiv-
alent to az? +by? +cz? = axzo +byyo +czzy = 0. Since (z, Yo, 20) # (0,0,0),
we may assume for instance that zp # 0. Thus z = —(azzo + byyo)/(c2o),
hence



336 6. Some Diophantine Equations

0= X'QX = (az® + by*)czd + (azxzo + byyo)?
= (azzo + byyo)” — (az” + by*)(azg + byg) = —ab(zyo — yz0)* ,
so that zyo — yxo = 0, hence
czo(220 — 220) = —@o(azz0 + byyo) + x(azg + byj) = byo(zyo — yzo) = 0,

so that X and X, are proportional, as claimed. O

Proposition 6.3.4. Let Xo = (x0,y0,20) be a nontrivial solution of the Dio-
phantine equation f(z,y,z) = X'QX = 0 and let M be a matriz in GL3(Q)
whose last column Ms is equal to Xo. The general rational solution X to the
equation is given by X = d((R'QR)Xo—2(R!QXo)R), where R = sMy+tM>,
s and t are coprime integers, and d € Q.

Proof. By Proposition 6.3.2, the above parametrization with RfQXy # 0
gives all solutions such that X*Q X, # 0. Furthermore if R = s; My + s, M, for
some s; and s2 in Q not both 0, setting u = ged(sy, 82), s = s1/u, t = s2/u,
hence changing R into R/u, and finally changing d into du?, it is clear that
we may assume that s and ¢ are coprime integers. In addition, by the above
lemma, the solutions such that X*Q Xy = 0 are the multiples of Xy. Now since
@ is nonsingular and Xy # 0, we have QX # 0. It follows that the subspace
V of @® of R such that RIQX, = 0 is exactly 2-dimensional. I claim that
there exists R equal to a linear combination of M; and M» which belongs to V/
and is not proportional to Xg. Indeed, since M € GL3(Q), any nonzero linear
combination of M; and M> is not proportional to M3 = Xy. Furthermore,
for R = sM; +tM, the equation R'QX, = 0 reads sM{Q X, +tMiQXo = 0.
If for instance M{QXy = 0, we can choose R = M;. Otherwise, we choose
51 = —MiQXo, t1 = M{QXo, and set s = 51/ ged(s1,t1), t = t1/ ged(s1,t1),
proving my claim. Thus, using once again the above lemma, it follows that
for this R we have RIQR # 0, hence X = d((R'QR)Xo — 2(R*QXo)R) =
d(R'QR)Xy. Since R'QR # 0, by choosing a suitable value of d € Q we can
thus obtain any multiple of Xj. O

Remark. The above construction is of course explicit: to obtain X itself
for instance, either M{QXy = 0 in which case we choose R = M; and d =
1/(M}QMy,), which exists by the lemma, or M{QX, # 0, and we choose s
and t as explained, R = sM; + tM>, and then d = 1/(R!QR).

Corollary 6.3.5. Let f(x,y,z) be a nonsingular rational quadratic form in
three variables. There exist three polynomials P,, P,, P, with integer co-
efficients which are homogeneous of degree 2 in 2 variables (i.e., integral bi-
nary quadratic forms) such that the general rational solutions of the Diophan-
tine equation f(x,y,z) = 0 are given by the parametrization x = dPy(s,t),
y = dPy(s,t) and z = dP.(s,t), where s and t are coprime integers and
d € Q, uniquely determined (up to simultaneous change of sign of s and t) by
z, Y, 2.
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Proof. Clear from the above proposition. Note that by multiplying d by
a suitable rational number we may indeed assume that the polynomials P,
P, and P, have integral coefficients. O

Remark. Although we have proved the above corollary in the context of
quadratic forms defined over Q, it is clear that the proofs remain valid over
any field of characteristic different from 2, hence the corollary is true if we
remove all mention of integrality, coprimeness or uniqueness.

Corollary 6.3.6. Assume that ABC # 0 and let (xg,v0,20) be a particular
nontrivial solution of Ax?+ By? = C22, and assume that zg # 0. The general
solution in rational numbers to the equation is given by

x = d(zo(As? — Bt?) + 2yoBst)
y = d(2z9Ast — yo(As®> — Bt?))
z = dzo(As® + Bt?)
where s and t are coprime integers and d is any rational number. Moreover

s, t and d are uniquely determined, up to a simultaneous change of sign of s
and t.

Proof. We apply the above proposition to the diagonal quadratic form
with diagonal (A4, B,—C), and to the particular solution (—zo,—yo,20) (s0O
as to obtain a parametrization with less minus signs). Since zg # 0, we may
choose

1 0 —Z0
M=|0 1 —y | eGL3(Q,
0 0 z0

so that R = (s,t,0)! with s and t coprime integers, and set F = (R'QR) X, —
2(R'QX)R. We compute that

E = (As? + Bt*)(—0, —y0, 20)" + 2(Aszo + Btyo)(s,t,0)"
= (wo(As® — Bt?) + 2yoBst, —yo(As®> — Bt?) + 2z Ast, (As® + Bt*)z)?

giving the above parametrization. The uniqueness statement (up to sign) has
been proved in complete generality above. O

Remark. Although evidently (—z,y,z) (for instance) is also a solution if
(z,y,2) is one, it is not evident on the formulas how to obtain it. We leave
this as an exercise for the industrious reader, see Exercise 5.

Assume now that f(z,y,z) has integral coefficients, and that we want to
parametrize all integral solutions. Writing d = u/v with ged(u,v) = 1, we
see that we want v | P,(s,t), v | Py(s,t) and v | P,(s,t). By a well-known
property of resultants, there exist polynomials U and V say with integer
coefficients such that
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U(S,T)P,(S,T)+ V(S,T)P,(S,T) = Rs(P,(S,T), Py(S,T)) ,

where Rg denotes the resultant with respect to the variable S. Clearly
Rs(P,(S,T),Py(S,T)) = r(z,y)T* for some r(z,y) € Z, and by homogene-
ity we also have Rr(P,(S,T),Py(S,T)) = r(z,y)S* for the same constant
r(z,y), where Rt denotes the resultant with respect to T'. By abuse of lan-
guage we will call r(z,y) the resultant of the polynomials P, and P,. It
follows that v | r(z,y)s* and v | r(z,y)t*, and since ged(s,t) = 1 we have
v | r(z,y). We have thus proved the following.

Proposition 6.3.7. In the parametrization of Proposition 6.3.5, if x, y and
z are integers and d = u/v with ged(u,v) = 1 thenv | ged(r(z,y),r(x, 2),7(y, 2)).

Note that the converse is not necessarily true.

In the context of Corollary 6.3.6, assume that A, B and C are integers
and that (x9,y0,20) is chosen to be an integral solution. We then have the
following;:

Corollary 6.3.8. In the parametrization given by Corollary 6.5.6, if x, y
and z are integers then d = u/v with v | 2BCz3.

Proof. If we simply used the above proposition, we would obtain v |
4ABCz4. However we can do better (also in the general case) by using reduced
resultants. Without entering into this theory, we simply note that if we set
P,(S,T) = zo(AS? — BT?) +2yoBST, P,(S,T) = 220 AST — yo(AS? — BT?)
and P,(S,T) = 20(AS? + BT?) then

U(S,T)P,(S,T) + V(S,T)P,(S,T) = 2BC’z§T2 ,
where
U(S,T) = A(yoS — 22¢T) and V(S,T) = AxzeS + 2ByeT .

As above we deduce that v | 2BC2Z, proving the corollary. Note that if we
also consider P, and P, or P, and P,, we would obtain a right hand side
equal to 2BCz3T3, hence a multiple of the above, so we would not obtain
any additional information. O

6.3.3 Computing a Particular Solution

We see from the above results that the main task for finding a parametriza-
tion of a homogeneous ternary equation X!QX = 0 is to find a particular
solution Xg. Although the proof of the Hasse-Minkowski theorem is com-
pletely effective, it would lead to a rather inefficient algorithm for finding
Xp. Although this book is not mainly algorithmic in nature, we give a very
elegant and efficient algorithm for doing so initially due to Gauss and Leg-
endre, but streamlined in the present nice form by D. Simon, see [Sim1]. We
begin by two lemmas of independent interest, where as usual we denote by
M, (Z) the ring of n x n matrices with integral entries.
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Lemma 6.3.9. Let M € M,(Z), p be a prime number, and let d =
dimp, (Ker(M)), where M denotes the reduction of M modulo p. Then
p? | det(M), in other words d < vp(det(M)).

Proof. If Uy, ..., Uy is an F,-basis of Ker(M), we complete it to an F,-
basis Uy, ..., U, of 2, we let U € GLy(F,) be the matrix whose columns
are the Uj, and finally let U be any lift of U to M, (Z). By assumption the
first d columns of the matrix MU are divisible by p, hence p? | det(MU) =
det(M) det(U). On the other hand p { det(U) since U € GL,(F,), so p? |
det(M) as claimed. O

Lemma 6.3.10. For any M € SL,(Z/pZ) there ezists a lift M such that
M € SL,(Z), in other words the natural reduction map from SL,(Z) to
SL,.(Z /pZ) is surjective (here p is not necessarily a prime number).

Proof. The following proof is taken from [Shi]. We prove this by induction
on the size n of the matrix, the result being trivial for n = 1. Assume n >
1 and the result true for n — 1, and let N be any lift to M, (Z) of the
matrix M. By the elementary divisor theorem (i.e., the Smith Normal Form
in algorithmic terms) we can find two matrices U and V' in SL,(Z) such that
UNV = D = diag(dy,...,d,) is a diagonal matrix with diagonal elements
d; such that d,, | dp—1 | --- | d1, and we have det(D) = d;---d, = 1
(mod p). If we can find a matrix E € SL,(Z) such that E = D (mod p)
then U7'EV ! € SL,(Z) will be such that U 'EV ! = N = M (mod p).
Thus we may assume that N = D and forget the matrices U and V. Set
b=ds---d,, a=det(D) = dib and define

(1 -1 (1 dy
W_<1_b b), and X_<0 1),

both of determinant 1. We check that

1 0 _ di 0\ _(d O
W(l—dl dldQ)X_ (1—(1 d2> = (0 d2) (mod p)

since a = 1 (mod p) by assumption.

By our induction hypothesis there exists a matrix C € SL,_;(Z) such
that C' = diag(di1ds,ds, - - .,d,) (mod p). It follows that if we let Wy, X; in
SL,(Z) be defined as block matrices by

W0 X 0
W= 5l) =0 al)

where as usual I,,_» is the identity matrix of order n — 2, and if we set



340 6. Some Diophantine Equations

1 0 ... 0
1-dy

: C
0

which is also clearly in SL,(Z), then W1 C1 X1 = D (mod p) and W1 C1 X; €
SL,(Z), proving the lemma by induction. O

The algorithm for finding a particular solution to a homogeneous ternary
quadratic equation is based on the following theorem.

Theorem 6.3.11. Let Q € M3(Z) be the (symmetric) matriz of a nonde-
generate ternary quadratic form which has a nontrivial solution in Q, for
every p | det(Q). There exists a matriz V € M3(Z) such that

1
det(@Q)

det(V) = |det(Q)| and Q1 = ViQV € M3(Z),
and in particular det(Q1) = 1.

Furthermore if the prime factorization of det(Q) is known V can be found
by a polynomial-time algorithm, and the entries of V' are bounded by a poly-
nomial in det(Q).

Proof. We prove the theorem by induction on |det(Q)| > 1. If det(Q) =
+1 there is nothing to prove. Thus let p be a prime number dividing det(Q),
so that in particular Ker(Q) is non trivial, and let d = dimg, (Ker(Q)) > 1,

so that p? | det(Q) by the above lemma. We consider three cases.

Case 1: v,(det(Q)) = 1. By Lemma 6.3.9 we must have d = dimg, (Ker(Q)) =
1, and as in the proof of that lemma let U € GL3(F,) such that the first col-
umn of U forms a basis of Ker(Q). Multiplying a column of U by a suitable
element of F; we may assume that U € SL3(F,). From Lemma 6.3.10 it fol-
lows that we can lift U to a matrix U € SL3(Z), whose columns we denote
by U;. By assumption we know that p | QUi, hence p | UfQU; for all i. Thus
if we set R = U'QU = (r;;), the first column (hence the first row) of R is
divisible by p. Clearly p? { ry,1, otherwise p® | det(R) = det(Q), contrary to
our assumption, as can be seen by dividing by p the first row then the first
column. By assumption we know that X*RX = 0 has a nontrivial p-adic
solution X = (ay,as, as)?, where after suitable rescaling we may assume that
the a; are p-integral with one of them a p-adic unit. I claim that either as or
a3 is a p-adic unit. Indeed, otherwise we would have vp(a2) > 1, vp(az) > 1
hence vp(a1) = 0, so setting Y = (0, az,a3)? and e; = (1,0,0)! we would have

0=X'RX =ale!Re; + 2a,Y'Re; + Y'RY

and we would have
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vp(aieiRer) = 2up(a1) + vp(r11) =1,

vp(2a1Y*Rey) > 2 (since p | Y and p | Re; which is the first column of R),
and v,(Y'RY) > 2 since p | Y, leading to a contradiction and proving my
claim.

Exchanging the indices 2 and 3 if necessary we may assume that vp(as) =
0, and let z € Z be such that z = aza; " (mod p). Set

1 00
N=1{|0 p =z
0 0 1

and V = UN. It is clear that V € M3(Z) with det(V) = p. Furthermore
the above computation of X!RX shows that Y!RY = 0 (mod p), hence
NiRN;3; =0 (mod p), where as usual N; denotes the jth column of N. Since
p | Ny and N; = ey, it immediately follows that the matrix N!RN = ViQV
is divisible by p. Thus we can replace @ by V!QV/p whose determinant is
equal to det(Q)/p hence strictly smaller than that of @ in absolute value.

Algorithmic Remarks.

(1) When p | ra2 it is not necessary to use this construction since it is
immediate that N!RN is divisible by p for

1 00
N=|0 10
0 0 p

(2) Although we have used p-adic solubility we do not need an explicit p-
adic solution. We only want N{RN3 = 0 (mod p) with N3 = (0,z,1), in
other words a solution to the quadratic equation

7‘2’23:2 +2ry 32 + 133 =0 (mod p) .

Thus we take x € Z such that

& = (—r2,3+ /133 — r2,0m3,3)r5 5 (mod p) ,

and the existence of V is equivalent to the existence of the square root.

(3) We have p 1 (r 3 — r2,273,3), otherwise p? | det(Q). Thus for p = 2 the
square root always exists so we do not need to assume local solubility at
2 in this case.

Case 2: v,(det(Q)) > 2 and d = dimp, (Ker(Q)) = 1. Let U € SL3(Z) be
defined as in Case 1 and set R = UQU = (r; ;). We know that the first row
and column of R are divisible by p, so expanding det(R) this implies that

det(Q) = det(R) = ry, det(S) (mod p®), where S = (T“ ”’3) .

r3,2 T3,3
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Since p | r1,; we cannot have p | det(S) otherwise the last two columns
of R would be linearly dependent over F, so that d > 2, contrary to our
assumption. Thus p { det(S) and since p? | det(Q) we deduce that p? | r1 1.
If we set V =UN with

1 00
N=|0 p 0
0 0 p

it is clear that det(V) = p? and V!QV is divisible by p?. We thus replace @
by VtQV/p? whose determinant is equal to det(Q))/p? hence strictly smaller
than that of () in absolute value.

Case 3: v,(det(Q)) > 2 and d = dimy, (Ker(Q)) > 2. Here we take for U
a matrix in SL3(Z) whose first two columns reduced modulo p are linearly
independent elements of Ker(Q) and we set R = U!*QU. The first two rows
and columns of R are divisible by p, hence it is clear that if we set V =UN
with

N =

OO =
O = O

0
0
p

we have det(V) = p and V!QV is divisible by p. We thus replace Q by
VtQV/p whose determinant is equal to det(Q)/p hence strictly smaller than
that of () in absolute value.

Since in all three cases we have obtained a new symmetric matrix with
strictly smaller determinant in absolute value, the first statement of the the-
orem is proved by induction. The other statements immediately follow from
the proof. O

Thanks to Theorem 6.3.11 the the search for a particular solution to
XtQX = 0 can be algorithmically reduced to the search for a particular
solution to such an equation where det(Q)) = £1. The second result which
enables us to find such a solution is based on a natural modification of the
LLL algorithm (Algorithm 2.3.18) due to D. Simon.

Denote by - the bilinear form associated with the quadratic form @. Since
(@ is indefinite, this is never a scalar product, but the notation is useful
nonetheless. We will write (z)? instead of Q(z) = z - z, since for the same
reason we cannot write Q(z) = ||z||>. Thus (z)? may be negative, hence we
will have to include absolute values in all the necessary inequalities.

Now let (b;)1<j<n be a Z-basis of the lattice A = Z™ (which is more than
what we ask in the usual LLL algorithm where the b; are only required to
be linearly independent) and let (b}) be the corresponding Gram—-Schmidt
vectors obtained using the standard formulas of Proposition 2.3.5. First note
that the induction used to define these vectors may fail since some vector
b} may be such that b} - b} = 0. If this happens either here or in the rest
of the algorithm we are in fact happy since we have a nonzero vector b}
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such that Q(b}) = 0, and since b} € Q" throughout the algorithm it is not
necessary to search any further because this is a particular solution. We will
thus implicitly assume that this never happens, so that we indeed have a
Gram—Schmidt basis.

Let v > 4/3 be fixed. We define the notion of y-LLL reduced basis in the
same way as in Definition 2.3.14, except that we must add absolute value
signs to the norms: in other words we must have |p; ;| < 1/2 for all j < i and

1 1

07 + i) > (4 7) 107007

the absolute value signs being necessary since the form () is indefinite (we will
see that in our special case we must take 4/3 < v < 2). Note that contrary
to the positive definite case this is not equivalent to |(b})?| > (1/y + 1/4 —
17 1)(bi 1)?|, see Exercise 8.

Given any Z-basis (b;) of Z™ we apply a straightforward modification of
the LLL algorithm to obtain a y-LLL-reduced basis of Z™ by adding suitable
absolute values in Step 3 of Algorithm 2.3.18.

The proof used in the positive definite case shows that the algorithm
terminates in polynomial time and that the final basis that we obtain is in
particular such that

1< |(b)?] < /Y72  det(Q) -

An easy modification of the proof shows that if @) is indefinite the above
inequality can be slightly improved (see [Siml]), but this is not important
although useful in practice.

The second result, although very easy, is the key to finding a particular
solution.

Proposition 6.3.12. Assume that n < 5, that Q) is a quadratic form with
integral entries such that det(Q) = £1, and choose 7y such that 4/3 < v <
22/(n=1)  Then either we find a b% such that Q(b}) = 0 during the algorithm
(hence a particular solution), or the Gram matriz of Q on the final LLL-
reduced basis is diagonal with diagonal entries equal to +1.

Proof. It follows from the inequality for |(b1)?| that 1 < |(b1)?| < 2, hence
(b1)? = +1 since it is an integer. Since b} = by, for 1 < i < n we have

~_bi-b;
/J'z,l (b1)2

zibi'bl7

and since the Gram matrix has integral entries and |u;1] < 1/2 we have
tin = b; - by = 0. It follows that b5 = by hence we can continue the same
reasoning by induction. Note that the double inequality for  is possible only
if n < 5, whence the restriction. O
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In our case we have n = 3 and the inequality for v is 4/3 < v < 2.
Summarizing, to find a particular solution of X*QX for an indefinite ternary
quadratic form ) which is p-adically soluble for all p | det(Q)) we proceed as
follows. After factoring det(Q)) (which is theoretically the longest part of the
algorithm) we apply the algorithm implicit in the proof of Theorem 6.3.11 to
find a matrix V € M3(Z) such that Q; = ViQV/ det(Q) € M3(Z) and such
that det(Q1) = 1. We then use the modified LLL algorithm explained above
applied to Q; and the canonical basis of Z3. Then either we directly find a
vector X1 = b} such that Ql(b’;) = 0, in which case X = V' X is a particular
nontrivial solution to X*QX = 0, or we find a matrix W € GL3(Z) such that
Q2 = WtQ,W is a diagonal matrix with diagonal entries equal to +1. Since
()2 is indefinite the signs of two diagonal entries must be opposite, hence we
can trivially find a solution X to X.Q2X> = 0 of the form (1,1,0)! up to
permutation. It follows that X = VW X, is a particular nontrivial solution
to XtQX =0.

6.3.4 Examples of Homogeneous Ternary Equations

We now apply the above results to a number of important special cases.

Corollary 6.3.13. Up to exchange of x and y the general integral solution
to the Pythagorean equation x> +y? = 2% is given by x = d(s> —t?), y = 2dst,
z = d(s? + t2), where s, t are coprime integers of opposite parity and d € Z.
In addition, we have |d| = ged(z,y) = ged(z,2) = ged(y,z). The general
solution with © and y coprime is (up to exchange of x and y)x = s> — 12,
y = 2st, z = +(s? +12).

This is the well-known parametrization of Pythagorean triples which we
will use several times.

Proof. Using Corollary 6.3.6 with the particular solution (1,0, 1), we ob-
tain the formulas of the corollary. If s = ¢ (mod 2), we set s; = (s+1t)/2 and
t; = (s—1)/2,so that s = sy +t1,t = sy —t;. Then z = 4dst, y = 2d(s? —t3),
z = 2d(s? + t2), which is the same parametrization with = and y exchanged
and d replaced by 2d. Since ged(s,t) = 1, s and ¢ are odd, hence s; and #;
have opposite parity, showing that we can always reduce to this case. Finally,
if this is the case then ged(s? —t2,2st) = 1, hence x and y are in Z if and only
if d € Z (and then |d| = ged(z,y) and the other statement follows). Finally,
if we want ged(z,y) = 1, we must have d = £1, but two of the signs in the
formulas can be absorbed by exchanging s and ¢, and by changing s into —s,
proving the corollary. O

Corollary 6.3.14. (1) Let p = +2. The general integral solution of x* +
py? = 22 with  and y coprime is given by x = +(s* — pt?), y = 2st,
2z = £(s? + pt?), where s and t are coprime integers with s odd and the
+ signs are independent.



6.3 Diophantine Equations of Degree 2 345

(2) The general integral solution of x®> — 2y? = —22 (in other words of x> +
22 = 2y*) with = and y coprime is given by x = +(s? — 2st — t2), y =
+(s? +12), z = (s + 2st — t2), where s and t are coprime integers of
opposite parity and the + signs are independent.

Proof. Using Corollary 6.3.6 with the particular solution (1,0, 1) we obtain
the formulas z = d(s? — pt?), y = 2dst, z = d(s? + pt?) where s and t are
coprime integers and d € Q. We consider two cases.

If 2 f s, then ged(s? — pt?,2st) = 1, hence for x and y to be coprime
integers we must have d = £1, giving the first parametrization.

If 2 | s then t is odd, hence ged(s? — pt?,2st) = 2. Thus for z and y
to be coprime integers we must have d = +£1/2, and this leads to another
parametrization which is the same as the first with s and ¢ exchanged and
some signs changed, proving (1).

In a similar manner for (2), using the particular solution (1,1,1) we find
the parametrization z = +(s?—4st+2t%), y = (s> —2st+2t%), 2 = £(s>—2t?)
with s and ¢ coprime and s odd, and (2) follows by replacing s with s + ¢,
giving the more symmetrical parametrization of the corollary. O

Corollary 6.3.15. Let p be a positive or negative prime number with p # 2.
The general integral solution of x2 + py? = 22 with x and y coprime is given
by one of the following two disjoint parametrizations.

(1) z = +(s? — pt?), y = 2st, z = £(s® + pt?), where s and t are coprime
integers of opposite parity such that pt s.

(2) @ = £((p—1)/2)(s> + )+ (p+ 1)st), y = 82— 12, 2 = £(((p+1)/2)(s> +
t2)+ (p—1)st), where s and t are coprime integers of opposite parity such
that s Z t (mod p).

In the above, the + signs are independent.

Proof. Using Corollary 6.3.6 with the particular solution (1,0, 1) we again
obtain the formulas z = d(s? — pt?), y = 2dst, z = d(s® + pt?) where s and t
are coprime integers and d € Q. We consider two cases.

If p t s, we easily check that ged(s? — pt?,2st) = ged(s? — pt?,2), and
since p is odd, this is equal to 1 if s and ¢ have opposite parity, and to 2
otherwise. If it is equal to 1, for  and y to be coprime integers we must
have d = +£1, giving the first parametrization. If it is equal to 2, then s
and ¢ have the same parity, hence are both odd. We set s; = (s + t)/2,
t1 = (t — s)/2 which are coprime of opposite parity such that p { (s1 — t1),
and we obtain x = —d((p — 1)(s? + t3) + 2(p + 1)s1t1), y = 2d(s? — t2),
z=d((p+1)(s? +t1)? +2(p—1)s1t;). For x and y to be coprime integers
we must have d = +1/2, giving the second parametrization.

If p | s, then p1t, so if we exchange s/p and t and change d into d/p we
reduce to the preceding case, up to the sign of  which plays no role, hence
we do not obtain any extra parametrizations. O
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6.3.5 The Pell-Fermat Equation 22 — Dy?2 = N

Introduction and Reductions.

A degree 2 equation of another kind which deserves special mention is the
Pell-Fermat equation, often simply called the Pell equation. ! This equation
is 22 — Dy? = N for given integers D and N, to be solved in integers z
and y. It is evidently closely linked to the arithmetic properties of Q(v/D).
Its nature is very different from that of the degree two equations that we
have studied above for two reasons. First, it is not a homogeneous equation.
But most importantly, we want the solutions in integers, and not in rational
numbers. Indeed, finding for instance the rational solutions to 22 — Dy? =1
is very easy, see Exercise 10.

We make a number of reductions.

e We may assume that D > 0, otherwise there are only a finite number
of pairs (z,y) to be checked. This can be done either in a naive manner, or
more intelligently by working in the imaginary quadratic field Q(+/D) and
using a computer algebra system (CAS) to check whether or not N is the
norm of an element.

e We may assume that D is not a square, otherwise if D = d? the equation
can be written (z — dy)(z + dy) = N, hence it is only a matter of listing
all (positive or negative) divisors g of N such that g + N/g is even and
d|(N/g—g). _

e Hence we are reduced to working in the real quadratic field Q(v/D),
where D is not necessarily the discriminant of the field. As in the case D <
0, the existence of a solution can be proved intelligently by using a CAS
to check whether N is the norm of an element in the real quadratic order
Z[v/D]. If a solution does exist, multiplicativity of the norm (equivalent to
the simple identity (z? — Dy?)(2%2 — Dt?) = (xz + Dyt)? — D(zt + yz)?)
implies that the general solution is obtained by multiplying the corresponding
element 2 + yv/D of the quadratic field by a unit of norm 1, i.e., a solution
to z2 — Dy? = 1.

Once these reductions are made, it is natural to consider the following
three special cases.

(1) 2> — Dy? = 1.
(2) 2? — Dy? = £1, where +1 means that we accept both signs as solutions.
(3) 22 — Dy? = +4, when D = 0 or 1 modulo 4.

We note that each equation is a special case of the next one. Indeed, if
(z,y) is a solution of (1), it is also a solution of (2). But conversely, we will
see that the set of solutions of (2) has the form z 4+ yv/D = (2 + yovD)*
for any k € Z, and then either (zg, o) is already a solution of (1), in which

! Since there are so many theorems and equations named after Fermat, history has
attached the name of the British mathematician Pell to this equation, although
apparently his only merit was to have corresponded with Fermat on the subject.
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case all solutions of (2) are also solutions of (1), or it is not, in which case it is
immediately seen that the solutions of (1) are the solutions of (2) with & even.
In both cases the solutions of (1) are also given by z+yv/D = +(z¢+yovD)*
for any k € Z for suitable (possibly different) (zo,yo)-

Finally, if (z,v) is a solution of (2), then (X,y) is a solution of (3) with
X =2z and D replaced by 4D. Conversely, any solution to X2 — DY2 = +4
with X = 0 (mod 2) gives a solution to z? — (D/4)y? = £1 with z = X/2.
This is automatic if D = 0 (mod 4). If D = 1 (mod 4) and X (hence Y) is
odd, then we obtain a solution to 22 — Dy? = %1 by setting z = X (X2 +
3DY?)/8 and y = Y (3X2+ DY2)/8, which are easily seen to be integral, and
correspond to the identity z + yvD = (X + YVD)/2)°.

To summarize, what we will call the Pell equation is an equation of the
form 2% — Dy? = +4 with D > 0 nonsquare and congruent to 0 or 1 modulo
4. There are two main results concerning this equation. One deals with the
structure of the set of solutions, the other with the algorithmic construction
of that set.

The Structure Theorem.

Proposition 6.3.16. If D > 0 is not a square and is congruent to 0 or 1
modulo 4 the Pell equation x> — Dy? = £4 has an infinity of solutions given
in the following way. If (zo,yo) is a solution with the least strictly positive yg
(and g > 0, say), the general solution is given by

k
z+yVD . <x0+y0\/5>
2 o 2

for any k € Z.

Proof. The equation can be written AV (¢) = +1, with & = (z + yvD)/2,
and since z and y are integers and x = Dy (mod 2), € is an algebraic integer
of norm equal to 1, hence a unit. Since the set of elements of the form
(x +yvD)/2 with = yD (mod 2) is the quadratic order of discriminant D,
we must thus find the structure of the group of units of this order.

Let Do be the discriminant of the quadratic field Q(v/ D), so that D =
Do f? for some positive integer f. We prove the result by induction on the
number of prime factors of f. If f = 1, by an easy special case of Dirichlet’s
unit theorem we know that ¢ = ek for some sign + (having nothing to do
with the sign of the equation), and k € Z, where ¢¢ is the fundamental unit of
Q(v/Dy), i.e., the solution of the equation with the smallest strictly positive
Y.

Assume now that f is arbitrary, and by induction that the result has been
proved for all g | f having a strictly smaller number of prime factors. We can
thus write D = D;p?, where p is a prime, and by induction we may assume
that the result has already been proved for Dy. Thus, our Pell equation can
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be written 22 — D1 (py)? = %4, so that by induction the equation is equivalent

to
k
z + pyv D1 -4 (xl +y1\/D1>
2 o 2 ’

where g1 = (21 + y1v/D1)/2 is the fundamental unit of the order of discrim-
inant D;. We have

iy~ (@ +y1m>/2>';;_f<m1 ~uVDD/)F

It will thus be sufficient to prove the following lemma.

Lemma 6.3.17. The set of k € Z such that (s¥ — ak)/\/Dl € pZ has the
form koZ where ko | p — (%).

Proof. We may clearly assume that p { y; otherwise we can choose kg = 1.
Assume first that p # 2. If p | D;, expanding the right hand side gives
+2F1py = kx¥'y; (mod p), so that the set of suitable k is pZ if p  z1y1,
and Z otherwise, so that ko = p or 1 respectively. Otherwise, €1, €1 can be
considered as distinct elements e; and e; of Fj2 (since (e; —e1)? = y?D1 #0
since p { y1), so our equation is equivalent to (e;/e;)* = 1. The first claim
of the lemma is thus proved, with ko being equal to the order of (e;/e;)

in Fp2. For the second, we note that if (%) = 1 then in fact e; € F,
hence kg | (p — 1). On the other hand if (%) = —1 then by the theory of

finite fields we have e; = e! (the action of the Frobenius automorphism).
This can also be seen directly by applying the Frobenius automorphism to
the equation €2 — z1e; £ 1 = 0. Thus the order of e;/e; = effl divides
(p®> —1)/(p—1) = p+ 1, proving the lemma, hence the proposition. O

The Algorithmic Method.

Now that we know the structure of the solution set of 2 — Dy? = 44, it
remains to find in an efficient manner the fundamental solution (zg,yo) or,
equivalently, the fundamental unit of the quadratic order of discriminant D.
There are essentially four methods for doing this, which differ by their com-
plexity. The first is the naive method, consisting in trying y = 1, 2 etc...,
until Dy? F 4 is a square. This method is absolutely correct but highly ineffi-
cient, since one can prove that the number of binary digits of yo may be often
larger than v/D. Thus, the running time can be of order O(exp(D'/?)). In
fact, since the result we are computing is so large, the fundamental unit must
be represented in a nontrivial manner (the so-called compact representation,
see [Coh0]), which we will not discuss here. We will always assume that this
representation is used.
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The second method uses continued fractions, and will be described more
precisely in a moment. Its running time has order O(D'/?).

The third method is a remarkable improvement of the continued fraction
method due to D. Shanks, using a combination of two of his most important
algorithmic ideas: the baby-step giant-step method and the infrastructure of
the continued fraction cycle. We refer the reader to [Coh0], Chapter 5 for a
detailed description of these ideas and algorithms. The running time of this
method has order O(D/4).

The fourth method is a combination of the third method with a method
coming from the theory of factoring, the use of factor bases, introduced in
this context by J. Buchmann. Its heuristic running time, well supported by
practical evidence, is subezponential, of order O(exp(cy/log(D) log(log(D))))
for a small strictly positive constant c. Using this record-breaking method, it
is possible to compute the fundamental unit in a reasonable amount of time
for discriminants up to 1080, say.

The continued fraction method is based on the following result, which is
not difficult but which we will not prove.

Proposition 6.3.18. Let D > 0 be a nonsquare integer congruent to 0 or
1 modulo 4. Denote by r the largest integer such that r> < D and r = D
(mod 2). The continued fraction expansion of the quadratic number a = (r +
VD) /2 is purely periodic. Furthermore, if (ag,a1,...,an_1) is the period of
that expansion, then the rational number p,_1/qn—1 whose continued fraction
expansion is given by that period is such that € = pp—1 — gn—1(r — \/5) /2 is
a fundamental unit of the quadratic order of discriminant D.

To apply this proposition we simply note that to compute the continued
fraction expansion of a quadratic number we must not compute any decimal
or other approximation to the number, but work formally directly only on
quadratic numbers. We leave the (easy) details to the reader, or refer once
again to [Coh0].

6.4 Diophantine Equations of Degree 3

6.4.1 Introduction

In the case of a Diophantine equation of degree 3 or higher (or of several
equations of degree 2), a new and very annoying phenomenon occurs: the
failure of the Hasse principle. In other words our equations may be every-
where locally soluble without having a global solution. We have already seen
examples of this in the preceding chapter, and we will see more here. Note
that it is usually very easy to check for local solubility everywhere. On the
other hand to prove that a Diophantine equation has no global solutions is
often very difficult, and often gives rise to unsolved problems. Even in the
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simplest case of homogeneous equations of degree 3 in 3 variables, no algo-
rithm is known, and it would be a remarkable advance in number theory to
find one.

We thus consider Diophantine equations of the form f(z1,...,2z,) = 0,
where f is a homogeneous polynomial of degree 3 with integral coefficients.
We will always assume that f is nonsingular (in other words that the partial
derivatives of f do not simultaneously vanish except at the origin), otherwise
the problem is much easier and essentially reduced to Diophantine equa-
tions of degree 1 or 2. When n = 2 there is nothing much to say since by
dehomogenizing the equation the problem boils down to the determination
of rational roots of a polynomial in one variable, which can easily be done
(see Exercise 11). When n = 3 then if we know a nontrivial solution we are
by definition dealing with an elliptic curve, and we will see in Section 7.2.4
how to transform our equation into an equivalent one in Weierstrass form
y?2z = x3 +axz? + b2 for suitable a and b. We will devote the whole of Chap-
ter 8 to the study of the global solubility of such equations. In particular
we will prove the Mordell-Weil theorem which states that the set of rational
points on the corresponding projective curve is a finitely generated abelian
group.

When n > 4, contrary to the case of quadratic forms, there is no really
simple reduction to a canonical form. For n = 4 we are dealing with a cubic
surface S. If P and @ are distinct rational points on S, the line through P
and @ either intersects S in a single third point which must be rational, or is
entirely contained in S, so that we obtain new points by this secant process.
Starting from a single point P we can consider the tangent plane of S at
P. It will intersect S along a singular cubic curve, and any tangent at P
with rational slope will intersect this curve, hence S, at a third point, which
will also be rational, or again be entirely contained in S. This will be called
a tangent process. We will see that for elliptic curves this does lead to the
whole set of rational points starting from a finite number (the Mordell-Weil
theorem). There is a conjecture of Yu. Manin which states that the same
should be true here:

Conjecture 6.4.1 (Manin). Let S be a cubic surface defined by a projec-
tive equation f(x1,T2,%3,%4) = 0 where f has integer coefficients and is
nonsingular. There exist o finite number of rational points Py,..., P, on S
such that any rational point of S can be obtained from them by a succession
of secant and tangent processes.

In view of all the above, in this section we will consider diagonal equations,
. . ) 3 — .
in other words equations of the form }°, ., a;z; = 0, or inhomogeneous
versions.
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6.4.2 General Equations ax® 4 by® 4+ ¢c22 =0

These equations were widely studied in the 19th century, and important
results on them were obtained later by Selmer and Cassels. We begin by
local solubility.

First note that, even if a, b, or ¢ are initially in Q, after multiplying
by a suitable denominator we may assume that they are integers such that
ged(a, b, ¢) = 1. Furthermore we may also assume that a, b and ¢ are cubefree
(in other words not divisible by the cube of a prime), since if for instance
p® | a, we can rewrite our equation as (a/p®)(pz)® + by + cz® = 0 (see
Exercise 13 however). We will always implicitly or explicitly make these two
reductions in the sequel.

The question of local solubility is answered by the following proposition.

Proposition 6.4.2. Let a, b and ¢ be nonzero cubefree integers such that
ged(a,b,c) = 1.

(1) The equation az® + by® + cz® = 0 has a nontrivial solution in R and in
every Q, for which p{ 3abc.
(2) Let p| abe, p # 3, reorder a, b, ¢ so that vy(a) < vp(b) < vp(c), and let
v = (vp(a), vp(b), vp(c)).
a) If v=(0,1,2) the equation has no nontrivial solutions in Q.
b) If v =(0,1,1) or v =(0,2,2), set a = ¢/b, while if v =(0,0,1) or
v = (0,0,2) set @« = a/b. The equation has a nontrivial solution in
Qp if and only if o is a cube in F.
(3) Let p=3, reorder a, b, ¢ and define v as above.
a) If v=1(0,1,2) the equation has no nontrivial solutions in Q3.
b) If v=1(0,0,1) or v = (0,2,2) the equation has nontrivial solutions
in Q.
¢) If v.=(0,0,0) the equation has a nontrivial solution in Qs if and
only if either a£b =0 (mod 9), axc =0 (mod9), orbxtc=0
(mod 9).
d) If v.= (0,0,2) the equation has a nontrivial solution in Qs if and
only if a £b =0 (mod 9) for a suitable sign +.
e) If v.=(0,1,1) the equation has a nontrivial solution in Qs if and
only if b/3 £ ¢/3 =0 (mod 9) for a suitable sign +.

Proof. Tt is clear that our equation has a nontrivial solution in R. Since
it represents a nonsingular projective cubic curve, it has genus 1. Thus, if
N(F,) denotes the number of projective points on this curve with coordinates
in F,, the general bounds (see Corollary 2.5.27) or here more simply Hasse’s
theorem imply that when p { 3abc we have (p'/2 —1)? < N(F,) < (p'/2 +1)2,
and in particular N(F,) > (2'/2 — 1)? is nonzero.

(1). Assume first that p 1 3abe. Let (zo,yo,20) be a solution modulo p
with p { zg, say. We fix yo and z¢ and consider f(X) = aX3 + (byd + c23). We
know that f(z¢) =0 (mod p) and pt o, hence v, (f' (o)) = 0 since p{ 3a. It
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follows that we may apply Hensel’s Lemma 4.1.37, which tells us that there
exists € Q, such that f(z) = 0.

(2). Assume now that p | abc with p # 3, reorder a, b, ¢ as in the proposi-
tion, and let (z,y, z) be a nontrivial solution in @Q,. Multiplying by a suitable
element of (Q, we may assume that z, y, and 2 are in Z, and that one of them
at least is a p-adic unit, and hence at most one is not a p-adic unit. With a
slight abuse of notation we will write p |  to mean that « € pZ,.

It is clear that if v = (0,1,2) then az® + by® = 0 (mod p?), hence p | =,
hence by® = 0 (mod p?) hence p | y since v,(b) = 1, which is absurd since
x or y is a p-adic unit, so the equation is not soluble in @, in this case. If
v =(0,0,1) or v = (0,0,2) then a necessary condition for solubility in Q, is
that az® + by® = 0 (mod p) be nontrivially soluble, in other words that a/b
be a cube in [F,. But conversely if this is the case, we can choose z = 0 and
Hensel’s lemma tells us that a/b is a cube in Z, since p # 3. If v = (0, k, k)
with & = 1 or 2 then necessarily p | z, so our equation is equivalent to
(ap®>=F)(z/p)® + (b/P*)y® + (c/p*)2z® = 0, which has the form that we have
just studied, hence is soluble in Q, if and only if b/c is a cube in F,.

(3). This case is similar, but we must be more careful in the application
of Hensel’s lemma. As above it is clear that if v = (0,1, 2) the equation is not
soluble in Q3. A necessary condition for solubility in Q3 is solubility modulo
9. Since a cube is congruent to 0 or +1 modulo 9, and since at most one of
z, y, and z is in 3Zs3, we must have either a £ b,a+ ¢, bt coratb+tc
congruent to 0 modulo 9. Assume first that vz(a) = vs3(b) = 0, so that a = €b
(mod 3) for a suitable e = +1. If a = &b (mod 9) we choose z =0, y = —¢,
and z = (1 — (a — eb)/a)'/?, which exists in Qs since |(a — eb)/alz = 1/9. If
in addition v3(c) = 0, we obtain the same results by symmetry if a + ¢ or
b + ¢ is divisible by 9. If a = €1b + e3¢ with £; = £1, we choose y = —eq,
2z = —€9,and z = (1 — (a — 1b — £2¢)/a)'/. Now it is an easy exercise to
show that if v .= (0,0,0) then b £ ¢ is congruent to £b or to ¢ modulo 9,
implying c), and that if v = (0,0,1) then the six numbers +b and +b + ¢
modulo 9 are not congruent modulo 9 and not divisible by 3, so that a is
necessarily congruent to one of them, proving the first part of b). Finally, as
in case (2), if v3(b) = v3(c) = k with k£ = 1 or 2 the equation is equivalent to
(a3%7F)(2/3)® + (b/3%)y® + (c¢/3%)2® = 0 which is one that we have already
studied, and we simply translate the conditions that we have found, proving
the proposition. ]

Lemma 6.4.3. Let a, b, ¢ be cubefree integers. If the equation ax® + by® +
cz® = 0 has a nontrivial solution with =, y, z in Q, it has a nontrivial solution
with x, y, z in Z pairwise coprime. Furthermore, if in addition a, b and ¢ are
pairwise coprime, then ax®, by® and cz® are pairwise coprime.

Proof. Clearly by multiplying z, y and 2z by a common denominator we
may assume that they are in Z. Then, dividing all three by gecd(z,y, 2), we
may assume that ged(z,y,2z) = 1. Assume by contradiction that p is a prime
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such that p | ged(z,y). It follows that p® | az® + by® = —c2?, and since c is
cubefree, we have p | z, a contradiction. Thus z, y and z are pairwise coprime.
If in addition a, b and ¢ are pairwise coprime, assume by contradiction that
there exists a prime p dividing az® and by, so that p also divides cz®. Clearly
either p | z or p | a. If p | z, then p 1 yz, hence p | ged(b, ¢), absurd. If p | a,
then p{b and pte¢, hence p | ged(y, 2), also absurd, proving the lemma. 0O

6.4.3 The Equations 3 + ¢y +¢22 =0

This equation has the evident solution (z,y,2) = (1,—1,0) hence is every-
where locally soluble, so we are now going to study whether it has global
rational solutions with zyz # 0. Note that proving that the equation has no
such solutions for ¢ = 1 is Fermat’s “last theorem” for exponent 3, which
was probably already solved by Fermat using the method of infinite descent,
together with a touch of algebraic number theory, although a proof was only
given later by Euler. Also for ¢ = 1, a (slightly) more complicated proof which
generalizes to the more general Fermat equation x? +y? + 2P = 0 for so-called
regular prime exponents will be given in Proposition 6.9.14 below.

Note that the solubility of the equation z3 + y® + c2® = 0 with z # 0 is
equivalent to the representability of ¢ as a sum of two rational cubes. This
question will be considered in more detail (but without proofs) in Section
6.4.5.

We begin by the following proposition, which is typical of the type of
reasoning which one uses to solve Diophantine equations by factoring and al-
gebraic number theory. We will see many other such examples in this chapter
and in Chapter 14.

Proposition 6.4.4. The equation x> —3zy + 3y? = 2* with x and y coprime
integers has the three disjoint parametrizations

(z,y,2) = (8% + 357t — 6st” + 1, 3st(s — t), 8% — st +t7) ,
(z,y,2) = (s° + 3%t — 651> + 3,5% — 3st® + 13,5 — st +1?)
(z,y,2) = ((s +t)(s — 2t)(25 — t),s° — 3st® + 13, 5% — st + t?) ,

where in all three s and t are coprime integers such that 3 1 s + t, and the
parametrizations correspond to solutions where 6 |y, 6 |z —y, and 6 | x — 2y
respectively.

Proof. Let j = (=1 + v/=3)/2 be a primitive cube root of unity. In the
principal ideal domain Z[j] our equation factors as (z — (1 — j)y)(z — (1 —
72)y) = 23. If p is a prime ideal of Z[j] which divides the two factors on
the left then p divides their difference and (1 — j) times the second minus
(1 — j2) times the first, hence p divides (1 — j) ged(z,y), hence p | (1 — j)
since z and y are coprime, so that 3 | z. However this would imply 3 | z,
hence 9 | 3y2, hence 3 | y, contradicting ged(z,y) = 1. Thus 3 { z and the
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two factors on the left are coprime. It follows that there exist a € Z[j] and
an integer k with 0 < k < 2 such that z — (1 — j)y = j*a?, hence z = aa.
Writing a = s + tj, the condition 3t z translates into 3 1 s + ¢, and choosing
successively k = 0, 1, and 2 gives the three parametrizations, where in the
second we have exchanged s and ¢. The divisibilities by 6 are trivially checked,
and show that the parametrizations are disjoint. O

Thanks to this proposition we can now prove that many of our equations
2% + 3% + ¢2® = 0 do not have any global solutions with zyz # 0:

Theorem 6.4.5. (1) Let p be a prime number such that p = 2 (mod 3). The
equation z° +y> + cz® = 0 has no solutions in nonzero integers x, y and
z whenc=1, 3, p or p?> withp =2 or 5 modulo 9, except for c = 2 where
it has the unique solution (z,y,z) = (1,1,—1) (up to multiplication by a
constant).

(2) If p is a prime number such that p = 8 (mod 9), the equation z* + y> +
cz® = 0 has no nontrivial solutions with 3 | 2 when ¢ = p or p*.

(3) Ifp and q are prime numbers such that p = 2 (mod 9) and ¢ = 5 (mod 9),
the equation z3 +y> + cz® = 0 has no nontrivial solutions with 3 | z when

c=pq.

Proof. We may clearly assume that z, y, and z are pairwise coprime
integers. We prove all the results simultaneously, and consider two cases.
Case 1: 3 | cz. Then 3 | x + y, hence 3 | (2% — zy + 9?) = ((z + y)? — 32y),
so that 9 | c2® = —(2® + y®). Since 9 { ¢ it follows that 3 | 2, so we set
y1 = (z +y)/3, 21 = —2/3 and our equation is y; (2% — 3zy1 + 3y?) = 3cz}.
Since y; and x are coprime the two factors on the left are coprime. Since
3 | z we have 3 t z hence 3 | y;. Furthermore if a prime number ¢ divides
x? —3xy1+3y? then £ 1 y1, and we check that (2 /y1)—3 is a square root of —3
modulo £, hence £ =1 (mod 3). Since in all cases considered in the theorem
¢ has no such prime divisors, it follows that 2> — 3zy; + 3y? is coprime to
3c. Therefore our equation implies that there exist coprime integers a and b
such that y; = 3ca® and z? — 3zy; + 3y? = b®. By Proposition 6.4.4 this last
equation has three disjoint parametrizations, but we keep only the first since
we know that 3 | y1. Thus there exist coprime integers s and ¢ with 3¢ s + ¢
such that in particular y; = 3st(s — t), hence ca® = st(s —t). To symmetrize
we write u = —s, v = ¢, w = s — t, which are pairwise coprime and satisfy
u+v+w =0 and uvw = ¢(—a)3.

In statements (1) and (2) of the theorem, ¢ is a power of a prime, and
since s and t are coprime it follows that ¢ divides one and only one of u, v, or
w, and without loss of generality we may assume that ¢ | w. Then ¢ is coprime
to uw and v, so that u = €3, v = f3, w = cg®, and hence €® + f3 +c¢g®> = 0, so
we have found a new solution to our initial equation. Clearly efg # 0, and
it is easily checked that |efg| < |zyz|, so that the magic of Fermat’s descent
method applies: if we had started with a nontrivial solution with minimal
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|zyz|, we would thus obtain a smaller one, a contradiction which proves the
impossibility of the initial equation.

In (3), we have ¢ = pg. Then up to permutation of u, v, and w, either
pg | w, or p | v and g | w. But in this last case, we would have u = €3
v=pf3, w=qg? hence e? +pf3+qg*® = 0. Since a cube is congruent to 0 or
+1 modulo 9 and p = 2 (mod 9) and ¢ = 5 (mod 9), it is easily checked that
the congruence €® + pf® + qg®> = 0 (mod 9) implies that e, f, and g are all
divisible by 3, which is absurd since u, v, and w are pairwise coprime. Thus
this case is impossible, so that pg = ¢ | w and we can descend as above.

Case 2: 31 cz. Thus here ¢ = 1, p or p? where p = 2 or 5 modulo 9. In the
special case ¢ = 1 our equation is completely symmetrical in z, y, and z, so
we may assume 3t zyz, and we deduce an immediate contradiction modulo
9 since we have 23, y3 and 23 all congruent to +1 modulo 9. Thus we assume
c=por p°

We set here y; = z + y, so our equation is y1 (y? — 3zy; + 372) = —c23,
and since 3 1 z, we have 3 t y; hence the factors on the left are coprime.
As above a prime p = 2 (mod 3) cannot divide y? — 3zy; + 322 when z
and y, are coprime, so that there exist integers a and b such that y; = ca?,
y? — 3zy, + 322 = b. By Proposition 6.4.4 once again this last equation
has three disjoint parametrizations. However we note that 3 t z and 3 t y,
otherwise z3 + 3% = £1 (mod 9), hence ¢ = £1 (mod 9), which is impossible
when ¢ = 2 or 5 modulo 9 (this is where we must exclude 8 modulo 9,
for which the theorem would be false). Thus we can keep only the third
parametrization, for which z = y (mod 3), and we deduce that there exist
coprime s and ¢ with 3 { s+t such that in particular y1 = (s+1t)(s—2t)(2s—t).
To symmetrize we set u = s +t, v = s — 2t, w = t — 2s which are pairwise
coprime since 3 { s + ¢, and satisfy u + v +w = 0 and vvw = ¢(—a)?. Exactly
the same reasoning as in the first case allows us to conclude that the descent

method works, with one exception: if ¢ = 2 and x = y = —z = 1, we obtain
the same solution. Thus the descent also works in this case and shows that
(z,y,2) = (1,1,—1) is the only solution. O
Remarks.

(1) As already mentioned, this theorem includes in particular Fermat’s last
theorem for exponent 3.

(2) Tt is clear that the theorem is still valid for ¢ = p* for all k if p = 2 or
5 modulo 9, since it is then a special case of 2% + 3% + p™2® = 0 with
m=20,1or 2.

(3) When ¢ = p = 8 (mod 9), not only solutions may exist, but we will see
below that as a consequence of the BSD conjecture solutions should exist
for every p. For instance we have 183 + (—1)% + 17(-7)3 = 0.

(4) When ¢ = 32 there is the trivial solution (z,y,2) = (1,2,—1), and it is
immediate to check using the methods of Chapter 8 that this gives a point
of infinite order on the corresponding elliptic curve, so that there exist
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an infinity of distinct coprime solutions. On the other hand for ¢ = 2
the above descent method shows that (z,y,z) = (1,1,—1) is the only
coprime solution (up to sign), and this means that the point is a torsion
point on the corresponding elliptic curve.

(5) When ¢ = pq with p and ¢ primes such that p = 2 (mod 9) and ¢ = 5
(mod 9), there are in fact no solutions also when 3 1 z, see Exercise 15.

6.4.4 The Equations 3 4+ by® +c2z3 =0

We first note that over an integral domain of characteristic zero the equation
azx® + by® + c2® = 0 is equivalent to the equation X% + BY® 4+ C2® = 0 with
for instance B = a?b, C = a®c, and (X,Y, Z) = (az,y, 2). It is thus sufficient
to study such equations with a = 1.

We will study these equations in great detail, and apply to them a number
of different methods. In the present chapter, we will use tools of algebraic
number theory (class numbers, units, etc...) to give sufficient conditions
which imply that these equations are everywhere locally soluble, but are not
soluble in Q. Note that, contrary to the Fermat equations of the preceding
section, there are no “evident” solutions. In Chapter 8 we will find further
results on this equation in two ways. First, an elementary computation of
the torsion subgroup of the associated elliptic curve will give an additional
sufficient condition for nonglobal solubility (Corollary 8.1.15). Then using
3-descent we will give in Section 8.4.5 a complete theoretical solution to
the existence of a global solution, which unfortunately relies on the explicit
computation of the Mordell-Weil group of the associated elliptic curve, which
is feasible in practice for small cases, but which is one of the major unsolved
algorithmic problems on elliptic curves.

We begin by a few lemmas.

Lemma 6.4.6. Let ¢ be a cubefree integer different from +1, set 6 = ¢'/3,
let K = Q8), let f = [Zk : Z[6]] be the index of Z[0)] in Zk, let m be a
nonzero integer, and let ug, u1, and us be integers.

(1) If m | (ug + u10)Z then m | ged(ug,u1).
(2) If m | (uop + u10 + u20*)Zx then m | f ged(uo, w1, us)-

Proof. (1). Set a = (ug + u18)/m, so that (ma — ug)® — cuj = 0. The
characteristic polynomial of  is thus X? — (3ug/m)X? + (3ud/m?) X — (u +
cu?)/m3. Since « is an algebraic integer the coefficients of this polynomial
are in Z, and in particular m? | 3u?, hence m | ug, so that m? | cu$, and since
¢ is cubefree m | u; as claimed.

(2). Set a = (up + u10 + u + 26?)/m. Since by assumption a € Zg, by
definition of f we have fa € Z[6], in other words m | fu; for all 4, so that
m | f ged(uo, ur,uz). O
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Remark. Using the precise description of an integral basis of Z k, one can
show that if ¢ # +1 is cubefree, then m | (ug+u10+u26?)Z  if and only if m |
ged(ug, u1, cauz) when ¢ Z £1 (mod 9), or m | ged(ug — c3ua, u1 — cua, 3caus)
when ¢ = 1 (mod 9), where ¢ = ¢;c3 with ¢;, ¢, squarefree and coprime
(with f = c3 or f = 3¢, respectively), see Exercises 17 and 18.

Lemma 6.4.7. Let K be a number field, and let a, b, ¢1, and c2 be integral
ideals of K. Assume the following.

(1) We have an ideal equality ¢;co = ba®.
(2) We have ged(cy,ca,a) = 1.

Then there exist integral ideals a; and b; such that ¢; = b;al fori =1, 2,
b1b2 = b, aaz = a, ged(ar, a2) = 1, and ged(er, ¢2) = ged(by, ba).

Proof. If we set 0 = ged(cq,c2) then by assumption 0 and a are coprime
hence 92 | b, so that

(10 )(e2071) = (b0 2)a®.

Since by definition of 9 the two factors on the left are coprime, for any ideal
I we have

ged((e107 1) (e20™), ) = ged(c1071, I) ged (e, 1)

hence if we set 9; = ged(c;0 1, b0 2) and ¢; = ;0 10, * we have 0,05 = bd 2
hence ¢;¢; = a®. Now since ¢;9~! and ¢,0~! are coprime, a fortiori so are
e; and ey, hence there exist coprime integral ideals a; such that e; = o} and
a1a2 = a. Thus if we set b; = 00; we have ¢; = b;a$ and byby = 020,05 = b.
By construction we have d = ged(eq,¢2) | ged(b1,b2), and conversely it is
clear that ged(by, ba) | ged(er, ¢2), proving the lemma. |

Recall that an integral ideal a is said to be primitive if m = 1 is the only
m € Zsg such that a/m is an integral ideal. For simplicity we introduce the
following temporary definition.

Definition 6.4.8. Let § be an algebraic integer, K = Q(#), and f = [Zk :
Z[6]]. We say that an integral ideal b of K dividing bZk is a suitable divisor
of b (relative to 6) if it satisfies the following three conditions.

(1) b is primitive and b/ N'(b) is the cube of a rational number.
(2) If m € Z divides bZ /b then m | ged(b, f).
(3) Every prime ideal dividing b and not dividing fZ k has degree 1.

For instance if b and f are coprime then this means that b and bZ /b
are primitive, that b/ N(b) is the cube of a rational number, and that all
prime ideals dividing b have degree 1. The following lemma is the key to the
theorems that we are going to prove.
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Lemma 6.4.9. Let c be an integer not equal to a perfect cube and such that
c# £1 (mnod 9), set § = ¢'/® and let K = Q(8). Let b be a nonzero integer,
let z, y, and z be pairwise coprime integers such that z° + by® +cz® = 0, and
set L =1+ 20 and Q = 2% — x20 + 2262.

(1) There exist integral ideals a; and b; of K such that LZk = b1a3, QZx =
boa3, b1by = bZk, a1as = yZ, and the a; are coprime to 3Z .

(2) If ¢ is cubefree the ideal by is a suitable divisor of b.

(3) If b = p* with p a prime different from 3 and k = 1 or 2, then either b;
and by are coprime, or pZ = p° is totally ramified and ged(by,bs) = p?
for some 5 > 1.

Proof. (1). We note first that 3 { y: indeed if 3 | y then 3 { zz by co-
primality, so ¢ = (—z/2)® = £1 (mod 9), contrary to our assumption. Now
with the notation of the lemma, in the field K our equation can be written
LQ = —by>. Let p, if it exists, be a prime ideal of K dividing both L and
Q- Then p divides 322 = Q + 3zL — L2, hence either p | 3Zk or p | x, and
since y is coprime to z and is not divisible by 3 it follows that p 1 yZk, so
ged(LZ i, QZ k) is coprime to yZ k. By Lemma, 6.4.7 it follows that there ex-
ist integral ideals a; and b; such that LZ i = b1a3, QZx = baad, b1by = bZf,
and ajas = yZk, proving (1).

(2). If m € Z divides by then m | (x + 20)Z g, hence by Lemma 6.4.6
m | ged(z, 2) = 1, so by is primitive. By the same lemma if m € Z~( divides
bZ /b1 = by then m | (2% — 20 + 226%)Z K, hence m | f ged(2?,22,2%) = f
since ged(z,2) = 1, and since by | bZk we also have m | b so m |
ged(b, f). Since LZ g = bia3 and N (L) = 2% + c2® = —by? it follows that
N(b1) N (a1)® = |by?| so that b/ N'(b1) = (£ N (a1)/y)? is the cube of a ra-
tional number. Finally, let p be a prime ideal divisor of b; and p the prime
number below p. Since by assumption p ¢ fZk we have pt f, and since z and
z are coprime, by Lemma 3.3.20 we deduce that p has degree 1, proving that
b is a suitable ideal divisor of b.

(3). Let again p be a prime ideal dividing L and @, if it exists. As we have
seen we have p | 3z, and also p | 3226? = Q — 3zL + 2L?. Since by Lemma
6.4.7 we have p | ged(by, ba), it follows that p? | bZ k. In particular, since b is
coprime to 3, pt 3Zk, hence p | z and p | 20, and since = and z are coprime
it follows that p | z and p | 6, s0 p | LZk, p? | QZ K, hence p® | bVZx = p*Z k.
Since 1 < k < 2 this implies that p? | pZk, so that p is a ramified prime ideal
above p, necessarily unique, proving that ged(by, bs) = p’ for some j > 0. If
j =1, then p | z and ptyz, hence v,(by?) = v,(b) = k < 3 < vp(z?) so that

0p(€) = vp(ez®) = vp(a® + by®) = wp(b) =

hence v, (cZ k) = ke(p/p). On the other hand since ¢ = ° we have vy, (cZk) =
3vy (0Z k) = 0 (mod 3), hence 3 | ke(p/p), and since k is coprime to 3 it follows
that 3 | e(p/p) so that p is totally ramified, as claimed. O
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Thanks to the above lemma we can easily give some sufficient conditions
for the insolubility of the equation z3 + by® + cz® = 0. We give two results,
corresponding to the cases where the exponent of the class group of K =
Q(c'/?) is divisible by 3 or equal to 1 or 2.

Theorem 6.4.10. Let b and ¢ be cubefree integers not equal to £1, set § =
c/3, and let K = Q(6). Assume that the following conditions are satisfied.

(1) ¢# £1 (mod 9).

(2) The class number h of K is divisible by 3.

(3) If b is a suitable divisor of b then b°/® is not a principal ideal, where
e | h(K) is the exponent of the class group of K.

Then the equation z3 + by® + cz® = 0 has no nontrivial rational solutions.

Proof. By Lemma 6.4.3 it is sufficient to prove that the equation has
no solution with z, y, z in Z pairwise coprime. By Lemma 6.4.9 (1) and (2)
there exist integral ideals a; and b; of K such that LZx = b1a, QZ x = baa3,
b1b2 = bZ Kk, a1a2 = yZk, and since ¢ is cubefree by is a suitable divisor of
b. Since L¢/3Zx = b%/%a¢ and by definition of the exponent the ideal a¢
is principal, it follows that bi/ % is also principal, in contradiction with the
assumption. O

An important variant of the above theorem is the following,.

Proposition 6.4.11. The conclusion of the theorem is valid if we replace
condition (3) by the assumptions that b = p* with p a prime not dividing the
index f = [Zk : Z[0]], k =1 or 2 is coprime to e, and for each prime ideal p
of degree 1 above p then p¢/? is not principal.

Proof. If b = p, it is easily checked by inspecting the 5 splitting possibilities
for p that for any suitable divisor b of b then either b or bZ /b is a prime
ideal p above p of degree 1, hence p¢/3 is not principal, so in both cases b¢/3 is
not principal so assumption (3) of the theorem is satisfied. Thus assume that
b = p?, so that the class number of K is odd. As before we have p?Z g = b, b
where b; is a suitable divisor of p? such that the bf/ % are principal ideals. We
consider three cases.

Case 1: p # 3 and ged(by, bs) = Z k. It is easily seen by inspection that we
always have b; = g2 or by = g2 for some prime ideal q above p of degree one.
Since the class number of K is odd it follows that q¢/3 is a principal ideal of
degree one, contrary to our assumption.

Case 2: p # 3 and gcd(by,b3) # Zk. By Lemma 6.4.9 (3) we know that
ged(by, by) = p? for j > 1, where p is a totally ramified prime ideal above p.
But then it is clear that there are no decompositions p6 = by1by with b; and
b, primitive, hence this case cannot occur since by is a suitable divisor of p?.
Case 3: b = 9. Recall that the prime 3 is always ramified in the pure cubic
field K. If 3Z i = p? is totally ramified, as in case 2 there do not exist suitable
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divisors of b. Thus assume that 3Zx = p3ps with po # p1. Our equation
implies that 2 + ¢2® = 0 (mod 9), so that 31 z (otherwise 3 | # and = and 2
would not be coprime) hence ¢ = (—/2)® (mod 9), so ¢ = 0 (mod 9) since by
assumption ¢ Z £1 (mod 9). Since ¢ is cubefree, this means that vs(c) = 2.
But as above this is absurd since this implies that vy, (c) = 2v3(c) = 4, while
vp, (¢) = 3vp, (6) = 0 (mod 3), proving the proposition (another way of saying
this is that if v3(c) = 1 or 2 then 3 is totally ramified in K = Q(c}/?)). O

Remark. Among the 84 fields Q(c'/?) with ¢ cubefree such that 2 < ¢ < 100,
50 have class number divisible by 3.

A result when h = 1 or 2, or more generally when the exponent of the
class group is equal to 1 or 2 is the following.

Theorem 6.4.12. Let b and ¢ be cubefree integers, set § = c'/3, and let
K = Q(8). Assume that the following conditions are satisfied.

(1) ¢ £1 (mod 9) and ¢ #Z 0 (mod 9).

) The exponent e of the class group of K is equal to 1 or 2.

) If € is a fundamental unit of K then e = £1 (mod 3Zk).

) For every suitable divisor b of b there exists a generator a of b¢ of the
form o = zo + 210 + 2260% with z; € Q and v3(x3) = 0 when e = 1, or
v3(z? — 4xom2) = 0 when e = 2.

2
(3
(4

Then the equation z3 + by® + cz®> = 0 has no nontrivial rational solutions.

Proof. As before by Lemma, 6.4.3 we may assume that x, y, z are pairwise
coprime integers. Writing our equation L@ = —by? as above, by Lemma 6.4.9
we know that there exist integral ideals a; and b; of K such that LZ g = by a3,
QZx = baa3, b1by = bZk, a1ay = yZg, where b; is a suitable divisor of b
and the a; are coprime to 3Zg. By assumption we have bf = aZg with
o =g + 210 + 202, where z; € Q, so we can write

(x+ 20)°Zxk = (z0 + 710 + 226°) (u + v0 + W) * L ,

where u + v0 + w6? is a generator of a$. Thus, if € is a fundamental unit of
K there exists m € Z and a sign =+ such that

(z + 20)° = ™ (20 + 16 + 220%)(u + v0 + wh?)? .
Now it follows from the Dedekind criterion (see Theorem 6.1.4 of [Coh(])
that condition (1) on c is equivalent to 31 f = [Z k : Z[6]]. Multiplying both
sides of the equation by f™+* gives

FrH(fo + f20)° = £(fe)™ (fzo + f10 + f226?)(fu + fob + fwb?)®

where all the coefficients are now in Z. Note that
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+ N (fa$) = N(fu+ fvd + fwb?)
= (fu)® + (fv)’c+ (fw)*c® = 3(fu)(fo)(fw)e
= (fu+ fvd + fwh?)® (mod 3),

and since by assumption fe = +1 (mod 3Z[6]) it follows that
= (fo + £20)° = £ 3 N(a1)(fzo + f210 + f226%) (mod 3Z[4]) .

If e = 1 we identify the coefficients of §2 and deduce that 0 = & f*z5 N (a;)
(mod 3), and since 31 f and by assumption 3 { z, it follows that 3 | A (ay)
which is absurd since a; is coprime to 3Zg. If e = 2 we note that the left
hand side has the form yo + 16 + y26? with y? — 4yoy> = 0, so identifying
this expression on both sides (which we can do since 1, 8, §? are Q-linearly
independent) we obtain 0 = f8 N'(a;)*(2? — 4zo72) (mod 3), and since 3 1 f
and 3 t (22 — 4zo>), it follows that 3 | M(a1), again a contradiction and
proving the theorem. O

Remarks.

(1) Among the 58 cubefree values of ¢ such that 2 < ¢ € 100 and ¢ # +1
(mod 9) and ¢ # 0 (mod 9), 19 are such that K has exponent of the class
group equal to 1 or 2, and among those, 7 satisfy ¢ = +1 (mod 3Zk).

(2) Because of the condition on the fundamental unit, if there exists a gen-
erator « as in (4), then all generators satisfy the 3-adic condition.

Corollary 6.4.13. The equations x> + by + c2z® = 0 have a nontrivial
solution in every completion of Q but mo nontrivial solutions in Q for
(b,e) = (3,20), (3,22), (4,15), (5,12), (6,10), (6,11), (6,17), (10,15),
(10,22), (11,15), (11,20), (12,17), (15,17), (15,20), (15,22), (17,20), and
(17,22).

Proof. Recall that we have at our disposal a CAS which can say imme-
diately whether the conditions of the theorems are satisfied or not. Thus a
small computer program shows that the above equations are the only ones
satisfying the hypotheses of the corollary with b < ¢ < 22. O

We will come back to the equation z3 + 15y% + 2223 = 0 at the end of
Section 7.2.4. The reason we stopped the (easily obtained) examples at the
strange limit 22 is to have this example available. Many more examples are
given in the table given below.

Corollary 6.4.14 (Selmer). The equation 3z> + 4y + 523 = 0 has a non-
trivial solution in every completion of Q but no nontrivial solutions in Q.

Proof. Multiplying the equation by 2 and setting (X,Y, Z) = (2y, z, 2),
it is clear that its solubility in any field of characteristic 0 is equivalent to
that of the equation X3 4+ 6Y3 + 1023 = 0, and it is easy to check that the
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conditions of Theorem 6.4.12 are satisfied for ¢ = 6 and b = 10 (the pair
(6,10) is among those given above). O

This equation has historical value since it was the first example of an
equation of that type violating the Hasse principle.

In all of the above results we have assumed that b is coprime to [Z g : Z[d]].
When this condition is not satisfied, we can often still obtain a result, see
Exercise 17.

There are a number of other sufficient conditions based on algebraic num-
ber theory which imply the nonglobal solubility of our equations, in particu-
lar conditions based on cubic reciprocity, see for instance the first paper by
Selmer [Sell] on the subject. However the above conditions suffice in small
cases. For instance, they allow a complete answer for max(|b|, [c|) < 65, and
leave only (at most) 12 indeterminate cases (out of 5050) for max(|b|, |¢|) <
100, which can all be treated using the general method explained in Section
8.4.5. For the convenience of the reader, in the following table we give in
a very compact form detailed information on the solubility of the equation
22 +by® + c2® =0 for 1 < b,c < 64. The entry in line b and column ¢ of the
table means the following: - means locally insoluble and L means everywhere
locally soluble but not globally soluble (hence a failure of the Hasse princi-
ple). In every other case, the equation is globally soluble, hence the curve
22 + by® + c2z® = 0 is the projective equation of an elliptic curve, and the
entry (0, 1, 2, or 3 in the limits of the table) gives the rank of the curve (see
Chapters 7 and 8 for all these notions). In particular if the entry is equal to
0 this means that the equation has only a finite nonzero number of (projec-
tive) solutions which can all easily be found. By Corollary 8.1.15 this implies
that either b, ¢, or b/c is a cube. The same corollary also gives the torsion
subgroup.

This table has been computed as follows. Note first that without loss of
generality it is enough to compute the entries where b and ¢ are cubefree.
Using Proposition 6.4.2, we determine whether the equation is everywhere
locally soluble. We then make a naive search for solutions up to a small
bound (we chose z, |y| up to 1000). If no solution is found, we apply Theorem
6.4.10, Proposition 6.4.11, and Theorem 6.4.12. This leaves 54 cases which
are undetermined, up to exchange of b and c¢. Using the simple remark that
the solubility of z® + by3 + c2® = 0 is equivalent to that of X3+ BY?® 4 cB2z3,
where B is such that bB is a cube, we remove 27 indeterminate cases, leaving
27. Note that here it is essential to use the exponent of the class group in
the theorems, and not the class number itself. If we had used only the class
number we would have removed only 1 indeterminate case, but the 26 missed
ones would have been removed in the next stage.

In a second stage, using descent methods or Cremona’s mwrank program
(see Chapter 8), we compute the rank of the Jacobian of our curve (see
Proposition 7.2.4, the warning following it, and Section 13.2). Thanks to
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Corollary 8.1.15, when this rank is equal to 0 (and neither b, ¢, nor b/c is a
cube, but this never happens at this stage), we conclude that the equation
has no global solutions. This leaves only 10 undetermined cases for which
the Jacobian has rank greater or equal to 1. Pushing further the search for
solutions, using also 3-adic and 7-adic information, we find global solutions
for all of these cases (the most difficult being 1491053 +17- (—140161)% + 41 -
1019882 = 0 for (b, c) = (17,41) and 1472673 +41-(—6040)>+59-(—37793)3 =
0 for (b,c) = (41, 59)).

The visual rows, columns and diagonals that can easily be seen in the table
reflect the existence of simple global solutions. For instance on the diagonal
¢ = 64 — b we see that the equation is always globally soluble, and this is
clear since there exist the solution (z,y,2) = (—4,1,1).
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The problem of representing integers or rational numbers by sums of squares
is completely understood thanks to the Hasse-Minkowski theorem and Propo-
sition 5.4.4 (see Section 5.4.4). On the other hand the problem for cubes is

6.4.5 Sums of Two or More Cubes



6.4 Diophantine Equations of Degree 3 365

much more difficult and far from being understood. First as we have seen
above in several analogous situations (Section 6.4.4) the local to global prin-
ciple fails. The analogue of Proposition 5.4.4 also fails: representations as
sums of cubes of rational numbers and as sums of cubes of integers are two
quite different problems. For instance we will see below that every integer
is the sum of three cubes of rational numbers, while it is trivial to see that
the integer 4 cannot be equal to the sum of three cubes of integers. Hence
in this subsection we give an assortment of results and conjectures on those
subjects, including the proof of a beautiful result of Dem’janenko.

Finally note that the natural setting for the problems which we consider
is Q or Z, and not the positive rationals or the positive integers, so we do not
consider the problem of representations as sums of positive cubes. Thus when
we speak of an integer, we always mean an element of Z, not necessarily of
Z 0. In addition, since the exponent 3 is odd, contrary to the quadratic case
we do not need to look at signs. Note however the following result.

Proposition 6.4.15. An integer n > 1 is a sum of two rational cubes if and
only if it is a sum of two nonnegative rational cubes.

Proof. We may evidently assume that n is not a cube, so let n = 3 + y3
be a decomposition of n as a sum of two cubes. If zy and y are nonnegative
there is nothing to prove, so we may assume without loss of generality that
yo > 0and o < 0. It is easily checked that if #} +y3 = nthenz} ,+yi , =n
with 44223 zr + 223

Y — Tk Ye — Tk
The existence of such an identity comes from Fermat’s tangent method and
will be explained in detail in Chapter 7 (see also Exercise 9 of Chapter 7),
but the direct verification is immediate. We thus define a sequence of points
on the curve z3 + y* = n. I claim that there exists k € Zx such that z > 0
and y > 0. Indeed, if we set up, = yi /) this is equivalent to u; > 0 (since
n > 0), and uy, satisfies the recursion ug11 = f(ug) with

2z% +1

f($)=—m-

Furthermore, since yo > 0, o < 0 and 2§ +y§ = n we have u$ +1 < 0, hence
ug < —1. Now we have
(z 4+ 1)2(82% — 922 + 122 + 1)

z(z3 + 2) ’

flx)—8x—7=—

and since for z < —1 we have 82° —9z22+12z+1 < —28 it follows in particular
that for —¥/2 < z < —1 we have f(z) — 8z — 7 < 0. Thus if — 2 < < -1
we have upy1 +1 < 8(ug + 1). Since ug + 1 < 0 it follows that there exists
k > 0 such that uy < —+/2. But then clearly ugy1 = f(uz) > 0, as was to be
proved. ]
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Proposition 6.4.16. There are infinitely many integers which are not the
sum of two cubes of rational numbers.

Proof. Indeed, Theorem 6.4.5 tells us for instance that odd primes congru-
ent to 2 or 5 modulo 9 cannot be the sum of two cubes of rational numbers,
and by Dirichlet’s theorem on primes in arithmetic progression (Theorem
10.5.29) there are infinitely many such primes. O

It is reasonable to ask if, in a manner analogous to Proposition 5.4.9, we
can characterize the integers which are sums of two cubes, either of integers,
or of rational numbers. The answer for integers is trivial. For rational numbers
there is a conjecture, and a theorem for representation of prime numbers as
sums of two cubes of rational numbers which is a combination of work of
N. Elkies with a theorem of F. Rodriguez-Villegas and D. Zagier [Rod-Zag].

Proposition 6.4.17. An integer n is a sum of two cubes of (positive or
negative) integers if and only if there exists a positive divisor d of n such that
(4n/d — d*)/3 is the square of an integer. For example a (positive) prime p
is a sum of two cubes of integers if and only if p = 2 or p has the form
p=322 -3z +1 forz >2.

Proof. Left to the reader (Exercise 20). O

The conjecture for sums of two cubes of rational numbers is the following.

Conjecture 6.4.18. (1) Any squarefree integer congruent to 4, 6, 7, or 8
modulo 9 is a sum of two rational cubes.

(2) Denote by S(X) the set of squarefree integers less than or equal to X
which are congruent to 1, 2, 3, or 5 modulo 9 and which are the sum of
two rational cubes. Then S(X) has density 0, more precisely there exists
a strictly positive constant c such that

S(X) ~ X3/ log(X)V3/2-1/8

The first conjecture immediately follows from the BSD conjecture, hence
is almost certainly correct. The second conjecture has been obtained using
methods coming from random matrix theory, and is more speculative al-
though supported by numerical evidence [Kea-Sna]. Note that it is possible
to state a conjecture for cubefree integers, which is a more natural condition,
but the statement is more complicated.

To state the theorems of Elkies and Rodriguez-Villegas—Zagier we first
need to define a sequence of polynomials.

Definition 6.4.19. We define the Villegas—Zagier polynomials V,,(t) by the
initial conditions V_1(t) =0, Vo(t) = 1 and the recursion

Vot (t) = (823 — 1)V () — (16n + 3)t°V,, (t) — 4n(2n — 1)tV,_1 ()
forn > 1.
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Theorem 6.4.20. Assume the Birch and Swinnerton-Dyer conjecture (Con-
jecture 8.1.7), and let p be a prime number. Then p is the sum of two cubes
of rational numbers if and only if one of the following conditions is satisfied.

(1) p=2
(2) p=4, 7, or 8 modulo 9.
(3) p=1 (mod 9) and p | Vi_1)/3(0).

The proof of this theorem uses the classical theory of modular forms,
complex multiplication, and central values of L-series. For example, it implies
that the only p < 100 such that p = 1 (mod 9) and which are sums of two
cubes of rational numbers are p = 19 and p = 37.

Note that in Theorem 6.4.5 we have proved by descent arguments that if
p=3orp>=5and p=2or 5 modulo 9 then p is not a sum of two cubes.
When p =4 or 7 modulo 9, N. Elkies has shown that p is a sum of two cubes
of rational numbers without assuming BSD. The result for p =1 (mod 9) is
also independent of the correctness of BSD. The only case where the BSD
conjecture is needed is for p = 8 (mod 9).

It is possible that this theorem can be extended to a complete charac-
terization of all integers which are sums of two cubes of rational numbers.
Note, however, that if we are willing to reason in a heuristic manner and in
particular to believe the BSD conjecture, it is easy to determine whether or
not a given integer (or rational number) ¢ is a sum of two cubes. Without
loss of generality assume that ¢ is a cubefree integer and that ¢ > 2. It follows
from Proposition 7.2.3 and the remarks following it, combined with Corol-
lary 8.1.15 and BSD, that ¢ is a sum of two cubes if and only if the elliptic
curve E, with affine equation y2 = 23 + 16¢? has rank at least equal to 1.
To check this, we first compute the root number (in the case of squarefree
¢ it will be equal to —1 for ¢ = 4, 6, 7, or 8 modulo 9, and to 1 otherwise,
explaining Conjecture 6.4.18 (1)). If it is equal to —1, then by BSD c is a sum
of two cubes (and BSD is not necessary if the rank is equal to 1, which can be
checked by computing L'(E,, 1) using Corollary 8.5.10). If the root number is
equal to 1, we compute L(E,,1) using Corollary 8.5.7, which gives a rapidly
convergent series for L(E.,1). If the result is different from 0 (which can
always be proved if true), then by the proven results on the BSD conjecture
we know that the rank of E. is equal to 0, hence that ¢ is not a sum of two
cubes. On the other hand if the result seems to be very close to 0, then it is
highly plausible (but not proved, even assuming BSD) that ¢ is a sum of two
cubes since the rank of E. will probably be at least equal to 2.

In this manner, it is easy to construct the following table, whose validity
does not depend on BSD since in the range of the table we only have curves
of analytic rank 0 or 1, or curves with proven rank 2 or 3. The entry in row
numbered R and column C (with R going from 0 to 1953 and C going from 1
to 63) gives the rank of the curve E, with ¢ = R+ C, except when the rank is
0 and the curve has nontrivial torsion (which occurs if and only if ¢ is equal
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to a cube or twice a cube), in which case the letter T occurs, corresponding

to the trivial solutions 0% + 1> = 1 and 1% 4+ 1% = 2, and their multiples.

OO

3
4567890123456789

33333333334444444444
01234567

222222
12

11111111112 222
12345678901234567890123456789
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Sums of Two Rational Cubes up to 2016

To find explicitly the decomposition of a cubefree integer ¢ < 2016 as a
sum of two cubes the reader should proceed as follows. If the table above
indicates 0 there are no solutions. If it indicates T, there is only one solution,

either ¢ = 22 if ¢ is a cube, or ¢ = 2 + 3 if ¢ is twice a cube. If it indicates
2 or 3, then for all ¢ < 2016 the mwrank program or the 2-descent methods

of Chapter 8 will succeed in finding a nontrivial point on the elliptic curve

y2

2% + 16¢?, which can then be transformed into a solution of 23 +y3 = ¢

thanks to Proposition 7.2.3 and the remarks following it. Finally, if it indicates

1 then either mwrank or 2-descent will find a nontrivial rational point, or we

apply the Heegner point method described in Section 8.6.

We now consider the case of three cubes. The main conjecture, now widely

believed to be true, is the following.

Conjecture 6.4.21. An integer n is a sum of three cubes of integers if and

only if n Z £4 (mod 9).

Note that since the cube of an integer is congruent to 0 or =1 modulo 9,

+4 (mod 9) cannot be the sum of three cubes. The conjecture

claims that this is the only restriction.

an integer n

It is also conjectured that any integer not congruent to +4 modulo 9 is
a sum of three cubes of integers in an infinite number of ways. However, to



6.4 Diophantine Equations of Degree 3 369

the author’s knowledge the only known representations of the integer 3 are
3=13+13+1% =43+ 43 + (-5)® (and permutations of the latter).

A large amount of computer work has been done on these conjectures.
For a long time the smallest positive integer n Z +4 (mod 9) not known to
be a sum of three cubes was n = 30, until the discovery by M. Beck, E. Pine,
W. Tarrant and K. Yarbrough of the decomposition

30 = (—283059965)° + (—2218888517)° + (2220422932)°* .

As of 2005 the only integers n such that 0 < n < 100 and n Z £4 (mod 9)
which are not known to be a sum of three cubes are n = 33, 42, 52, and
74. The size of the solutions found suggest that they are at least exponential
in n.

Note that, contrary to similar results for squares, we must not assume
that n is cubefree. To take a simple example, 5 is evidently not a sum of
three cubes, but 135 = 3% - 5 = 23 4+ (—6)3 + 73 is one.

Indeed, as for two cubes the situation changes dramatically for the repre-
sentation with rational numbers:

Proposition 6.4.22. Every integer (and in fact every rational number) is
the sum of three cubes of rational numbers. For instance we have n = z3 +
y® + 23, with

3(m? +m) —m?+3m+1

r=m-—1 = — z = -
» ¥ m2+m+1’ m2+m+1 "’

where we have set m =n/9.

Proof. Just check. Of course this does not explain how to obtain such
identities or why they exist. O

We now consider the case of four or more cubes. Because of the above
proposition we no longer need to consider representations as sums of cubes
of rational numbers. For integers there is a conjecture (a weak version and a
strong version), and two results.

Conjecture 6.4.23. (1) (Weak version.) Every integer is o sum of four
cubes of integers.

(2) (Strong version.) Every integer has the form 2z° +y® + 23, hence is a sum
of four cubes of integers of which two at least are equal.

The two known results on this subject are as follows. The first is very
easy, and the second is due to Dem’janenko [Dem1].

Proposition 6.4.24. Every integer is a sum of five cubes of integers, where
we can in fact assume that at least two are equal. In other words every integer
has the form 2x® + y3 + 23 + 3.
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Proof. The identity 6z = (z — 1)® + (—2)% + (—z)® + (z + 1) shows
that every multiple of 6 is a sum of four cubes of which two are equal. If
n is an integer, n — n® is divisible by 6 hence is a sum of four cubes, so
n = (n —n®) 4+ n? is a sum of five cubes of which two are equal. O

Theorem 6.4.25 (Dem’janenko). Every integer n such that n # +4
(mod 9) is a sum of four cubes of integers.

Note that this theorem was certainly conjectured as far back as the end
of the nineteenth century, but was only proved by Dem’janenko in 1966, see
[Dem1].

Proof. First the polynomial identities

6= (z—1)°>+ (—2)® + (—z)® + (z +1)® and
6x +3=12°+ (—z+4)> + (22 — 5)* + (=22 + 4)°

show that every multiple of 3 is a sum of four cubes. Next the identities

182 4+ 1= (22 + 14)% + (=22 — 23)® + (=32 — 26)° + (3z + 30)%,
182 +7=(x+2)%+ (6 —1)° + (82 — 2)3 + (=92 + 2)* ,
182 + 8 = (z — 5)% + (—z + 14)% + (=3z + 29)° + (3z — 30)%,
together with the complementary identities obtained by changing z into —z
and multiplying by —1 show that every n = +1, £7 or £8 modulo 18 is a sum
of four cubes. The only remaining congruence classes are n = £2 (mod 18).
Finally the polynomial identities
54z + 2 = (29484x” + 2211z + 43)3 + (—294842% — 2157z — 41)3
+ (98282% + 4852 + 4)° + (—98282% — 971z — 22)3
54z +20 = 3z — 11)3 + (=32 4+ 10)* + (z + 2)® + (—z + 7)3
216z — 16 = (—27z + 13)3 + (24z — 12)® + (182 — 8)® + (3z — 3)? and
216z + 92 = (3x — 164)3 + (=32 + 160)® + (x — 35)° + (—z + 71)®
together with their complementary identities only leave the congruence
classes n = +38 (mod 108), hence let n € Z be of this form. Changing if
necessary n into —n we may assume that n = 38 (mod 108).
In the sequel, denote by p the prime number p = 83. Assume first that
p | n. Then n/p = 38p~—! = 46 (mod 108), and the identity
83(108z + 46) = (294842? + 25143z + 5371)% + (—29484z? — 25089z — 5348)°
+ (982827 + 8129z + 1682)% + (—9828z% — 8615z — 1889)3

shows that n is a sum of four cubes. We may thus assume that n = 38
(mod 108) with p { n.
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Let a, b, m be integers and set

w = —(24m — 25a + 2937b), x = 27m — 19a + 27460,
y = —(19m + 9a + 602b), z = 10m + 27a — 9285 .

We check that w? + 23 + y® + 2 = 18p(a? — 34200%)m + P(a,b), with
P(a,b) = (25a — 2937b)% + (—19a + 2746b) + (—9a — 602b)> + (27a — 928b)° .

Thus, if a and b are chosen as solutions of the Pell equation a? — 342002 = 1
we have w® + 23 + y® + 2° = 18pm + P(a,b) hence, given such a pair (a, b),
the equation w® + 2® 4+ y% + 23 = n is solvable in m if and only if P(a,b) = n
is solvable modulo 2, 9, and p. Since n = 2 (mod 18), the condition modulo
2is 2| b, and the condition modulo 9 is easily seen to be a = 1 (mod 3) and
b = 2 mod 3. Thus the condition modulo 18 is @ = 1 (mod 3) and b = 2
(mod 6). There remains the condition modulo p.
The fundamental unit of the order Z[v/3420] is easily computed to be
e = 3041 + 52/3420, which has norm 1. Thus a + by/3420 = se* for any
k € Z and s = %1, in other words
k42 ek~

and b= .
" *9V/3420

Since a and b satisfy a second order linear recurrence, it is immediately seen
that the congruence conditions modulo 3 and 6 on a and b are equivalent
to a + bv/3420 = (—&)* with £ = 1 (mod 3). Thus if we set 7 = —* and
j = (k—1)/3 we have

a=s

e (=)l — (=e)f’
~ - ~ T d bp=~—~—~L_~ 7 |
2 an 23120

We note that 3420 = 10® (mod p), hence that ¢ = 75 (mod p), €
(mod p), n = 14 (mod p), and n = 6 (mod p), so that

31

.14 —31-67 - 149 .67
8-14 231 6 (mod p) and bzg 147 +31-6 (mod p) |

2-10
and replacing gives finally

a

P(a,b) = 71 - 507 (mod p) .

Now it is immediately checked that 50 is a primitive root modulo p. Since
ged(71,p) = 1 it follows that for any n such that p { n there exists j € Z
with 71-507 = n (mod p), hence there exists a and b such that P(a,b) = n
(mod p), proving that the condition modulo p can be satisfied and finishing
the proof of the theorem. O

Remarks.
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The above proof is translated essentially verbatim from Dem’janenko’s
paper, but with a few minor improvements. First it is not at all clear
from this proof how one obtains the second degree polynomial identities
and why we define w, =, y, and z as above (for instance why use the
identity (—24)% + 273 + (—19)® + 10® = 0 among so many similar ones?).
This has been explained by M. Watkins in an unpublished manuscript.
Furthermore, Dem’janenko chooses the prime p = 3323, but Watkins
shows that one can use the smaller prime p = 83, so that I have used
this p instead. Finally, the identity for 216z — 16 was sent to me by
D. Alpern, and replaces a more complicated identity involving quadratic
polynomials analogous to the one for 54z + 2 found by Dem’janenko. It
can be found very simply from the identity for 18z 4 7 by a linear change
of variable.

I would like to emphasize that the above proof gives a covering set of 82
identities involving linear polynomials for all integers n = 38 (mod 108).
For instance, the choice a + bv/3420 = —e and a linear change of variable
leads to the identity

1494z — 178 = (—24z — 213614285)% + (27z + 240317344)3
+ (=192 — 169113356)> + (10z + 89004059)° .

The use of polynomial identities is essential in the above proof. It is
natural to ask whether it is possible to use such identities also for integers
congruent to +4 modulo 9 (with a left hand side which is linear in z). It
has been proved by Schinzel, Mordell and successors that such an identity
does not exist with polynomials of degree less than or equal to 7. It is
reasonable to conjecture that no such identity exists.

To conclude this section, we note the following related result.

Proposition 6.4.26. Up to permutation of the variables the equation w® +
22 + 9% + 23 = 0 in Q has the trivial parametrization x = —w, z = —y, and

the

parametrization

w = —d((s — 3t)(s* + 3t?) + 1)
x=d((s + 3t)(s® + 3t?) + 1)
y = —d((s* + 3t*)2 + (s + 3t))
2z =d((s® + 3t%)% + (s — 3t))

with d, s, and t in Q.

Proof. If we set W = (w +2)/2, X = (z —w)/2,Y = (y + 2)/2, and

Z = (2 —y)/2 the equation is equivalent to W (W?2 +3X?) = —Y (Y2 +322).
Excluding the trivial parametrization we have W # 0 and Y # 0, so that if
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we define s and t by (Y + Zv/=3)/(W + X+/=3) = s + t/—3, we have by
definition sW — 3tX =Y and sX + tW = Z, and the equation is equivalent
to W = =Y (s2 + 3t2). Thus —3tX = Y(1 + s(s? + 3t2)) or, equivalently,
X =d(1 + s(s> + 3t?)) and Y = —3dt, hence W = 3dt(s*> + 3t?) and Z =
d(s + (s® + 3t?)?), so we obtain the given parametrization. O

When s, t and d are integers the solution is trivially integral, but the
converse is not true (choose for instance d = —-361/42, s = —10/19,
t = —=7/19, which gives one of the smallest nontrivial integral solution
(w,z,y,2) = (12,1, -10,—9)). No complete parametrization of the equation
in integers is known, but nontrivial partial ones are easy to find, see Exercise
22. Note that Elkies gives the following homogeneous rational parametriza-
tion:

—2 + (r + 8)t2 — (s* + 2r2)t + 2rs* — r?s + 2r%)

w

z=d(t® — (r+8)t2 + (s> + 2rH)t +rs? — 2r’s +13)

Y

z2=d((s —2r)t* + (r* — s*)t + s> —rs® + 2r%s — 2r°) .

Here d =1/7,r =1, s = —4, and t = —2 give the solution (9, —1,10,-12).

6.5 Skolem’s Equation z3 + dy3 =1

6.5.1 The Basic Theorem

The aim of this section is to prove the following theorem.

Theorem 6.5.1 (Skolem). If d € Z is given with d # 0, there exists at
most one pair (x,y) € Z x Z with y # 0 such that 3 + dy® = 1.

Proof. If d = ¢® with ¢ € Z, then (z + cy) | (23 + dy®) = 1, hence
2 4 ¢y = *1. Replacing in the equation gives £1 — 3cy + 3c2y? = 1, hence
looking modulo 3 we have & = +, hence cy(cy —1) = 0. Thus since we assume
d # 0 and y # 0, we obtain y = 1/c as the only possible solution (if d = +1),
otherwise none. Thus, assume that d is not a perfect cube, and let K = Q(6)
with 8 = d'/3 be the corresponding pure cubic field. In particular its signature
s (1,1), hence by Dirichlet’s unit theorem there exists a fundamental unit €
such that any unit has the form +e* for k € Z. Changing if necessary ¢ into
—e we may assume that € has norm +1.

Assume now that there exist two solutions (z1,y;) and (zs,ys) to our
equation with y; # 0 and y» # 0, and set ¢; = z; + y;6 for i« = 1 and 2.
Our equation is equivalent to NV g /@(€:) = 1, hence since the ¢; are algebraic
integers, they are units in K of norm 1, so that ¢; = &P¢ for some p; € Z.
Writing p1/p2 = ni1/ne with ged(ni,n2) = 1, we thus have (21 + y10)™ =
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(22 +y20)™, and if necessary exchanging (z1,y1) and (z2,y2) we may assume
that 3 1 n;. Thus N = na/n; can be considered as an element of Zjs. To
simplify, write x = x; and y = y;. By definition of §, we have

(x +y0)® = 23 + 302y + 32926 + dy® = 1 + 32yG  with G = 20 + y6* .

We will work in @3 (¢), which by Proposition 4.4.41 is isomorphic to the direct
sum of the completions of Q() for the absolute values corresponding to the
prime ideals of Z g dividing 3. Write N = 3M +r with 0 < r < 2. Since N €
Zs3, by Corollary 4.2.13 we can thus write 22 + y20 = (1 + 3zyG)M (z + y6)",
where (1 4+ 3zyG)M is defined by a convergent binomial series. Thus, using
Corollary 4.2.15 (which was proved for a p-adic field but is clearly still true
for a product of such), we have

To+y28 = (1+32yG)M (z+y0)" = (1+3Mzy(x0+y6%) +9Mz?y’ B) (z+y0)"

for some B € Z3[f]. Note that even though Q3(6) is not in general a field,
1, , and 02 are still 3-linearly independent, hence we may identify the
coefficients of powers of 8 in the above formula. In particular, if we write
B = By + B8 + By#? with B; € Z3 and identify the coefficients of 82 we
obtain

3Mzy*(1 + 3zB>) forr =0
0 =< 3Mz%*y*(2 + 3(yB1 + zB2)) forr=1
y2(1 4+ 9Mz?(x + Ba2x® + 2B1zy + Boy?)) forr =2.

Since x and y are nonzero, and N is not equal to 0 or 1, we can divide respec-
tively by 3Mxzy?, 3M22y? and y?, and we immediately obtain a contradiction
modulo 3. O

6.5.2 Special Cases

Since we can replace y® by ¢®y3 for any ¢ € Z, in Skolem’s theorem we may
assume that d is a positive cubefree integer.

Corollary 6.5.2. For d = 1, 2, 7, 9, 17, 19, 20, 26, 28, 37, 43, 63, 65
and 91 the equation z3 + dy® = 1 has a (necessarily unique) integral solution
with y # 0, given respectively by (z,y) = (0,1), (-1,1), (2,-1), (-2,1),
(183 _7)) (_853)’ (_1957)’ (35 _1): (_37 1)’ (107 _3)) (_77 2)’ (45 _1): (_45 ]-)
and (9,—-2).

Proof. Clear by direct check, the uniqueness coming from Skolem’s theo-
rem. 0O

Corollary 6.5.3. The only integral solutions to the equation y> = 23 + 1
are (z,y) = (—1,0), (0,%1) and (2,£3).
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Proof. We rewrite the equation as (y — 1)(y + 1) = 2. If y is even, y — 1
and y + 1 are coprime, hence are both cubes, and since the only two cubes
which differ by 2 are —1 and 1 we deduce that (x,y) = (—1,0). Otherwise
y is odd, hence z is even. Changing if necessary y into —y we may assume
that y = 1 (mod 4). Thus ((y — 1)/4)((y + 1)/2) = (z/2)?, hence there exist
integers a and b such that y—1 = 4a® and y+1 = 2b3, so that b> —2a® = 1. By
Skolem’s theorem above, the only solutions to this equation are (a,b) = (0,1)
and (—1, —1), giving the solutions (z,y) = (0,%1) and (2, £3). O

The following result can be shown using only slightly more complicated
methods.

Theorem 6.5.4 (Delone). Let d be a positive cubefree integer. The equa-
tion 2 + dy® = 1 has a nontrivial integral solution if and only if the funda-
mental unit € of the ring Z[d'/?] (which is not necessarily equal to the full
ring of integers of Q(d'/?)) such that 0 < & < 1 has the form x + yd/? with
z andy in Z.

Using this theorem, it is immediate to check that the values of d given in
Corollary 6.5.2 are the only positive cubefree values of d less than or equal
to 100 for which Skolem’s equation has a solution with y # 0. The only
additional such values for d < 1000 are d = 124, 126, 182, 215, 217, 254, 342,
422, 511, 614, 635, 651, 730 and 813. Let us show how we can prove that
there are no nontrivial solutions in the particular case d = 11.

Proposition 6.5.5. The only integral solution to 3 +11y3 = 1 is the trivial
solution (z,y) = (1,0).

Proof. We work in the number field Q(d) with § = 11'/3. A fundamental
unit is € = 1 + 40 — 262, with k/q(€) = 1. Since our Diophantine equation
is equivalent to N'g/g(z + y#) = 1, Dirichlet’s unit theorem tells us that
z + yf = ™ for some n € Z.

The smallest prime p in which X3 — 11 splits completely is p = 19, hence
we work in Qyg, in which the three roots are ¢; = —3 + 5 - 19 (mod 19?),
c2 = —2+8-19 (mod 19?) and ¢3 = 5+ 6- 19 (mod 19?). The corresponding
values of the embeddings of ¢ are e; = 9+2-19 (mod 19?), e; = 4 (mod 19?),
e3 = 9+ 16-19 (mod 19?), and for j = 1, 2 and 3 we have z + yc; =
e Since Trg/q(f) = Tri/q(6?) = 0, we have 3", ¢; = 3, ¢f = 0, hence
c1el + coel + czef = 0. On the other hand, since Ng/g(e) = 1 we have
erezez = 1, hence replacing e; by (eze3)™! and multiplying by (eze3)™ we
obtain

c1 + czegneg + 036363” =0.
We first consider this equation modulo 19. We obtain 16 +17-11"+5 =0
(mod 19), in other words 11" = 1 (mod 19) or, equivalently since the order

of 11 modulo 19 is equal to 3, n = 0 (mod 3). Thus, we must have n = 3m for
some m € Z. But then we have (e2e3)® =1+ 7-19 (mod 192) and (e2€3)3 =
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1+ 11-19 (mod 19?). Thus, with the notation of Corollary 4.2.16, we have
(€3e3)™ = ¢o(m) and (eze3)™ = ¢p(m) for a = e3e3 — 1 and b = ezel — 1. We
immediately see that ¢, (X) = 14+7-19 X (mod 19?) and ¢(X) = 1+11-19 X
(mod 19?), and since ¢; + c2 + ¢3 = 0, our equation has the form ¢(m) = 0
with ¢(X) = 3-19 X (mod 192). In the notation of Strassmann’s theorem we
thus have N = 1, hence there is only one solution m = 0 corresponding to
(z,y) = (1,0), as claimed. O

6.5.3 The Equations yZ = 22 £+ 1 in Rational Numbers

In Corollary 6.5.3 we have found all integral solutions to the equation y? =
23 +1. It is instructive to see how to find all rational solutions to this equation.
The method that we use is not related to Skolem’s, but is an example of a
descent method which we will explore in more detail in Section 8.2. This proof
is essentially due to L. Euler. I would like to thank B. de Weger and R. Schoof
for showing me their version, and the one below is a (slight) blend of the two.
We slightly simplify Euler’s argument by using the following lemma.

Lemma 6.5.6. Let K = Q(v/—3) and a € Zk. Then aa is a square in Z if
and only if there exist n € Z and 8 € Zx such that a = nf32.

Proof. Since Z is a principal ideal domain, simply decompose « into a
product of a root of unity by a product of powers of prime elements of Z .
The details are left to the reader (Exercise 24). O

The key descent result of Euler is the following.

Proposition 6.5.7. Let ¢ = +1. The only nonzero integral solutions to the
Diophantine equations Y? = X Z(X? — 3¢ X Z + 3Z?) with ged(X,Z) =1 are
fore =1, with (X,Z) = £(1,1) (hence Y = £1) or +£(3,1) (hence Y = £3).

Proof. Since the discriminant of X2 — 3¢ X + 3 is negative it follows that
X7 > 0, in other words X and Z have the same sign. Thus if necessary
changing (X, Z) into (—X, —Z) we may assume they are both positive.

Assume first that 3 + X, and consider a solution to our equation where
[Y| > 1is minimal. As always in descent arguments we are going to construct
another solution with a strictly smaller value of |Y|, hence giving a contra-
diction. Thus X, Z and X2 — 36X Z + 3Z? are pairwise coprime, and since
they are all positive they are all three squares, so we write X = 22, Z = 22
and X2 —3eXZ +37% = a?, say. f weset a = X + Z(—3e ++/-3)/2 € Zx,
we see that aa = a2, so that by the above lemma we have a = nf? with
n € Z and B € Z. Since (1,(—3¢ + +/=3)/2) is a Z-basis of Zg, we write
B = u+v(—3e++/—3)/2, and equating coefficients we obtain X = n(u%—3v?),
Z = n(2uv — 3ev?). Since X and Z are coprime, it follows that n = %1,
that w and v are coprime and 3 { w. Since X is a square and 3 { u we
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have X = nu? = n (mod 3), hence n = 1 (mod 3) so in fact n = 1. We
thus obtain the system of equations u? = z? + 3v?, 22 = v(2u — 3ev). If
a1 = = + vy/—3 we have aja; = u?, so again by the above lemma there
exists 81 = (s +tv/—3)/2 € Zk, hence with s = ¢ (mod 2), and n; € Z such
that oy = ny3?, which gives by equating coefficients z = ny(s? — 3t2)/4,
v = nyst/2, hence u = ny(s? + 3t?)/4. Replacing in the formula for 22, we
obtain 22 = (n1/2)%st(s?> — 3est + 3t2). It follows that Y7 = z/(n1/2) is an
integer such that Y = st(s? — 3est + 3t?), so we have obtained a new solu-
tion to our Diophantine equation. Evidently s and ¢ are nonzero (otherwise
v, hence Z is zero). If g = ged(s, t) (equal in fact to 1 or 2), replacing (s, ¢, Y1)
by (s/g,t/g,Y1/g*) we may assume that s and ¢ are coprime. Let us show
that |Y1| < |Y|. Indeed, we have
Y2 XZ(X2-3:XZ+32%)  X(X?—3:XZ+32%)
Y2 422 [n? - 4 '

Now X2 —3eXZ + 3Z% > 7 for e = —1. For ¢ = 1, since Z = 2? we have
X? -3XZ +32% = (X —3Z/2)%+32Z%/4 > 32%/4 > 1 for |z| > 2. For
e =27 =1, since X = 22 we have X(X2 —3¢X +3) > z%(z* — 322 + 3) > 4
for |z] > 1. It follows from all this that [Y| > |Yi| unless e = X = Z = 1.
But in that case we have |Y'| = 1, and since we have initially assumed that
|Y| > 1, this gives the desired contradiction showing that when 3 { X the
only possible solution has |Y| = 1, which is indeed possible with € = 1 and
X =7 =1, but not possible if £ = —1.

If 3| X then 3 | Y, hence (Y/3)? = Z(X/3)(Z? — 3¢ Z(X/3) + 3(X/3)?),
and since ged(X, Z) = 1 we have 3 1 Z, so by we have just proved we have
e=1,(Z,X/3) = £(1,1) hence (X, Z) = £(3,1). O

Corollary 6.5.8. The only rational solutions of the equation y> = z3 —1 is
(z,y) = (1,0), and the only rational solutions of the equation y*> = z° +1 are
(xay) = (_130): (Oa:t]-) and (2a:t3)

As already mentioned we will later give a similar proof of this result
(Proposition 8.2.14), this time using 2-descent explicitly.

Proof. Write x = m/n with ged(m,n) = 1. Multiplying the equation
y? = 2° +¢ by n* we see that n(m?+en?) is a square, and if we set ¢ = m+¢en
this means that nc(m? —emn +n?) = nc(c® — 3enc+ 3n?) is a square. Clearly
ged(e,n) = ged(m,n) =1, n # 0, and ¢ # 0 except if m = —en, i.e, z = —¢.
Thus by the above proposition we deduce that otherwise we have ¢ = 1, and
(¢,n) = £(1,1) or +£(3,1), giving x = 0 or z = 2 respectively, and proving
the corollary. O

6.6 The Fermat Quartics = + y* = cz*?

For a more detailed study of these Diophantine equations, in particular over
number fields, I refer to [Cal].
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We will denote by C.. the projective curve defined by the equation z*+y* =
cz*. We may clearly assume that c is not divisible by a fourth power strictly
greater than 1.

6.6.1 Local Solubility

We begin by studying local solubility over (Q, in order to give a necessary and
sufficient condition for the equation to be everywhere locally soluble.

Proposition 6.6.1. (1) C.(Qx) # 0 if and only if c =1 or 2 modulo 16.
(2) If p is an odd prime divisor of ¢, then C.(Qp) # 0 if and only if p =1
(mod 8).
(3) If p=3 (mod 4) is a prime not dividing c then C.(Q,) # 0.
(4) If p > 37 is a prime not dividing c then C.(Q,) # 0.
(5) Ce(Qur) # 0.
(6) Let p € {5,13,29} be a prime not dividing c. Then
a) Cc(Qs) # 0 if and only if ¢ Z 3 or 4 modulo 5.
b) C.(Qi3) # 0 if and only if c Z 7, 8 or 11 modulo 13.
c) Ce(Quo) # 0 if and only if c £ 4, 5, 6,9, 13, 22 or 28 modulo 29.

Proof. If (x : y : 2) € C.(Q,), we may clearly assume that z, y and z
are p-adic integers and that at least one is a p-adic unit. If p { ¢, reduction
modulo p gives a projective curve C. over F,, which is smooth (nonsingular)
if p #£ 2.

(1). Let u be a 2-adic unit. I claim that u € Q4 if and only if v = 1
(mod 16Z5). Indeed, if v is a 2-adic unit we can write v = 1+ 2t with ¢ € Zo,
and

vt =1+ 8t + 24t% + 32> + 16t* = 1+ 8(t(3t + 1)) = 1 (mod 16) .

Conversely, if u = 1 (mod 16Z5,) we write u = 1 + z with ve(z) > 4, and
it is easy to check that the binomial expansion for (1 + z)'/* converges for
va(z) > 4. Alternatively, we set f(X) = X* — u and use Hensel’s lemma
(Proposition 4.1.37): if u = 1 (mod 32) we have |f'(1)|]2 = 1/4 and |f(1)|2 <
1/32 < |f'(1)|3, whileif u = 17 (mod 32) we have |f'(5)]2 = 1/4and |f(5)]2 <
1/32 < |f'(5)|3, proving my claim.

Now assume that z* + y* = cz*. Since v2(c) < 3, either z or y is a 2-adic
unit. It follows that * + y* = 1 or 2 modulo 16, hence z is a 2-adic unit, so
that ¢ = 1 or 2 modulo 16 as claimed. Conversely, if ¢ = 1 (mod 16) then
¢ = t* by my claim above, so that (¢ : 0 : 1) € C.(Qy), while if ¢ = 2 (mod 16),
then ¢ — 1 = t* for some ¢, hence (¢t :1:1) € C.(Q:), proving (1).

(2). Assume that p | ¢ is odd. Since vp(c) < 3,  and y are p-adic units, so
that —1is a fourth power in F,,. If g is a generator of the cyclic group F;,, then
—1 = ¢g(»=1/2 hence —1 is a fourth power in F, if and only if p = 1 (mod 8).
If this is the case, let 2o € Z such that 3 = —1 (mod p). By Hensel’s lemma
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(which is trivial here since the derivative of X% + 1 at zo is a p-adic unit),
there exists z € Z, such that z* = —1, so that (z : 1:0) € C.(Q,), proving
(2).

The following lemma shows that for the remaining p it is sufficient to
consider the equation in F,.

Lemma 6.6.2. Let p{ 2c be a prime number. Then C.(Q,) # 0 if and only
if Cc(Fp) # 0. In particular if p# 1 (mod 8) then

Cc(Qy) #0 if and only if cmodp € ]F;, +]F;,‘J .

Proof. One direction is clear. Conversely, assume that C.(F,) # 0, and let
(o : Yo : 20) with 2o, Yo, and 2o not all divisible by p such that 2§ + yg = cz{
(mod p). Since p 1 ¢, either p{ zo or p t yo. Assume for instance that p t zo,
and set f(X) = X* + y§ — cz3. Clearly |f'(zo)|, = 1 and |f(zo)|, < 1,
so that by Hensel’s lemma there exists ¢ € Q, such that f(t) = 0, hence
(t:yo : 20) € Cc(Qy), proving the converse.

Finally, assume that p # 1 (mod 8). If z* + y* = c2* (mod p) with =
or y not divisible by p, we cannot have p | z otherwise z* = —y* (mod p)
so that —1 is a fourth power modulo p, a contradiction. Thus p { z, hence
(xz 1% + (y2~1)* = ¢ (mod p), finishing the proof of the lemma. o

(3). Let pt e, p =3 (mod 4). T claim that there exist z and y in Z such
that z* + y* = ¢ (mod p). Indeed, in a finite field F any element is a sum
of two squares (in characteristic 2 any element is a square so the result is
trivial, otherwise if ¢ = |F| then there are (¢ + 1)/2 squares hence (¢ +1)/2
elements of the form ¢ — 2, so the two sets have a nonempty intersection, see
Proposition 5.2.1). Thus there exist 4 and v such that ¢ = u? + v? (mod p).
However, when p = 3 (mod 4) we have ]F";,2 = ]F;4: indeed we have a trivial
inclusion, and the kernel of the map = — z* from F; into itself is 1, so that
|]F’I';4| =(p-1)/2= |IF;;2|, proving the equality. Thus ¢ = z* +y*, as claimed,
and the above lemma proves (3).

(4). If p t 2¢ we may apply Corollary 2.5.23 which tells us in particular
|C.(F,)| > p+ 1— 6p'/2. This is strictly positive (for p prime) if and only if
p > 37, so that (4) follows from the above lemma. Note that Corollary 2.5.23
is a special case of the Weil bounds, but in the present (diagonal) case we do
not need these general bounds but only the case that we have proved.

(5) and (6). Thanks to the above cases, it remains to consider the primes
p not dividing ¢ such that 3 < p < 31 and p = 1 (mod 4), in other words
p € {5,13,17,29}. For such a p, —1 is a fourth power modulo p only for
p = 17. In that case, Hensel’s lemma as usual shows that there exists t € Qf,
such that —1 = ¢4, proving (5) in this case. Otherwise, we compute that

F; = {0,1}, TFj; ={0,1,3,9}, T ={0,1,7,16,20,23,24,25},

and we deduce the list of nonzero elements of F, + I, proving (6). 0
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Corollary 6.6.3. The curve C. is everywhere locally soluble (i.e., has points
in every completion of Q) if and only if ¢ > 0 and the following conditions
are satisfied.

1) ¢ =1 or 2 modulo 16.

2) ple, p#2 implies p=1 (mod 8).
3) ¢ # 3 or 4 modulo 5.
4)

5)

cZ 7,8 or 11 modulo 13.
c#4,5,6,9, 13, 22 or 28 modulo 29.

Proof. Clear. O

(
(
(
(
(

Corollary 6.6.4. For all primes p such that p =1 (mod 1160) the curve Cp2
is everywhere locally soluble, but is not globally soluble, so is a counterezample
to the Hasse principle.

Proof. Tt is clear that the above conditions are satisfied modulo 16, 5, and
29, and also modulo 13 since 7, 8, and 11 are nonquadratic residues modulo
13. On the other hand we will prove below in Proposition 6.6.14 Fermat’s
classical result that the equation z* 4+ y* = Z? does not have any nontrivial
solutions, so this is in particular the case for our equation z* + y* = (pz?)2.

O

Since by Dirichlet’s theorem on primes in arithmetic progressions (Theo-
rem 10.5.29) there exist infinitely many primes p = 1 (mod 1160) this corol-
lary gives infinitely many counterexamples to the Hasse principle.

6.6.2 Global Solubility: Factoring over Number Fields

Now that we know necessary and sufficient conditions for our equation to
be everywhere locally soluble, we begin the study of sufficient conditions for
our equation to have no global solutions, since is does not seem reasonable to
hope for necessary and sufficient ones. We will give two types of conditions.
The first uses classical techniques of algebraic number theory and the other
uses the theory of elliptic curves. Thus, for an integer ¢ > 1 we consider the
equation

a:4+y4=cz4.

Without loss of generality we may assume that ¢ is not divisible by a non-
trivial fourth power, hence we may also assume that x, y, and z are pairwise
coprime. The cases ¢ = 1 and ¢ = 2 (which are in fact the easiest) are treated
in Section 6.6.5 and Exercise 26, hence we will assume that ¢ > 3, so that
in particular zyz # 0. Finally, we assume that our equation is everywhere
locally soluble (otherwise there is nothing more to be done), in other words
that the conditions of Corollary 6.6.3 are satisfied.

Since z and y are coprime one of them at least is odd, so by exchanging
z and y if necessary, we can assume that z is odd. If necessary by changing
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the signs of  and y we may assume that x = 1 (mod 4), and that either y is
even or y = 1 (mod 4). In addition since ¢ = 1 or 2 modulo 16 it follows that
z is necessarily odd.

In this section, to study our equation we will factor it over the natural
number field which occurs, which is here the field K = Q(¢), where { = (g is
a primitive 8th root of unity (whose minimal polynomial is P(X) = X4 +1).
Luckily the ring of integers Z i of K is as simple as can be desired: we have
Z i = Z[¢], Z i has class number 1, in other words is a principal ideal domain,
and the group of units of Z g is the group of elements of the form (/e with
0<j<7, k€Z,and for instance ¢ = 1+ ¢ — ¢, which is equal to 1 + /2
if we choose ¢ = (1 +)/+/2 as primitive 8th root of unity. The prime 2 is
totally ramified in K as 2Zx = p*, and we have p = (14 ()Zk. It is also clear
that G = Gal(K/Q) = {01,03,05,07}, is a Klein 4-group, where o; sends ¢
to (7.

All these facts are obtained immediately by using a CAS, but are also
very easy to show directly. Finally, to simplify notation we will denote by N
the absolute norm Nk, from K to Q.

Definition 6.6.5. Lety = A+B(+C(?>+D¢?® € Z[(] be such that vy(y) < 1.
(1) If vp(y) = 0 we say that v is normalized if

A=1 (mod 4), B=0 (mod 2), C =0 (mod 2), and D =0 (mod 4) .
(2) Ifvp(y) =1 we say that v is normalized if
A=1 (mod4), B=1 (mod 4), C =0 (mod 2), and D =0 (mod 4) .

Lemma 6.6.6. Let v be such that vy (y) < 1.

(1) There exists a unit u of K such that uvy is normalized, in other words
there exists an associate of v which is normalized.

(2) If v and wy are both normalized, with u a unit, then u is equal to e** for
some k € 7.

Proof. (1). Assume first that vy(y) = 0. Multiplication by ¢ maps the
coefficients (A, B,C,D) of v to (=D, A, B,C), in other words is a circular
permutation up to sign changes. Since 7 is coprime to 2 we have A + B +
C + D =1 (mod 2), hence either a single coefficient is odd or a single one
is even, so that with a suitable circular permutation we may put the single
odd coeflicient as the constant coefficient, or the single even coefficient as the
coefficient of (2. It follows that there is an associate of  such that A4 is odd
and C even, and then necessarily B = D (mod 2).

Now multiplication by the unit (e is easily seen to change (A, B, C, D) into
(A+B-D,A+B+C,B+C+D,—A+C+D). This transformation preserves
the fact that A is odd, C even, and B = D (mod 2), but changes the parity
of B and D. Therefore we may assume that B, C, and D are all even, and
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changing « into —y that A = 1 (mod 4). These congruences being satisfied we
check that multiplication by —(2e? preserves all the congruences, and changes
(A, B, C, D) into (A, B',C", D) with (A’,B',C",D') = (A,B +2,C, D + 2)
(mod 4), so that we may assume that D = 0 (mod 4), hence the result is
normalized.

Assume now that v,(y) =1 and set vy = v/(1+ () = A1 + Bi(+ C1* +
D (? € Zk, so that vy(y1) = 0. By the first part of the proof there exists an
associate of ; which is normalized. Since A = Ay — Dy, B= A1+ B, C =
B; + C1, and D = C; + D1, we deduce that A =1 (mod 4), B =1 (mod 2),
and C = D = 0 (mod 2). Multiplication by &2 preserves these congruences
and changes (C, D) into (2B + 3C + 2D,—2A+2C +3D) = (C +2,D + 2)
(mod 4), so that we may assume that D = 0 (mod 4). If B =1 (mod 4) then
~ is already normalized. Thus assume that B = 3 (mod 4). When C = 0
(mod 4), multiplication by (%¢ preserves existing congruences and leads to
B =1 (mod 4). When C' = 2 (mod 4), the same is true with (®¢® instead of
(%e, thus proving the existence of a normalized associate of v in all cases.

(2). If vy(y) = 0 and ~ and wy are normalized, then v = 1 (mod 2Z[(]).
An immediate computation among units of the form ¢(7e* for 0 < j < 7 and
0 < k < 3 shows that the only such units up to powers of ¢** are 1 and +¢2,
and it is immediate that the only one of these which respects the additional
congruences modulo 4 is u = 1. Since e = 1 (mod 4Z[(]) the result follows
in this case. If vy(y) = 1 and C = 0 (mod 4), we must now have uy = v
(mod 4) (since it is easily checked that the coefficient of ¢® of u~y is congruent
to C modulo 4), hence u = 1 (mod 4/p), and this implies as above that u
is a power of e*. Finally if vy,(y) = 1 and C = 2 (mod 4), we have 8 units
u =1 (mod 2/p) of the form (/¥ for 0 < j < 7, and it is immediate that the
congruences modulo 4 imply u = 1, proving the lemma. O

Definition 6.6.7. Let p be a prime number such that p = 1 (mod 8). For
each of the four values of r € F, such that r* = —1 we denote by ¢, the
ring homomorphism from Z[¢] to F, which sends 1 to 1 and ¢ to r.

Note that it is clear that ¢p,, is well defined, and since 8 | (p—1) that there
exist 8 distinct 8th roots of unity in F,, of which 4 are such that r* = —1.

The main result that we are going to prove is the following, due in essence
to Bremner and Morton [Bre-Mor].

Proposition 6.6.8. Let ¢ > 3 not divisible by a nontrivial fourth power.
A necessary condition for the global solubility in Q of z* + y* = cz* is the
existence of a normalized divisor v of ¢ in Z[(] of the form v = A+ B( +
C(? 4+ D3 satisfying the following properties.

(1) There ezists a € Z[(] such that © + y( = yat.
(2) We have vy(y) = 0 when ¢ = 1 (mod 16) and vy(y) = 1 when ¢ = 2
(mod 16).
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(3) Whenc =1 (mod 16) the conjugates of v are pairwise coprime, and when
¢ = 2 (mod 16) the conjugates of v/(1 + () are pairwise coprime.

(4) We have N(v) =c.

(5) The coefficients of v satisfy the congruences

C =D =0 (mod 4)
AC = BD (mod 8)
C(A+C)=D(B - D) (mod 3) .

(6) For each odd prime number p dividing ¢ (hence such that p =1 (mod 8)),
there exists a unique fourth rootr of —1 inTF, such that ¢, (y) = 0. Then

both
1—r? ¢p,r (05(7)) and 1472 d)p,r (05(7))
2 ¢pr(o3(7)) 2 pr(or(7))

are fourth powers in Iy .

Proof. (1) and (2). Factoring our equation in Z g gives

ot +yt = (x4 )@+ Cy)(@ + Cy) @+ Ty) =2t

Assume that 7 is a prime element such that 7 | ged(z 4+ (™y, z + ("y) for two
distinct odd exponents m and n such that 1 < m,n < 7. Then 7 | (("™ —(™)y
and 7 [ (™ (z + ("y) — ("(z + (My) = (("™ = (")z, hence m [ (™ — (") since
z and y are coprime. Since the norm of (" — (™ is a power of 2, it follows
that 7 is a prime dividing 2, in other words (up to multiplication by a unit)
7 = 1+ (. From our factored equality and the fact that z is odd, we deduce
that when ¢ = 1 (mod 16) the four factors on the left are pairwise coprime,
and when ¢ = 2 (mod 16) (hence with z and y odd) the factors divided by
1+ ( are (algebraic integers and) also pairwise coprime. Assume for instance
that ¢ =1 (mod 16) and set v = ged(z + (y, ¢), defined for the moment only
up to multiplication by a unit. Since (x + (y)/ is coprime to the other three
factors and to ¢/, it follows that it must be a fourth power of an ideal in
Z k. Since Z is a principal ideal domain, this means that there exists a and
~ (equal to a unit multiple of the initially chosen one) in Z g, coprime to 2,
and such that x + (y = ya*. Since we may change simultaneously v into yv*
and « into a/v for any unit v, we note for future reference that if some vy is
fixed, it is only necessary to consider associates of v modulo fourth powers
of units. Similarly, if ¢ = 2 (mod 16) we deduce that = + (y = ya?, where a
is coprime to 2 and vy, (y) = 1, proving (1) and (2).

(3) and (4). We take the norm down to Q of the relation obtained in
(1). Setting m = N(a) we thus obtain cz* = z* + y* = N(y)m*, hence
m* | cz%, and since ¢ is not divisible by a fourth power we have m | z, so
that NV (v) = c¢(z/m)*, hence ¢ | N'(7). Conversely, we have v |  + (y, hence
for any o € G = Gal(K/Q) we have () | z + 0(¢)y. When ¢ = 1 (mod 16)
the numbers z + o({)y are pairwise coprime, hence the conjugates o(y) are
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pairwise coprime. Since () | o(c) = ¢ it follows that N'(v) = [[,cqo(7) | ¢,
and combining this with ¢ | N(y) we deduce that ¢ = N(y). When ¢ = 2
(mod 16) the same reasoning shows that the o(y/(1+4()) are pairwise coprime
hence that N'(7)/2 | ¢/2 and we conclude in the same way, proving (3) and
(4).

(5). Possibly after changing v into —v, we may multiply « by any power
of ¢ without changing (1). If we write a = a + b + (% +d(3, the condition «
coprime to 2 means that a+b+c¢+d =1 (mod 2), in other words either one or
three of the coefficients are odd, and the others are even. Since multiplication
by ¢ sends (a, b, c,d) to (—d,a,b,c), in other words is a circular permutation
up to changes of sign, it is clear that we may assume that a is odd and ¢
even, and then b = d (mod 2).

Write a* = U + V{ + W(¢2% + X(3. An easy calculation shows that

U=1(mod8), V=X=4b(mod8), and W =0 (mod 8) .
On the other hand since v = A + B¢ + C(? + D¢ we have
z+Cy=va* = (AU — BX —CW — DV) + (AV + BU — CX — DW)¢
+ (AW + BV 4+ CU — DX)¢* + (AX + BW + CV + DU)(* .

It follows in particular that AW + BV + CU — DX =0 and AX + BW +
CV +DU = 0. Since V, W, and X are divisible by 4 and U is odd, we already
deduce that 4 | C' and 4 | D. Also, since we have chosen z = 1 (mod 4) we
havel =2 = AU—BX—-CW —-DV = A (mod 4).If ¢ =1 (mod 16) we must
have B = 0 (mod 2), hence v is normalized. If ¢ = 2 (mod 16) then since we
have chosen y = 1 (mod 4) we have l =y = AV + BU - CX — DW =B
(mod 4), hence ~ is normalized also in this case.

Working now modulo 8, we deduce from the same two equations above
that 4bB+ C' —4bD = 4bA+4bC+ D = 0 (mod 8), and since 4 | C'and 4 | D,
we have C = 4bB (mod 8) and D = 4bA (mod 8), from which we evidently
obtain AC' = BD (mod 8). For the result modulo 3, another easy calculation
using the trivial relations 3 = z (mod 3) and zy(2? —y?) = 0 (mod 3) shows
that U = a? —b? +c? —d? (mod 3), V = X = ab—bc+ cd + da (mod 3), and
W =0 (mod 3). The equalities obtained above thus imply that

(B—D)V+CU=0(mod 3) and (A+C)V + DU =0 (mod 3),
hence that
(D(B-D)-C(A+C))V =(D(B-D)—-C(A+C))U =0 (mod 3) .
Now we cannot have U =V =0 (mod 3). Indeed, otherwise
(a+b+d)?+(c—b+d?=(@-b—d)?+ (c+b—d)? =0 (mod 3)

by the congruences obtained above, and since a sum of two squares is divisible
by 3 if and only if both are, we would have a+b+d=c—b+d=a—-b—d =
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c¢+b—d =0 (mod 3), hence 3 | gcd(a, b, ¢,d), so 3 | ged(z,y) in contradiction
with our assumption, proving the congruence modulo 3 of the proposition.

~ (6). Let r € F,, be such that r* = —1. The four roots of this equation are
r/ for 1 < j <7, j odd, and it is clear that ¢, ,(0;(7)) = ¢, i (7). It follows

that
H ¢p,7‘j (7) = ¢p,T(N(7)) .

1<j<7, j odd

Since N () = ¢ and p | ¢ we have ¢, (N (7)) = 0, hence there exists j such
that ¢, i (y) = 0, proving the existence of r such that ¢, .(v) = 0.

From the equation = + (y = ya* we deduce by application of the o; that
T+ 0y = oj(y)o;(a)? for j odd, hence by application of the homomorphism
¢p,r We deduce that there exists fs, fs, and f; such that in F, we have
z+ry =0 and

T +r3y = ¢p,r(03(7))f§a T +T5y = ¢p,r(a5(7))f§7 T+ 7'7:[/ = 451),7'(‘77(’Y))f’;1 .

From the first equation we deduce that z = —ry, so replacing and using

r* = —1 we obtain

(TS_T)Z/ = ¢p,7‘(0-3(7))f?‘}7 —2ry = ¢p,r(05(’y))f547 _(T3+T)y = ¢p,r(07(7))f’;1 :

Since r® —r # 0, 2r # 0, and r® + r # 0, this shows in particular that
¢pr(0j(7)) # 0 for j # 1, since otherwise y = 0 (mod p), hence z = 0
(mod p), contradicting the assumption that = and y are coprime, proving the
uniqueness of r since ¢, (0;(7)) = ¢p i (7). Finally, by dividing the second
relation by the first and the third respectively we obtain the conditions given
in (6). O

Remarks.

(1) A short computation shows that if ¢ = 1 (mod 16) and ~ is normalized
then NV'(y) = 1+ 2C? (mod 16), and since N(y) = c it follows that in
this case the condition C = D = 0 (mod 4) is automatic as soon as = is
normalized.

(2) Once « is known to be normalized it is clear that the congruence modulo
8 is equivalent to C' = 0 (mod 8) when ¢ = 1 (mod 16), and to C = D
(mod 8) when ¢ = 2 (mod 16).

Lemma 6.6.9. Let ¢ = 1 (mod 16) (resp., ¢ = 2 (mod 16)). An element ~y is
normalized and satisfies conditions (1) to (6) of Proposition 6.6.8 if and only

if o05(7) (resp., o7(7)) does.

Proof. Since o5(A+B(+C¢2+D(3) = A—B(+C¢?—D(? and (o7 (A+
B(+C¢%?+ D¢®) = B+ A — D¢? — C(3, the lemma is clear. |
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Corollary 6.6.10. Assume that the equation x* + y* = cz* is everywhere

locally soluble, in other words that ¢ satisfies the conditions of Corollary 6.6.3.
Let F be a set of representatives of normalized divisors v of ¢ coprime to their
conjugates and such that N'(vy) = ¢, modulo multiplication by powers of €*,
and modulo the action of o5 when ¢ = 1 (mod 16) and the action of (o
when ¢ = 2 (mod 16). If for every v € F one of the conditions (5) or (6) of
Proposition 6.6.8 is not satisfied then the equation z* + y* = cz* has no
nontrivial global solution. Furthermore, if ¢ is not a square or twice a square
we have |F| = 22k=1 where k is the number of distinct prime factors of ¢
congruent to 1 modulo 8.

Proof. Indeed, it is clear that multiplication of v by a power of €* does
not change the conditions in (6). Furthermore it is immediate to check that
multiplication by e* does not change AC — BD mod 8 or C(A+ C) — D(B —
D) mod 3, so that it is enough to consider v up to powers of ¢* (we have
already mentioned this fact in the proof of (4)), and by the preceding lemma
up to the action of o5 or (o7. Finally, it is clear from the uniqueness of the
normalization up to powers of €* that the number of normalized  coprime
to their conjugates and such that N(y) = c is equal to 4%, since every prime
congruent to 1 modulo 8 splits completely into 4 factors (since - is coprime
to its conjugates we cannot mix different factors above the same prime even
when ¢ is not squarefree). Now we check that if ¢ = 1 (mod 16) and o5() =y
then ¢ = N'(y) = (A2 + C?)?, and if ¢ = 2 (mod 16) and (o7(y) = 7 then
c = N(y) = 2(4%2 — 2AC — C?)2, so that when c is not a square or twice a
square we have |F| = 22k—1, O

Note that if ¢ is a square our equation has no global solutions by Proposi-

tion 6.6.14, and if ¢ is twice a square it has no solutions for ¢ > 2 by Exercise
26.
Remark. The conditions of Proposition 6.6.8 are all useful. For instance, to
exclude ¢ = 4801 the condition modulo 8 is the only one which applies. To
exclude ¢ = 5266 the condition modulo 3 is the only one which applies. To
exclude ¢ = 5281 we need the condition on fourth powers for one of the values
of v. In many examples we can use only one of the two conditions on fourth
powers, in others we can use both. We will give a summary of results in a
table below.

6.6.3 Global Solubility: Coverings of Elliptic Curves

Although Corollary 6.6.10 is very powerful in proving that a Fermat quartic
has no global solution, it is not the whole story. For instance as will be
clear from the table given below, of the 107 suitable values of ¢ such that
3 < ¢ £ 10000, 99 can be treated using this corollary, leaving 8 indeterminate
cases. Another natural (and in fact easier) approach is to use maps from the
curve C, with affine equation z* 4+ y* = ¢ to two elliptic curves, and then to
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use results on elliptic curves to conclude. This will enable us to solve 5 of the
remaining 8 cases with ¢ < 10000.

Let ¢ be as above, and consider the two elliptic curves with affine Weier-
strass equations

E.:Y?=X%—-¢X and F,:Y?=X34+¢X.

It is immediate to check that the maps ¢ and 1 defined in affine coordinates
by
¢((z,y) = (—2*,2y°) and P((z,y)) = (cz®/y?, P2/y?)

are maps from C, to E, and F, respectively. Since all rational points of C, are
affine, it is clear that if P € C.(Q) then ¢(P) € E.(Q) and ¢(P) € F.(Q).
In particular, since the inverse image of a point by ¢ or 1 is finite, if either
E.(Q) or F.(Q) is an explicit finite set, it will be immediate to determine
C.(Q). We will see in Chapter 8 that this means that E.(Q) or F.(Q) has
rank 0, hence equal to its easily determined torsion subgroup. Thus in this
favorable case it is very easy to determine C.(Q):

Proposition 6.6.11. Let ¢ > 3 be an integer not divisible by a nontrivial
fourth power. If either E.(Q) or F.(Q) has rank 0 then C.(Q) = 0.

Proof. Note first that the trivial 2-torsion point (X,Y) = (0,0) on E,
corresponds to z = 0 on C,, hence to ¢ = y*, which is absurd by assumption.
We now use Proposition 8.1.14 that we will prove in Chapter 8. It tells us
that there can be other torsion points only if ¢ (for E.) or —c? (for F,) is
equal to m? or to —4m*. Consider first E,. Since ¢ > 0 (and also because
it is not divisible by a fourth power) we cannot have ¢ = —4m*. On the
other hand ¢ = m? is a priori possible, and gives as affine torsion points the
ones with Y = 0. But this implies that either = or y is equal to 0, which
is impossible, proving the result for E.. Consider now F,. We cannot have
—c® = m?, so the only possibility is ¢ = 2m?, and the extra torsion points
are clearly (X,Y) = (2m2, £4m?). The inverse images (z,y) of these points
by the map 1) are easily seen to be such that y = +z and y® = +z, and since
x # 0 this gives m = 422, Thus z is an integer and ¢ = 2m? = 2z*, which
implies that ¢ = 2 since ¢ is assumed not to be divisible by a fourth power,
and this is excluded since we have assumed that ¢ > 3. ]

Examples. We first choose ¢ = 562, for which C, is locally soluble by Corol-
lary 6.6.3. The 2-descent method that we will study in Section 8.2 or Cre-
mona’s mwrank program shows that E.(Q) has rank 1, but that F.(Q) has
rank 0, so that Cse2(Q) = 0.

Choose now ¢ = 226 or ¢ = 977. The 2-descent methods and mwrank only
tell us that the rank of F.(Q) is equal to 0 or 2. However, the computation
of L(F,,1) (see Section 8.5) shows that in both cases we have L(F,,1) # 0,
hence since the BSD conjecture is a theorem in this case (in fact here due to
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Coates—Wiles [Coa-Wil] since F, has complex multiplication), this proves that
the rank of F,(Q) is equal to 0, and once again this implies that C.(Q) = 0.

It is important to note that we have the following stronger result due to
Dem’janenko (see [Dem3]). See Section 13.3.1 for an indication on the method
of proof.

Theorem 6.6.12 (Dem’janenko). If ¢ > 3 is an integer not divisible by a
nontrivial fourth power and if the rank of E.(Q) is at most equal to 1 then

C.(Q) = 0.

This theorem sometimes allows us to show that the Fermat quartic is not
globally soluble, even when both E.(Q) and F.(Q) have nonzero rank. For
instance if ¢ = 2642, for which C,. is again everywhere locally soluble, it can
be shown that E.(Q) has rank 1 and F.(Q) has rank 2, so that thanks to
Dem’janenko’s theorem we can conclude that C.(Q) = @, which we would not
have been able to do using only the rank 0 conditions.

Remarks.

(1) It is easy to compute that the root number (see Theorem 8.1.4) of E, is
equal to 1 when ¢ = 1 (mod 16), to —1 when ¢ = 2 (mod 16), and that
of F, is always equal to 1. Thus, it follows from a weak form of the BSD
conjecture that F,. will always have even rank, and E. will have even or
odd rank according to whether c is odd or even. This shows in particular
that Dem’janenko’s theorem is absolutely necessary to deal with the case
¢ = 2 (mod 16).

(2) The existence of the maps ¢ and 1, together with the map ¢ from C,
to E, defined by ¢((z,y)) = (—y?,yz?) means that the Jacobian of C,
is isogenous to E, x E. x F,, the map (¢, $,1) giving the embedding
of C. into its Jacobian (see Section 13.2 for these notions). The proof of
Dem’janenko’s theorem amounts to showing that if (z,y) € C.(Q) the
two points ¢((z,y)) and ¢((z,y)) in E, are generically independent, so
that E. must have rank at least equal to 2.

6.6.4 Conclusion, and a Small Table

When there does exist solutions to our Fermat quartic, for instance when
c=1, 2, or 17, we can ask for all the solutions (since a Fermat quartic is a
curve of genus 3, we know by Faltings’s theorem that there are only finitely
many). For ¢ = 1, Fermat’s theorem for n = 4 (which follows from Proposition
6.6.14 below) tells us that the points (£1,0) and (0, +1) are the only rational
points on the curve z* + y* = 1. By a similar method of descent, for ¢ = 2
it is easy to show that the points (£1,+1) are the only rational points on
the curve z* + y* = 2 (Exercise 26). On the other hand it is much more
difficult to prove that for ¢ = 17 the only rational points on z* + y* = 17
are (+1,+2) and (£2,+1). This problem was posed by J.-P. Serre as the
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simplest nontrivial case of the Fermat quartic equations, and also because
it was known that the standard methods using Chabauty type techniques
failed on this curve. It was only solved in 1999 by Flynn and Wetherell using
covering techniques, and their proof is not easy (see also Section 13.3.4).

A table up to 10000. The following table gives numerical data obtained
using all of the preceding results. It first lists the 109 values of ¢ > 1 not
divisible by a nontrivial fourth power for which the equation z* + y* = ¢ is
everywhere locally soluble, together with ¢ = 0. Below each such value of ¢
is either a pair (x,y) of rational numbers such that z* + y* = ¢, or a code
made with one or more letters. The letter A (for Algebraic) means that we
can prove the nonexistence of global solutions using Corollary 6.6.10. The
letter D means that E.(Q) has rank 1 so that Dem’janenko’s Theorem 6.6.12
is applicable (this can occur only for ¢ even, see above), E means that E.(Q)
has rank 0 (this can occur only for ¢ odd), and F means that F.(Q) has rank
0, so that in both of these cases Proposition 6.6.11 is applicable. Thus if at
least one of these letters occur this implies that C.(Q) = (. Finally, the letter
U (for undetermined), which occurs three times, means that the results given
above, together with a computer search, do not allow us to conclude. We refer
to [Bre-Mor] for still other methods which can prove nonglobal solubility of
our equation in other cases, in particular for the first undetermined case
c = 4481.
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0 1 2 17 82 97 146 226 257 337

(000 | (01) | (1L,Y) | (1,2) | (1,3) | (23) | ADF | AF | (1,4) | (34)

482 562 577 626 641 706 802 881 977 1042

ADF | ADF | A (1,5) | (2,5) | (3,5) | ADF | (4,5) | AF | AF

1186 | 1201 | 1297 | 1361 | 1522 | 1777 | 1921 | 2017 | 2066 | 2161

DF | AF | (1,6) | AEF | A A (5,6) | AF | ADF | EF

2306 | 2402 | 2417 | 2482 | 2642 | 2657 | 2722 | 2801 | 2866 | 3026

ADF | (1,7) | 2,7) | 3,7) | AD | (4,7) | ADF | A ADF | (5,7)

3041 | 3106 | 3121 | 3202 | 3217 | 3442 | 3506 | 3617 | 3697 | 3761

AF AF AE DF AF ADF | ADF | AF (6,7) | AF

3826 | 4097 | 4162 | 4177 | 4226 | 4241 | 4306 | 4322 | 4481 | 4657

ADF | (1,8) | ADF | (38) | AD | AF | ADF | ADF | U AEF

4721 | 4786 | 4801 | 4946 | 5186 | 5266 | 5281 | 5297 | 5426 | 5521

(58) | ADF | AF | ADF | AF | ADF | AE | AF | AF | AF

5617 | 5906 | 5986 | 6242 | 6337 | 6497 | 6562 | 6577 | 6626 | 6722

A * AF | AF | AF | (7,8) | (1,9) | (2,9) | ADF | ADF

6817 | 6961 | 6977 | 7121 | 7186 | 7297 | 7361 | 7537 | 7666 | 7762

(49) | AF | EF | AF | (59) | AEF | A U ADF | D

7841 | 8161 | 8306 | 8402 | 8482 | 8546 | 8737 | 8882 | 8962 | 9026

AEF | AF ADF | ADF | ADF | AF AE U (7,9) | AF

9122 | 9266 | 9281 | 9346 | 9377 | 9442 | 9586 | 9697 | 9857 | 9986

ADF | A A ADF | AEF | ADF | A AF AE ADF

Sums of Two Rational Fourth Powers up to 10000

In the above table, * means (25/17,149/17). Evidently all the values of ¢
for which any of the letters A, D, E, or F occur are counterexamples to
the Hasse principle. It can be seen from this table that the purely algebraic
method using the factorization of our equation is much more powerful than
the method using elliptic curves, although the latter is necessary in five cases
of the above table (and the curve F, is always sufficient in these cases).
If we push the computation to 10°, there are 831 suitable values of ¢ > 3
for which the equation is everywhere locally soluble, 91 for which we find a
global solution, 691 can be shown to have no global solutions by the algebraic
method, and of the 49 remaining ones 33 can be shown to have no global
solutions using elliptic curves, leaving 16 undetermined cases.

An amusing corollary of the above table is the following result, due to
Bremner and Morton [Bre-Mor]:

Corollary 6.6.13. The integer ¢ = 5906 is the smallest integer which is the
sum of two fourth powers of rational numbers, and not the sum of two fourth
powers of integers.
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Proof. Indeed, for all smaller values of ¢ except ¢ = 4481 we see that
either the equation z* 4+ y* = ¢ has no rational solutions, or it has an integral
solution. It is an immediate verification that 5906 is not a sum of two fourth
powers of integers, and it is the sum of the two fourth powers of rational
numbers given above. There remains to prove that z* + y* = 44812% is not
globally soluble, and this is done using the more general factoring methods
explained in [Bre-Mor]. O

6.6.5 The Equations z* £+ y* = 22 and z* £ 2y* = 22

The equation z* + y* = 22 was solved by Fermat by using the method of
infinite descent, similar but simpler than the one we used in Theorem 6.4.5.
The proof is also based on the parametric solution of a simpler equation, here
of the Pythagorean equation 22 + y? = 22 which we have given in Corollary
6.3.13.

Proposition 6.6.14. Let ¢ = +1. The Diophantine equation x* + ey* = 22

has no solutions with xyz # 0.

Proof. Once again we may assume that x, y and z are pairwise coprime.
Assume first that z is even. This can happen only if ¢ = —1, otherwise we
would get a contradiction modulo 8. Writing the equation as y*+2? = z* with
y odd, by Corollary 6.3.13 we obtain y2 = s —t2, z = 2st and x? = s2+¢2 for
some coprime s and ¢ of opposite parity. It follows that s* — t* = (zy)? = u?
with u odd, so we have reduced our equation to one where the right hand
side is odd.

We may thus assume that z is odd. If ¢ = 1 we exchange z and y if
necessary so that z is odd and y is even, while if € = —1, reasoning modulo
4 we see that these conditions are automatic. By Corollary 6.3.13 there exist
coprime s and t of opposite parity such that 22 = s? — et?, y? = 2st and
z = +(s?+¢t?) (the sign of 22 for e = —1 can be removed since 22 > 0). Since
st > 0, changing if necessary (s,t) into (—s, —t) we may assume that s > 0
and ¢t > 0. Exchanging if necessary s and ¢ if £ = —1, we may assume that s
is odd and t is even, this being automatic if ¢ = 1. Using once again Corollary
6.3.13 on the equation z2 = 52 — et?, we deduce the existence of coprime u
and v of opposite parity such that = +(u? — ev?), s = +(u? + ev?) and
t = 2uwv, and since ¢ > 0 we may assume u > 0 and v > 0. The last remaining
equation to be solved is therefore (y/2)? = tuv(u? + ev?), where the =+ sign
must be + if ¢ = 1, and can be removed by exchanging v and v otherwise.
Since ged(u,v) = 1 the three factors on the right are clearly pairwise coprime
and are nonnegative, hence each one is a square. Thus, if u = u2, v = v? and
u? + ev? = w? we have uf + ev} = w?. This is exactly our initial equation
with new values of the variables. However, following through the reductions
it is immediate that |w| < |z| when z # 0. Thus, if we start with a solution
with the smallest nonzero value of |z| we obtain a strictly smaller one, a
contradiction which shows that there cannot be any such solution. O
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Proposition 6.6.15. The Diophantine equations xz* + 2y* = 22 have no
solution with y # 0.

Proof. Set p = £2 and let (z,y,2) be integers such that z* + py* = 22,
where we may assume that z, y and z are pairwise coprime. By Corollary
6.3.14 there exist coprime integers s and ¢ with s odd such that 2% = +(s? —
pt?) and y? = 2st. It follows that s = +u? and t = +2v?%, hence z? =
+(u* — 4pv*), and u is odd and coprime to v. If the sign was —, we would
have 22 4+ u* = 4pv*, which already implies that p = +2, and since v and z
are odd 22 + u* = 2 (mod 8), a contradiction. Thus the sign is +, so that
x? + 4pv* = u*, hence again by Corollary 6.3.14 there exist coprime a and
b such that 2v? = 2ab and u? = a?® + pb?. It follows that a = +¢?, b = +d?
so that c¢* + pd* = w2, which is our initial Diophantine equation, and we
conclude by the usual descent argument since clearly |u| < |z|. ]

6.7 The Equation y% = =™ + ¢

For general results on this equation, we refer to [Cohnl] and [Cohn2], from
which a large part of this section is taken.

In this section, we look for integral solutions to the equation y? = 2™ + ¢,
where ¢ and n are given integers with n > 3 (otherwise the equation is trivial).
If n is even this equation factors as (y — z"/2)(y +2™/?) = t which is trivially
solved: if ¢ < 0 (which will be the main case that we will consider), we may
assume that z > 0, hence we let d = 2"/2 —y, which will be a positive divisor
of |t| less than or equal to |t|'/2, and the condition to be satisfied is that
(d+ |t|/d)/2 = z™/? must be an exact n/2th power with n/2 > 2. From this,
a short calculation shows the following, which we give for future reference:

Proposition 6.7.1. Let n > 4 be even and let t be a squarefree negative
integer not congruent to 1 modulo 8. The only values of n and t withn > 4
even and —100 < t < —1 squarefree and not congruent to 1 modulo 8 for
which the Diophantine equation y?> = x™ + t has solutions are for t = —1
with solutions (z,y) = (£1,0), and for (n,t) = (4,-17), (6,—53), (4,—65),
(4,=77), and (4, —97) with respective solutions (z,y) = (+3,£8), (£3, £26),
(£3,+4), (£3,£2), and (£7,+48).

If n is odd and p | n, we can write " = ("/P)?, so we can reduce to the
exponent p. Thus in the sequel we will usually assume that n is an odd prime
number p.

6.7.1 General Results

For reasons which will soon become clear, we make the following definitions.



6.7 The Equation y? = z™ +¢ 393

Definition 6.7.2. We will say that condition H (p,t) is satisfied if p is an
odd prime, t is a squarefree negative integer not congruent to 1 modulo 8, and
p does not divide the class number of the imaginary quadratic field Q(v/t).
By abuse of notation we will say that H(t) is satisfied if t is a squarefree
negative integer not congruent to 1 modulo 8.

Proposition 6.7.3. Assume H(p,t), and define Ap(t) to be the (possibly
empty) set of nonnegative integers a such that

(p-1)/2

P\ ok, (p—1)/2-k - 41
Z (Qk)a t .

k=0

The set of solutions (x,y) € Z? to the Diophantine equation y*> = zP +t is
given by the pairs

(p—1)/2
S N
k=0

for each a € Ap(t), with in addition the so-called special pairs
(z,y) = (a® + 2¢,+(a® + 3¢a))

if p=3 and t = —(3a® + 8¢) for any ¢ = £1 and odd a such that a > 1 if
e=lora>3ife=-1.

Proof. Let (z,y) be a solution to the equation y* = z? +t. In the quadratic
field K = Q(vt) we can write (y — vt)(y + vt) = zP. I claim that the
ideals generated by the two factors on the left are coprime. Indeed, assume
otherwise, so let q be a prime ideal of Z g dividing these factors. It thus divides
their sum and difference, hence if ¢ is the prime number below q we have
q | 2y and ¢ | 2¢. If  is even, then y is odd since otherwise 4 | ¢ contradicting
the squarefreeness of ¢, hence t = y?> — 2”7 = 1 (mod 8), contradicting our
assumption on t. Thus z is odd, hence q cannot be above 2, so ¢ | ged(y, t),
hence q | = so ¢® | t, again contradicting the fact that ¢ is squarefree and
proving my claim. Since the product of the two coprime ideals (y — v1)Zx
and (y + V)Zk is a pth power, it follows that (y + v{)Zx = aP for some
ideal a of Z k. On the other hand if A denotes the class number of K then
essentially by definition the ideal a” is a principal ideal. Since by assumption
p and h are coprime, there exist integers v and w such that vp + wh = 1,
so that a = (aP)?(a?)¥ is itself a principal ideal, say a = aZg for some
a € Zk (this type of reasoning involving the class number is typical, and will
be met again, for instance in Fermat’s last theorem). We thus deduce that
there exists a unit ¢ € K such that y + v/t = ea?. However, since K is an
imaginary quadratic field, there are not many units, and more precisely the
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group of units is {£1} except for t = —1 and ¢t = —3 for which it has order
4 and 6 respectively. Since p is odd, it follows that apart from the special
case (p,t) = (3,—3) the order of the group of units is coprime to p, hence
any unit is a pth power, so in these cases we are reduced to the equation
y + vt = aP with a € Z . We will see in Proposition 6.7.5 below that there
are no solutions for (p,t) = (3, —3). Otherwise, we write a = (a + bv/t)/d
with a and b integral, where either d = 1, or, only in the case t = 5 (mod 8),
also d = 2 and a and b odd. Expanding the relation y + v/t = o gives the
two equations

(p-1)/2
dPy = Z ( p )a2k+1bp2k1t(pl)/2k and

Pt 2k +1
(p—1)/2 p
D _ 2k pp—2k 4 (p—1)/2—k
d kE_O (2k)a b t .

Note that we may assume a > 0 since changing a into —a does not change
the second equation, and changes y into —y in the first. From the second
equation we deduce that b | dP, and since b is coprime to d this means that
b = £1. It follows that

(p—1)/2 p
P _ 4 2ky(p—1)/2—k
d kZ:O (2k> a”"t

If d = 1, we obtain the formula for y by replacing in the first equation, and
we have z = a? — b%t. If d = 2, then since p is an odd prime we have

2=29p = 4¢P-1/2 = i(z) =0, +1 (mod p),
p

which is possible only for p = 3, giving t = —(3a®> ¥ 8), y = —a® + 3a,
z = a® F 2, whence the additional cases of the proposition. O

Remarks.

(1) When t is not squarefree, it is easy to obtain similar but more complicated
results, see for example Exercise 31.

(2) For given t and p, it is trivial to find all possible values of a € A,(t). What
is considerably more difficult in general is to find the sets Ap(¢). Thanks
to a remarkable theorem of Bilu, Hanrot, and Voutier, this problem is
completely solved, see below.

(3) Considering the formula modulo p, it is clear that the + sign on the right

hand side of the formula defining A,(t) is equal to (%)

(4) Much more important is the fact that in the cases that we have not
treated (t = 1 (mod 8), t > 0, or p not coprime to the class number of
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Q(V/1)) the problem is considerably more difficult but can be reduced
to a finite number of so-called Thue equations. First if ¢ = 1 (mod 8)
(positive or negative, but squarefree), we see that either z is odd, hence
y is even and the proof goes through as above. Or x is even hence y is
odd, hence y — v/t and y + +/t are both divisible by 2 in Zg, and we
can easily deduce that (y + v/1)/2 = p2~>a? for some ideal a and some
ideal po above 2. Thus for any squarefree t we can reduce our equation to
either to (y +/%)/d = a?, or to (y ++/1)/d = p5~2a? for d = 1 or 2. Since
the number of possibilities for d and p, is finite, since the class group
and the unit group modulo pth powers are also finite, an easy argument
shows that our Diophantine equation reduces to a finite set of equations
of the form y + vt = Bia?, for a known finite set of elements 8; € K*,
and unknowns a; € Zk (the above proof corresponds to the special case
B; = 1). When we expand this equation after writing a; = (a + bv/?)/d,
the enormous simplification of having b as a common factor of all the
coefficients of /¢ (implying b = +1) no longer occurs, and we have to
solve equations of the form P(a,b) = dP, where P is a homogeneous
polynomial of degree p in @ and b with integral coefficients depending on
t. These are called Thue equations, and there are excellent methods for
solving them, based on linear forms in logarithms. The problem is that
the equations depends on ¢, so for a fixed ¢t and p it is “easy” to solve the
equation, however when we fix p, say, and let ¢ vary it is more difficult
to give a general solution.

Proposition 6.7.3 can be rephrased in a more positive way as follows.

Corollary 6.7.4. Let p > 3 be a prime, let x and y be integers, and assume
that t = y? — xP satisfies H(t) (so that in particular x and y are coprime and
x 1s odd). Assume in addition that t + x is not a square, and furthermore
when p = 3 that we do not have (z,t) = (a® + 2¢, —(3a® + 8¢)) for some odd
a and some € = 1. Then the class number of the imaginary quadratic field
Q1) is divisible by p.

Proof. Clear since z = a® — t, except in the given special case. O

6.7.2 The Case p =3

To apply Proposition 6.7.3 (assuming H (p,t)), there remains to find the sets
Ap(t). As already mentioned, this is trivial if p and ¢ are fixed. The difficulty
is to give general results when only one of these two variables is fixed. We will
give detailed results below, and in particular complete results for some fixed
values of ¢. In the next subsections we give the complete results for fixed p.

Proposition 6.7.5. Assume H(3,t).

(1) When t = 2 or 3 modulo 4 then if t is not of the form t = —(3a® £ 1)
the equation y? = x® +t has no integral solutions. If t = —(3a® +¢) with
¢ = +1, the integral solutions are x = 4a® + ¢, y = £(8a® + 3¢ca).
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(2) When t = 5 (mod 8) then if t is not of the form t = —(12a® — 1) or
—(3a® & 8), both with a odd, the equation y> = x> +t has no integral
solutions. If t = —(12a® — 1) with a odd, the integral solutions are x =
16a% — 1, y = +(64a® — 6a). If t = —(3a® + 8¢) with ¢ = =1 and a odd,
the integral solutions are x = a® + 2¢, y = +(a® + 3ae).

Proof. This case is especially simple since the equations defining the sets
A3(t) are linear in t. We find t = —(3a®+ 1), z = a® —t and y = +(a® + 3at),
giving the solutions of the proposition, to which we must add the solutions
for the special case t = —(3a% & 8). Recall that we have postponed the
case t = —3 which we now consider. In the proof of Proposition 6.7.3 we
found that y + v/t = ua® for some unit u. Thus either we are led to the
equations of the proposition (if u = £1), or there exists € = +1 such that
y+ Vit = ((a+bv1)/2)3(—1 + eVt) /2. Equating coefficients of v/# gives

16 = (a® — 9b%a) — 3b(a® — b?) .

If a = 0 (mod 3), the right hand side is divisible by 3, a contradiction. If
b =0 (mod 3), the right hand side is congruent to £1 modulo 9 since a cube
is such, again a contradiction. Thus neither a nor b is divisible by 3, hence
a’? = b? =1 (mod 3), so the right hand side is still congruent to £1 modulo
9, a contradiction once again, so there are no solutions for ¢t = —3. ]

Note that the case t = —2 of the above equation was already solved by
Fermat, who posed it as a challenge problem to his English contemporaries.

Although usually the problem for ¢ > 0 or for t = 1 (mod 8) is much more
difficult, in certain cases it is quite easy to find the set of integral solutions.
A classical example is the following, for which the special case t = 7 is also
due to Fermat.

Proposition 6.7.6. Let a and b be odd integers such that 31 b, and assume
that t = 8a® — b2 is squarefree but of any sign. Then the equation y? = 23 +1
has no integral solution.

Proof. We rewrite the equation as
y2 + b2 = (z 4 2a)((z — a)® + 3d?) .

Note that z must be odd otherwise y*> = 2® +t =t = 7 (mod 8), which is
absurd. Since a is also odd it follows that (z — a)? + 3a%2 = 3 (mod 4), and
since this is a positive number (why is this needed?) this implies that there
exists a prime p = 3 (mod 4) dividing it to an odd power. Thus y? +b> =0
(mod p), and since (‘T}) = —1 this implies that p divides b and y. I claim
that p{ x + 2a. Indeed, since

(z — a)? + 3a® = (z + 2a)(z — 4a) + 12a®
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if we had p |  + 2a we would have p | 12a2, hence either p |aor p =3 (p = 2
is impossible since p = 3 (mod 4)). But p | a implies p? | t = 8a® — b2, a
contradiction since ¢ is squarefree, and p = 3 implies 3 | b, which has been
excluded, proving my claim. Thus the p-adic valuation of y? + b2 is equal to
that of (z — a)? + 3a? hence is odd, a contradiction since this would again

imply that (%1) =1 O

Another similar result is the following.

Proposition 6.7.7. Let a be an odd integer, let b be an integer such that
31b, and assume that t = a® — 4b? is squarefree, not congruent to 1 modulo
8, but of any sign. Then the equation y> = x3 +t has no integral solution.

Proof. T claim that x is odd. Indeed, otherwise, since ¢ is odd, y would be
odd, hence y?> = 1 (mod 8), hence ¢t = 1 (mod 8), contradicting our assump-
tion. Thus z is odd and y is even. Writing y = 2y; we obtain

4y + ) =2° +a® = (z 4+ a)(z(z — a) + a?) .

Since z —a is even and a is odd, it follows that 4 | x 4+ a. Writing z 4+ a = 4z,
we obtain

Y2 + b2 = z1((4z1 — a)(4x1 — 2a) + a®) = z; (1627 — 12az; + 3a?) .
Since a is odd we have 1622 — 12az; + 3a® = 3 (mod 4), hence as in the
preceding proof there exists a prime p = 3 (mod 4) dividing it to an odd
power. As above, this implies that p divides y; and b. I claim that p t z;.
Indeed, otherwise p | 3a?, hence either p | a or p = 3. As above p | a is
impossible since it implies p? | ¢, a contradiction since t is squarefree, and
p = 3 implies 3 | b, which has been excluded. Thus the p-adic valuation of

y? + b? is odd, a contradiction since this would imply (_71) =1 o

Proposition 6.7.5 applies to negative squarefree ¢ not congruent to 1 mod-
ulo 8 such that the class number of Q(v/t) is not divisible by 3. The two
propositions above solve our equation for the following additional values of ¢
with [¢] < 250:

t = —241, —129 (class number divisible by 3), 7, 11, 13, 23, 39, 47, 53,
61, 67, 83, 87, 95, 109, 139, 155, 159, 167, 191, 215, 239 (¢t > 0).

Finally, note that we will solve the case ¢ = 1 below (Corollary 6.5.3) as
an application of a general theorem of Skolem.

6.7.3 The Case p=>5

In this case we can also give the complete answer as follows.
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Proposition 6.7.8. Assume H(5,t). The only values of t for which the equa-
tion y? = x° +t has a solution are t = —1 (with only solution (z,y) = (1,0)),
t = —19 (with only solutions (z,y) = (55,122434)), and t = —341 (with only
solutions (xz,y) = (377,£2759646)).

Proof. The equation defining the set As(t) of Proposition 6.7.3 is #2 +
10a%t + 5a* £ 1 = 0. This has a rational solution in ¢ if and only if the
discriminant is a square, hence if and only if 20a* F 1 = b? for some inte-
ger b. Looking modulo 4 shows that the sign must be + so b> = 20a* + 1,
hence (2b)2 = 5(2a)* + 4. This is one of the equations that we will solve in
Corollary 6.8.4 as a consequence of our study of squares in Lucas and Fi-
bonacci sequences. We deduce from that corollary that a = 0 or a = +£6.

The value a = 0 leads to ¢ = —1 (giving the universally trivial solution
(z,y) = (1,0)), and a = %6 leads to t = —19, (z,y) = (55,+£22434) and
t=—341, (z,y) = (377, £2758646). O

The following is a strengthening of Corollary 6.7.4 in the case p = 5.

Corollary 6.7.9. Let © and y be integers such that the pair (x,y) is not
equal to (1,0), (55,422434), or (377,+2758646). Assume that t = y*> — z°
satisfies H(t) (so that in particular x and y are coprime and x is odd). Then
the class number of the imaginary quadratic field Q(\/t) is divisible by 5.

Proof. Clear. O

Note that it is necessary to impose some conditions on z and y. For
instance if (z,y) = (2,5) we have t = =7 =1 (mod 8), but the class number
of Q(+/—7) is 1. However it can be shown that if we only assume that = and
y are coprime, but ¢ not necessarily squarefree, then the class number of the
quadratic order of discriminant ¢ (or 4t if ¢ = 2 or 3 modulo 4) is divisible
by 5.

6.7.4 Application of the Bilu—Hanrot—Voutier Theorem

To treat the case p > 7, we use a remarkable theorem of the above authors.
We need a definition.

Definition 6.7.10. Let o and 8 be such that a + 8 and af are nonzero
coprime integers and such that a/f is not a root of unity.

(1) The Lucas sequence associated to o, B is the sequence defined by u, =
un(a, B) = (a" = ") /(e = B) for n € Zx,.

(2) We say that a prime number p is a primitive divisor of u, if p | u, but
ptu; for 0<i<mn and pf(a—B)>.
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Note that I use the original name of Lucas sequence, but it should more
properly be called a generalized Fibonacci sequence since the usual Lucas
sequence is rather u,, = a™ + g".

A special case of the theorem of Bilu, Hanrot, and Voutier is the following
(see [Bil-Han-Vou] for the most general statements).

Theorem 6.7.11. Let u, = uy(a, 8) be a Lucas sequence as above. Then

(1) If n > 30, u, always has a primitive divisor.

(2) If 5 < n < 30 is prime and u,(a,B) has no primitive divisors, then
either n = 7 and (o,8) = (1 + V=7)/2,(1 —/=7)/2), orn = 7 and
(o, 8) = (1 +v/-19)/2,(1 — v/=19)/2), or n = 13 and (o, B) = ((1 +
V=1)/2,1-V=7)/2).

This theorem solves a century old problem, and its proof involves both
very delicate estimates on linear forms in logarithms, and new algorithms for
solving Thue equations. It is thus a beautiful mixture of difficult mathematics
with an extensive rigorous computer computation (as the epigraph of the
paper remarkably illustrates).

An immediate corollary of the above theorem to our problem is the fol-
lowing.

Corollary 6.7.12. Let p > 7 be prime, and assume H(p,t). The only value
of t for which the equation y*> = xP 4+t has a solution is t = —1 with only
solution (z,y) = (1,0).

Proof. Indeed, the equation defining the set A,(t) is (a?—p?)/(a—p) = £1
with & = a4+ v/t and B = a — /%, hence with the notation of the above
definition u,(a, ) = £1. We have 0 € Ap(¢) if and only if ¢ = £1, hence
t = —1 since we assume t < 0. Otherwise it is clear that o + 8 and af
are integers, and «/ belongs to the imaginary quadratic field Q(v/t). Since
a/B # £1 for a # 0 it can be a root of unity only when t = —1 or t = —3.
However it is easily checked that for ¢ = —1 the only nonzero values of a
such that a/f is a root of unity are a = +1, and for t = —3 they are a = +1
and a = £3, see Exercise 35. In all these cases the same exercise shows that
for p > 7 we have |up(a, 8)| > 1. Thus these cases do not give any elements
of A,(t), and we may therefore apply the above theorem. Thus for p > 30,
A, (t) must have a primitive divisor, and in particular it cannot be equal
to +1, while for 7 < p < 30 all the possibilities listed in the theorem give
a = (u+1/v)/2 with u and v odd, which thus cannot be of the form a + v/%.

O

I would again like to emphasize that the above corollary, which immedi-
ately follows from the theorem of Bilu, Hanrot, and Voutier is very deep.
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6.7.5 Special Cases with Fixed t

The above corollary essentially solves the problem when the condition H (p,t)
is satisfied. However it is not completely satisfactory for two reasons. The first
is mathematical: we must comment on what we can do when the condition
H(p,t) is not satisfied, although we will have to assume H(t). The second is
pedagogical: in the study of Catalan’s equation we will need the case t = —1,
and to be entirely self-contained we treat it without using the difficult the-
orem of Bilu—Hanrot—Voutier. The following result is due to V.-A. Lebesgue
(see [Leb]).

Proposition 6.7.13 (V.-A. Lebesgue). Forp > 3 prime the only integral
solution to the equation y*> = 2P — 1 is (z,y) = (1,0).

Proof. First note that since the class number of Q(y/—1) is equal to 1 the
condition H(p,—1) is satisfied for all p. Furthermore ¢ = —1 does not occur
in the special cases, so we must show that 0 is the only element of A,(t).
Thus, let a € A,(t), in other words by definition such that

(p—1)/2

P\ o (p—1)/2—k
E -1 =41.
(2k> a™(-1)

k=0

Since p | (£) for 1 < k < (p—1)/2 and p > 3 it follows by looking at the
equation modulo p that the right hand side is equal to (—1)®~1/2. We thus
have L = 0 with

(p—1)/2 P
L= 2% (_1)(p=1)/2F
) (%) (-1)

k=1

I claim that a is even. Indeed, otherwise looking at the equation modulo 2

we would obtain
(p—1)/2 p
Z (Zk) =1 (mod 2),
k=0

which is absurd since the left hand side is equal to 2P~ which is even. Now

set p—1) 5
_ [P\ 2 _ PP— p- 2k
Uk = <2k)a = 2k(2k— 1) (Qk - 2) “-

Since u; = p(p — 1)a?/2, we have

Uk _ 1 p—2 a2k2
w k2k—1)\2k -2 ’

so that for k > 1 (hence p > 3) we have

va(ug) — va(ur) = (2k — 2)va(a) — va(k) = (2k — 2) — v (k)
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since a is even. It is immediately checked that the rightmost expression is
always greater than or equal to 1, hence that va(ug) > v2(u1) for k > 1. Since
L = Zi’;l)/z(—l)(l’_l)/%kuk it follows that v2(L) = va(u1) = va2((p(p —
1)/2)a?), which is impossible if a # 0 since L = 0. Thus we must have a = 0,
proving the proposition. ]

It is easy to generalize the above reasoning to other values of ¢ (see Ex-
ercises 36 and 33), but thanks to the Bilu-Hanrot—Voutier theorem we do
not need to do so. In fact, for small values of ¢ satisfying H(t) we have the
following definitive result:

Theorem 6.7.14. Assume H(t), in other words that t is a squarefree neg-
ative integer such that t Z 1 (mod 8). For n > 3 and —100 < t < —1 the
Diophantine equations y2> = x™ 4+t do not have any integral solutions except
for the solutions with y = 0 when t = —1, and for the pairs (t,n) given in
the table below, for which the only solutions (x,y) are as indicated.

Ltn) [ (@) [ tn) | (zy) |
(=2,3) | (3,%5) (—11,3) | (3, %4) and (15, £58)
(—13,3) | (17, £70) (=17,4) | (£3,£8)

(—19,3) | (7,%18) (—19,5) | (55, +£22434)
(=26,3) | (3,%1) and (35,£207) || (=35,3) | (11,£36)
(—53,3) | (9,+26) and (29, +156) | (=53,6) | (3,+26)
(—61,3) | (5,+8) (=65.4) | (+3,+4)
(—67,3) | (23,£110) (—74,3) | (99, £985)
(—74,5) | (3,£13) (—77,4) | (£3,£2)
(—83,3) | (27, £140) (—83,9) | (3,+140)
(—89,3) | (5,+6) (=97,4) | (£7, +48)
Solubility of 42 = 2" + ¢ for (t,n) as in the Theorem
Proof. For t = —1, we have the trivial solutions (z,y) = (1,0) if n is

odd, (z,y) = (£1,0) if n is even. Thanks to Proposition 6.7.1 we know that
for —100 < t < —1 the only ones for which there are solutions with n even
are the given ones. Otherwise we may restrict to n = p an odd prime and
deduce the others from that case. When the condition H(p,t) is satisfied, we
obtain the equations and the solutions of the theorem. The only values of ¢
such that —100 < t < —1 for which H(¢) is true but the condition H (p,t)
is not satisfied are t = —26, —29, —38, —53, —59, —61, —83, and —89 for
p=3,and t = —74 and t = —86 for p = 5. In the case p = 3 we must find
all integral solutions to y? = 2°® + ¢ for the 8 given values of t. This is done
without difficulty by using the techniques of Section 8.7, see Exercise 27 of
Chapter 8. On the other hand in the case p =5 and t = —74 or t = —86, we
must find the integral points on y? = z® + ¢ which is a hyperelliptic curve
of genus 2. This is more difficult, and I refer either to Chapter 13 for the
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general methods of attack of this kind of problem, or to the original paper
by Mignotte and de Weger [Mig-Weg]. O

6.8 Linear Recurring Sequences

6.8.1 Squares in the Fibonacci and Lucas Sequences

We have already seen in Section 4.5.3 how to apply p-adic methods to find
specific values of linear recurring sequences. I emphasize the fact that these
methods (for instance using Strassmann’s theorem) are really p-adic in na-
ture, and not simply based on simple congruence arguments. In the present
section, we will study similar problems which on the other hand can be solved
by congruence arguments and quadratic reciprocity.

We let a = (1+/5)/2 and B = (1 — /5)/2 be the two roots of the
equation 2 —x — 1 = 0. We define classically the Fibonacci sequence F}, and
the Lucas sequence L,, by the formulas

an_ﬂn

F =
n Oé—,B

so that the sequences F),, and L, both satisfy the linear recursion u,4; =
Up + Up_1, with initial terms Fy =0, F;y =1 and Lo =2, L, = 1.

Before stating the Diophantine theorems, we need some elementary prop-
erties of these sequences, summarized in the following proposition.

and L,=a"+ (",

Proposition 6.8.1. (1) L_,, = (-1)"L,, F_, = (-1)" 'F,, L2 — 5F? =
4(_1)"; 2Lm+n = S5F,F, + Lan: 21'?71’L+n = Fp,L, + Fan; Ly, =
L%n + 2(_1)7”_1) Fyp = F Ly,

(2) ged(Ln, Fn) =1 if 34 n, ged(Ly, Fr) =2 if 3 | n.

(3) When k = £2 (mod 6) then for all t € Z we have

Lokt = (—1)'L, (mod Ly,) and Fpyop = (—1)'F, (mod Ly) .

Proof. The formulas of (1) are proved by direct computation from the
definitions in terms of a and 3, which can be summarized by the equality
(L +F,\/5)/2 = a™. For (2), we note that since |L2 —5F2| = 4, the GCD of
L, and F, is equal to 1 or 2. Because of that same formula it is equal to 2 if
and only if 2 | F},, and since evidently the sequence F;, modulo 2 is periodic
of period 3, we see that 2 | F, if and only if 3 | n, proving (2).

For (3), since 2 | k we have

2Ln+2k =5F,For, + L,Loy = 5F, FyL; + Ln(Li - 2) =-2L, (mod Lk) .

Since 3 1 k we have 21 Ly, hence Ly o, = —L,, (mod Ly) so the result for L
follows by induction on ¢. Similarly
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2F, o1 = FLog + Foy L, = F,(L} — 2) + F,LyL,, = —2F,, (mod L;) ,
and we conclude as before.

Theorem 6.8.2. (1) For n > 0 we have L, = z? with x € Z if and only if
n=1o0rn=23.
(2) Similarly L, = 2x? if and only if n =0 or n = 6.

Proof. Since Ly, = L2 +2(=1)""1, Ly,,, = 2? implies that |22 — L2 | = 2,
which is impossible. Thus we may assume that n is odd. Clearly L; = 1 and
L3 = 4 are squares, so we may assume that n > 3. We can write n = r+2-3°k
with r =1 or 3,2 | k and 3 ¢ k, hence k = £2 (mod 6) and k > 0. By the
above proposition we thus have

Ln=(-1)*"L,=—-L, (mod Ly) .

On the other hand since L; = 1 and L3z = 4, we have —L,, = —1 or —4. Note
also that since k/2 = £1 (mod 3), we have

Ly=L3, +2(-1)¥*'=1£2=3 (mod 4),

(2)-(2)-(z) -
Ly Ly, Ly,
If follows that L, cannot be a square, proving (1).

To prove (2), let L,, = 22 with z € Z. We consider several cases.

e If n is odd, then 4z* = L2 = 5F2 — 4, hence F, is even, so that
z! = 5(F,/2)? — 1. But z* = 0 or 1 modulo 8, hence (F,/2)? = 5 or 2
modulo 8, a contradiction.

o If 4| n and n # 0, we can write n = 2 - 3°k with £k = £2 (mod 6), so
that by the proposition

hence

2L, = —2Lo = —4 (mod L) ,

hence as above (21{“:) = —1 so that 2L,, cannot be a square.

e If n = 6 (mod 8) and n # 6, we can write n = 6 + 2 - 3°k with k = +2
(mod 6), so that by the proposition

2L, = —2Lg = —36 (mod Ly) .

On the other hand note that 3 | L,, if and only if m = 2 (mod 4), hence since
4 | k we have 3 t L. Thus as above (QI{‘—:) = —1 so that 2L,, cannot be a
square.

e If n =2 (mod 8) then L_,, = L, and —n = 6 (mod 8), so the preceding
reasoning (which is applicable for n < 0) shows that L, = 222 if and only if
—n = 6, and in particular n < 0. |
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Theorem 6.8.3. (1) We have F,, = 2> with = € Z if and only if n = 0, £1,
2, or 12.
(2) Similarly F, = 2% if and only if n = 0, £3, or 6.

Proof. The proof of this theorem is similar and left to the reader (see
Exercise 37). O

As an application of the above theorem, we give the following corollary.

Corollary 6.8.4. Consider the Diophantine equation
y? =5z +a.

(1) For a =1, the only integral solutions are (z,y) = (0,%1) and (£2,+9).

(2) For a = —1, the only integral solutions are (x,y) = (£1,+2).

(3) For a = 4, the only integral solutions are (xz,y) = (0,£2), (£1,£3),
(£12,+322).

(4) For a = —4, the only integral solutions are (z,y) = (£1,+1).

Proof. If we write the equations as y?> — 5z = eb? with ¢ = 41 and
b=1or b= 2, we see that we can apply the solution to the Pell equation
y?—5X? = +1 or +4. The fundamental unit of the order Z[v/5] is 24+v/5 = a?,
of norm —1, hence the general solution with X > 0 to y2—5X? = #1 is given
by y + Xv/5 = a®”, hence
a3n _ 183n

a—p
By the above theorem, this implies n = 0, £1, or 2. The value n = 0 gives
the solution 2 = 0 to the first equation (hence y = 1), and n = 2 gives the
solution z = +2 to the first equation (hence y = £9). On the other hand
n = %1 gives the solution z = £1 to the second equation (hence y = £+2).

Similarly the general solution to y? —5X?2 = +4is given by (y+X+/5)/2 =
a™, hence 2 = X = F,,. By the above theorem this implies n = 0, £1, 2
or 12. The values n = 0, 2 and 12 give the solutions z = 0 (hence y = £2),
z = %1 (hence y = £3), z = +12 (hence y = £322) to the third equation,
while n = %1 gives the solution = £1 (hence y = %1) to the fourth
equation. O

222 =2X = =Fs, .

Remark. Using a combination of Baker-type methods giving lower bounds
for linear forms in 2 or 3 logarithms of algebraic numbers (see Chapter
12), and the Ribet—Taylor—Wiles level lowering method (see Chapter 15),
Y. Bugeaud, M. Mignotte and S. Siksek have recently proved the following
remarkable result:

Theorem 6.8.5 (Bugeaud—Mignotte—Siksek). (1) The only nontrivial
perfect powers in the Fibonacci sequence are Fi = F, = 1, Fy = 8§,
and Fio = 144.



6.8 Linear Recurring Sequences 405

(2) The only nontrivial perfect powers in the Lucas sequence are L1 =1 and
Ly =4.

We also mention without proof the following results of the same type.

Theorem 6.8.6 (Ljunggren, Ellenberg). The only integral solutions to
the Diophantine equation x> — 2y* = —1 are (z,y) = (£1,%1) and (z,y) =
(+£239, +13).

Theorem 6.8.7 (Cohn, Ljunggren). (1) For fized D the Diophantine equa-
tion z* — Dy? = 1 has at most one integral solution with x > 0 andy > 0,
except for D = 1785 for which it has the two solutions (z,y) = (13,4)
and (239,1352).

(2) If D is prime, the above equation has such a solution if and only if D = 5
and D = 29, for which it has the respective solutions (z,y) = (3,4) and
(z,y) = (99, 1820).

6.8.2 The Square Pyramid Problem

A classical problem due to E. Lucas asks for all integral solutions to the
equation y2 = 12422 4+ ... + 22, in other words to the Diophantine equation
z(z+1)(2z+1) = 6y2. This problem was until relatively recently solved only
using rather sophisticated methods, but in the 1980’s a completely elementary
proof was found, which we paraphrase in this section, see [Ma] and [Ang].
We need some preliminary results.

Lemma 6.8.8. The only integral solutions to the Diophantine equation y? =
8z + 1 are (z,y) = (0,%£1) and (£1,+£3).

Proof. We may assume y > 0. Since y is odd we can write y = 2s + 1,
so that 2z* = s(s + 1). If s is even there exist coprime integers u and v
such that s = 2u? and s + 1 = v*, so that v* — 2u* = 1. By Proposition
6.6.15 this implies v = 0, hence s = 0, x = 0 and y = +1. So assume
that s is odd. In this case there exist coprime integers v and v such that
s = u* and s +1 = 2v%, so that u* + 1 = 2v*. This implies that u is
odd, hence (by looking modulo 8) that v is odd. If we set a = [v? — u]
and b = |v? + u|, we see that a® + b> = 2v* + 2u? = (u? + 1)?, so that
(a,b,u® 4+ 1) are the three sides of a Pythagorean triangle, and its area is
equal to ab/2 = |(v* — u?)/2| = ((u? — 1)/2)?, a square. Since we will show
that 1 is not a congruent number (Proposition 6.12.2), it follows that the
triangle must be degenerate, i.e., that v = £1, hence s = 1, x = +1 and
y = 3, proving the lemma. O

Remark. It would have been more pleasing to consider the more general
equation y? = 8z* + z* with z, y and z pairwise coprime. Unfortunately, as
is shown in Exercise 12 of Chapter 8, this equation has an infinity of integral
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solutions (because the corresponding elliptic curve has nonzero rank), hence
the result would not be suitable for our purposes.

We can now solve Lucas’s problem for even values of x.

Proposition 6.8.9. The only integral solutions to the Diophantine equation
z(z +1)(2z + 1) = 6y2 with y # 0 and x even are (z,y) = (24, £70).

Proof. Clearly x is nonnegative. Since z is even and z, z+1 and 2z +1 are
pairwise coprime, the equation implies that the odd numbers  + 1 and 2z +1
are either squares or triples of squares. It follows that z +1 # 2 (mod 3) and
2z + 1 # 2 (mod 3), which is equivalent to z = 0 (mod 3). Thus we can find
integers s, t and u such that z = 652, z+1 = t? and 22+1 = 42, and of course
u and t are odd and coprime. The equality 6s?> = (u — t)(u + t) implies that
4 | 6s% hence that 2 | s, hence write s = 2v, so that 6v? = ((u—t)/2)((u+t)/2).
Since u and t are coprime so are (u—t)/2 and (u+t)/2. Changing if necessary
the signs of u and t it follows that there exist integers a and b such that either
(u+1t)/2 =6a% and (u —t)/2 =b% or (u+1t)/2 =3a® and (u—1t)/2 = 2b°.
In the first case we have t = 6a2 — b and s = 2ab, and since 6s? + 1 = t% we
obtain the equation 24a%b? 4+ 1 = (6a? — b%)2, hence 36a* — 36a%b + b* = 1
which can be rewritten by completing the square (6a> — 3b%)2 — 8b* = 1. By
the above lemma, since 3 | (6a® — 3b?) we have b = 1 and a = +1, giving
s = 2ab = £2 so that z = 24 hence y = £70. In the second case we have
t = 3a® —2b? and s = 2ab, giving here the equation 24a?b? +1 = (3a® —2b%)2,
hence 9a* —36a%b? +4b* = 1 so that (3a® —6b%)% —2(2b)* = 1. By Proposition
6.6.15 (which is stronger than what we need) we deduce that b = 0, hence
9a* = 1, which is impossible, so there are no solutions in the second case. O

To solve the problem in the odd case we make an analysis similar to that
done in Section 6.8.1. We set a = 2++/3, f = 2—+/3, M,, = (o™ +/")/2, and
G, = (a" — 8™)/(a — B). The reason for dividing by 2 in M, is that a™ + "
is trivially always an even integer. Clearly M,, and G,, both satisfy the linear
recursion v, = 4u, — u,_1 with initial terms My =1, My = 2, Gog = 0,
G1 = 1. We have of course an exact analogue of Proposition 6.8.1, which is
in fact slightly simpler since a8 = 1 instead of —1 (i.e., a fundamental unit
of norm 1) and since there is no denominator 2 in « and 8 (the full ring of
integers of Q(+v/3) is Z[v/3]).

Proposition 6.8.10. (1) M_, = M,, G_, = —G,, M2 —3G? = 1,
Mpin = 3GmGn+MmMp, Gmin = GuMp+GnMpy, Moy = 2M2 —1,
Gom = 2Gm Mp,.

(2) ng(MnaGn) =1

(3) For any integers k and t in Z we have

Mn+2kt = (—l)tMn (mod Mk) and Gn+2kt = (—l)th (mod Mk) .

Proof. Essentially identical to the proof of Proposition 6.8.1 this time
using M,, + GnV/3 = am. O
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Lemma 6.8.11. Assume that n is even. Then M, is odd, 51 M, (Min) =1
if and only if 3 | n and (A_,I—i) =1 if and only if 4| n.

Proof. Write n = 2m. Since My, = 2M2, — 1, it is clear that M, is odd,
and since M2 = 0 or £1 modulo 5, M,, = —1, 1 or 2 modulo 5 and in par-
ticular 54 M,,. Since M, satisfies a linear recursion with integral coeflicients
it is periodic modulo k for any given k, and for £ = 5 the period is clearly
(1,2,2) of length 3, and for k = 8 the period is (1,2,7,2) of length 4, leading
immediately to the desired results. O

The key proposition in the proof is the following result, first proved by
Ma in [Ma)].

Proposition 6.8.12 (Ma). Ifn > 0, then M,, has the form 4z* + 3 if and
only if n = 2, hence M, = 1.

Proof. Assume that M,, = 422 + 3, so that M,, = 3 or 7 modulo 8. Since
the period of M,, modulo 8 is (1,2,7,2), this implies that n = 2 (mod 4) or,
equivalently, that n = £2 (mod 8). Assume that n > 2, hence that M,, > 7,
and write n = 2¢-2° £ 2 with ¢ odd and s > 2 (for n = 2 we could not choose
t odd). By Proposition 6.8.10 we have

M, = (-1)!Miy = -7 (mod Mss) ,

hence 472 = —10 (mod Mas). Since s > 2, Mas is odd, hence it follows that

() (55:) - () - () -

since everything is nonzero by the above lemma. On the other hand, the
above lemma also tells us that (1\/_1_225) = 1since s > 2, and that (%) =1

since 3 1 2%, so we obtain a contradiction, proving the proposition. O

Thanks to this proposition we can now completely solve Lucas’s problem.

Theorem 6.8.13. The only integral solutions with y # 0 to the Diophantine
equation z(z + 1)(2z + 1) = 6y? are (z,y) = (1,£1) and (z,y) = (24, £70).

Proof. The case where z is even has been proved in Proposition 6.8.9. So
assume that z is odd. As in the even case, since z, x + 1, and 2z + 1 are
pairwise coprime, z is either a square or three times a square, hence x % 2
(mod 3). Since z + 1 is even and the other two factors are odd, it is either
twice a square or six times a square, hence x +1 # 1 (mod 3). Thus z = 1
(mod 3), hence z + 1 = 2 (mod 3) and 2z + 1 = 0 (mod 3). It follows that
there exist pairwise coprime integers s, t, and v such that z = 2, z+1 = 2¢2,
and 2z 4+ 1 = 3u?. We thus obtain the equation
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(6u® +1)® — 3(4tu)® = (4z +3)> - 8(z+ 1)(2z +1) =1,

and since 2 + v/3 is the fundamental unit of Z[\/g], we deduce that there
exists n € Z such that, using the above notation:

6u? + 1 + 4tuv/3 = +(M,, + G,V3) .

In particular M, = £(6u® + 1) = 6u® + 1, since M,, > 0. On the other hand
6uZ+1 = 4z + 3 = 452 + 3, so that M,, has the form 4s? 4+ 3. By Ma’s result
above this implies that n = +2 and M,, = 7, hence s = +1 so z = 1, as
claimed, finishing the proof of the theorem. O

6.9 Fermat’s “Last Theorem” z™ + y™ = 2"

6.9.1 Introduction

This is certainly the most famous of all Diophantine equations. It claims that
for all n > 3 there are no integral solutions to z™ + y™ = 2™ with zyz # 0.
We may clearly assume that z, y and z are pairwise coprime. Furthermore,
since any integer n > 3 is either divisible by an odd prime number or by 4,
it is sufficient to prove the result for n = 4 and for n = p an odd prime.

For n = 2 Fermat’s equation does have solutions, which we have parametrized
completely in Corollary 6.3.13, and which we restate as follows.

Proposition 6.9.1. The general solution in Z to the equation x> + y? = 22
18

r=d(s* —t?), y=2dst, z=d(s>+1%),
where s and t are coprime integers such that s Zt (mod 2) and d € Z, or the
same with x and y exchanged. Furthermore we have ged(z,y) = ged(z, 2) =

ged(y, z) = |d|.

Corollary 6.9.2. The general solution of 2 + y* = 2% with ged(z,y) = 1
and x odd is
=5t y=2st, z=+(s>+1%),

and the general solution of x® — y? = 22 with ged(x,y) = 1 and x odd is
r==4(s+1%), y=2st, z=s"—1t,
where s and t are as above.

Proof. Immediate from the above proposition and the fact that two out
of three sign changes can be included in the exchange of s and ¢ or in the
exchange of s with —s. O

We have shown in Theorem 6.4.5 that Fermat’s equation does not have
any solution for n = 3. We will give below a slightly different proof which
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has the advantage of being generalizable to all regular prime exponents. In
Proposition 6.6.14 we have shown that the equation 2* +y* = 22 has no non-
trivial solutions, so a fortiori Fermat’s equation does not have any nontrivial
solution for n = 4. We may thus assume that n is an odd prime.

6.9.2 General Prime n: The First Case

From now on we assume that n. = p is an odd prime. In the traditional attacks
on Fermat’s Last “Theorem” (FLT in short), one distinguishes the so-called
first case (or FLT I) in which we assume that p { zyz, and the second case
(or FLT II) in which we assume that p | zyz. In the modern attack which
culminated in the work of Wiles and Taylor-Wiles solving FLT completely,
the distinction between these two cases is unimportant.

The first case is much easier to treat (although nobody knows a complete
proof of the first case using traditional methods), and in fact using techniques
in which we will not go into, it is not too difficult to give a very simple and
effective algorithm to check FLT I. This has in fact been done on a computer
for p < 10'® at least. On the other hand the second case depends on some
“luck” which in practice is always true, but cannot be proved to be the case.
Thus it may be that for some p the traditional method for proving FLT II
fails, in that it does not succeed in proving the result (of course since FLT II
is true by Wiles, it will not find a counterexample either).

There exist several elementary but nontrivial results on FLT I. We prove
two of them. A first is a straightforward p-adic approach (more precisely a
congruence approach modulo p?), and I am indebted to A. Kraus for pointing
it out in an unpublished course. A second is a remarkable result due to Sophie
Germain, and generalized by Wendt.

6.9.3 Congruence Criteria

We begin by the following.

Proposition 6.9.3. The following three conditions are equivalent.

(1) There exists three p-adic units a, 8 and v such that of + P = 4P (in
other words FLT I is soluble p-adically).

(2) There exists three integers a, b, ¢ in Z such that p t abc with a? + b? = P
(mod p?).

(3) There exists a € Z such that a is not congruent to 0 or —1 modulo p with
(a+1)? =a? +1 (mod p?).

Proof. From the binomial theorem it is clear that if = 1 (mod pZ,) then
u? =1 (mod p®Z,). Thus if u = v (mod pZ,) and v and v are p-adic units,
then u? = v? (mod p®Z,). We will use this several times without further
mention. Taking a, b and ¢ to be residues modulo p of «, # and « thus shows
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that (1) implies (2). Conversely, assume (2). We would like to apply Hensel’s
lemma. However, the congruence is not quite good enough, so we have to do
one step by hand. Let aP 4+ b = c? + kp? for some k € Z, and set d = ¢ + kp,
so that p{ d. Then by the binomial theorem dP = ¢? + kp?cP~! (mod p?), so
that
af? + ¥ —dP = kp?(1 — 1) =0 (mod p?)

since p t ¢. We can now apply Hensel’s lemma (Proposition 4.1.37) to the
polynomial f(X) = X?+ b —dP and to a = a: we have |f'(a)|, = |pa? |, =
1/p since p { a, while | f(a)|, < 1/p? by the above, so |f(a)|, < |f'(a)[3, hence
Hensel’s lemma is applicable, proving (1).

Clearly (3) implies (2). Conversely, assume (2), i.e., that ¢» = a? + b
(mod p?) with p { abc. In particular ¢ = a + b (mod p). Thus, if we set
A = ba~! modulo p, then by the above remark A? = b?a~P (mod p?) and
(A+1)P = cPa™? (mod p?), so that (4 +1)? = AP + 1 (mod p?), proving (3)
and the proposition. O

Corollary 6.9.4. FLT I cannot be proved by congruence conditions (i.e., p-
adically) if and only if condition (3) of the proposition is satisfied for some a
such that 1 <a < (p—1)/2.

Proof. Indeed, condition (3) is invariant when we change a modulo p, and
also under the change a — p — 1 — a, so the result is clear. O

Corollary 6.9.5. If for all a € Z such that 1 < a < (p — 1)/2 we have
(a+1)? —a? —1 £ 0 (mod p?), then the first case of FLT is true for p.

Proof. Indeed, if a? + b? = ¢ with p { abc then condition (2) of the
proposition is satisfied, hence by (3), as above there exists a such that 1 <
a< (p—1)/2 with (a+1)? —a? — 1 = 0 (mod p?), proving the corollary. O

For instance, thanks to this corollary we can assert that FLT I is true
for p = 3, 5, 11, 17, 23, 29, 41, 47, 53, 71, 89, 101, 107, 113, 131, 137, 149,
167,173, 191, 197, which are the prime numbers less than 200 satisfying the
condition of the corollary.

We will see below that a theorem of Wieferich (Corollary 6.9.10) says that
it is sufficient to take a = 1 in the above corollary, in other words that FLT
I is true as soon as 2P — 2 # 0 mod p?.

6.9.4 The Criteria of Wendt and Germain

As mentioned there is another elementary and more powerful approach to
FLT I, initially due to Sophie Germain, and generalized by Wendt, as follows.

Proposition 6.9.6 (Wendt). Let p > 2 be an odd prime, and k > 1 be an
integer. Assume that the following conditions are satisfied.
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(1) k= +2 (mod 6).

(2) q=kp+1 is a prime number.

(3) gt (k* —1)R(X* —1,(X +1)* — 1), where R(P,Q) denotes the resultant
of the polynomials P and Q).

Then FLT I is valid, in other words if P + yP + 2P = 0 then p | zyz.

Proof. Assume that zP + y? + 2P = 0 with p { zyz. We may of course as
usual assume that z, y, and 2z are pairwise coprime. We can write

—aP =yP 2P = ()P -yt e 2.

~—

Clearly the two factors are relatively prime: we cannot have p | (y + 2
otherwise p | z, and if r # p is a prime dividing both factors then y
—2 (mod r) hence the second factor is congruent to pyP~! modulo r, and
since r # p we have r | y, hence r | z contradicting the fact that y and 2
are coprime. Since p is odd (otherwise we would have to include signs), it
follows that there exist coprime integers a and s such that y + z = a? and
yP~l — P72z 4+ ... 4 2P71 = sP. By symmetry, there exist b and c such that
z+x=bW and x+y =cP.
Consider now the prime ¢ = kp + 1. The Fermat equation implies that

gl /b oy la=D/k 4 o(a=D/k = g (mod ¢) .

I claim that ¢ | zyz. Indeed, assume by contradiction that ¢ t zyz, and let
u = (z/2)@Y/k mod ¢, which makes sense since g { z. Since ¢ { z we have
u¥ —1 = 0 (mod ¢). On the other hand u + 1 = —(y/2)~/* (mod g),
and since k is even and q { y we deduce that (u + 1)¥ — 1 = 0 (mod q). It
follows that the polynomials X* — 1 and (X + 1)*¥ — 1 have the common root
u modulo ¢, contradicting the assumption that ¢4 R(X* — 1, (X + 1)* —1).

Thus ¢ | zyz, and by symmetry we may assume for instance that ¢ | z.
Thus

0=2z=(z+y)+(z+2)— (y+2)=c”+b°+(—a)?
= D/k L pla=D/k L (_g)a=D/k (mod q) .
As above, it follows that g | abe. Since ¢ | z and z, y and z are pairwise
coprime, we cannot have ¢ | b = z+z or g | ¢® = ¢ +y. Thus ¢ | a. It

follows that y = —z (mod q), hence s? = pyP~! (mod ¢). On the other hand
y=(z+y)—z=cP (mod q), so that

sl /k = gp = pella=1)/R)(P=1) (mod ) ,
and since ¢ { ¢ we have p = d /% (mod ¢) with d = s/c?~! modulo q.

Since a and s are coprime we have ¢ { s hence ¢ {d, so p¥ =1 (mod ¢). Since
k is even it follows that

1= (-1)* = (kp—q)* = k*p* = k* (mod g) ,
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contradicting the assumption that ¢ { k¥ — 1. |

Note that we have not used explicitly the assumption that k¥ Z 0 (mod 6).
However, if k = 0 (mod 6) then exp(2i7/3) is a common root of X*¥ — 1 and
(X +1)* —1 in C, hence the resultant of these polynomials is equal to 0 (over
C, hence over any ring), so that the condition on g can never be satisfied. In
other words (2) and (3) together imply (1).

A computer search shows that for every prime p > 3 up to very large
bounds we can find an integer k satisfying the conditions of the proposition,
and it can reasonably be conjectured that such a k always exists, so that in
practice FLT I can always be checked thanks to this criterion.

The following is S. Germain’s initial criterion:

Corollary 6.9.7. Let p > 2 be an odd prime, and assume that ¢ = 2p+ 1 s
also a prime. Then FLT I is valid, in other words if P + y? + 2P = 0 then

p|xyz.

Proof. Since for k = 2 we have (k¥ — )R(X* — 1,(X + 1)k - 1) = -32,
the condition of the proposition is g # 3, which is always true. O

6.9.5 Kummer’s Criterion: Regular Primes

A less elementary attack on FLT I uses algebraic number theory. It gives a
result which is usually weaker than the above proposition since an infinity
of p cannot be obtained by this attack. However it has the great advantage
that it can be generalized to the second case FLT II, while none of the above
elementary approaches can.

In the sequel, we let ( = (, be a primitive pth root of unity in C, we
let K = Q(¢), and we recall that the ring of integers of K is equal to Z[(].
We set m = 1 — (, and recall that the ideal 7nZ g is a prime ideal such that
(nZ k)P~! = pZ K, and p is the only prime number ramified in K. The first
successful attacks on FLT were based on the possibility of unique factorization
in Z[(]. Unfortunately this is true for only a limited number of small values
of p. With the work of E. Kummer it was realized that one could achieve the
same result with the much weaker hypothesis that p does not divide the class
number h, of Zg. Such a prime is called a regular prime. Note that it is
known that there are infinitely many irregular (i.e., nonregular) primes, see
Proposition 9.6.17, but that it is unknown (although widely believed) that
there are infinitely many regular primes. In fact, there should be a positive
density equal to 1 — 1/e of regular primes among all prime numbers. The
irregular primes below 100 are p = 37, 59, and 67. See Exercise 32 of Chapter
9 for an efficient regularity test.

We thus assume that p is a regular prime, i.e., that p{ h,. The usefulness
of this assumption comes from the following easy fact: if an ideal a of K is
such that a? is a principal ideal, then so is a itself. Indeed, since p and h,
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are coprime, we can find integers u and v such that up + vh, = 1, so that
a = (aP)*(a"»)?. Now by assumption a? is a principal ideal, and by definition
of the class group, so is a”#, proving our claim.

Proposition 6.9.8. If p > 3 is a reqular prime then FLT I holds.

Proof. First note that if p = 3 and p { zyz we have 3, ¥, and 2® congruent
to =1 modulo 9, which is impossible if 23 + 33 = 23, so we may assume that
p > 5. The equation zP + y? = 2P can be written

@+ @+Cy) - (@+ P y) =27

Since z and y are coprime, as ideals (otherwise it does not make sense since
Zk is not necessarily a PID) the factors on the left hand side are pairwise
coprime: indeed, if some prime ideal p divides = + ¢’y and = + (Jy for § # j,
it divides also (¢ — ¢/)y and (¢! — ¢%)z, hence (¢ — ¢/. Thus p = m, so that
7 | z, hence p | z contrary to our hypothesis. We thus have a product of
pairwise coprime ideals which is equal to the pth power of an ideal, so that
each of them is a pth power. Thus for each j we have (z + (Yy)Zx = a;-’ for
some ideal a;. By the above remark, since p is a regular prime this implies
that a; itself is a principal ideal, say a; = a;Z k. In particular, for j =1 we
can write z + (y = oPu with u a unit of K.

Denote complex conjugation by . By Lemma 3.5.18, which is an imme-
diate consequence of Kronecker’s theorem on roots of unity, u/u is a root
of unity, hence of the form n = (™ for some m. On the other hand, since
7 | (¢F—¢77) for all 4, it is clear that for any 8 € Z[(] we have 8 =  (mod =),
s0 a = a (mod ). Since 7 { z, it follows that 7 { o, hence a/a =1 (mod ).
Using the binomial expansion and the fact that 7(P~1) | pZg, we deduce
that (a/a)? = 1 (mod 7P). Dividing = + Cy by its complex conjugate (and
remembering that both are coprime to 7), we obtain (z+(y)/(z+("1y) =7
(mod 7P), in other words

z+ ¢y —n(z+¢y) =0 (mod 7P) .

I claim that m = 1. Indeed, assume otherwise. If m = 0 we multiply the
above congruence by (, and if m = p — 1 we multiply it by (2, otherwise
we do nothing. Thus we see that there exists a polynomial f(T') € Z[T] of
degree at most equal to p—2 > 3 (since we have assumed p > 5), not divisible
by p, and such that f(¢) = 0 (mod 7?). Set g(X) = f(1 — X). It is also of
degree at most equal to p— 2 and not divisible by p, and g(7) = 0 (mod #?).
However it is clear that different monomials in g(w) have valuations which
are noncongruent modulo p— 1, hence are distinct, a contradiction. It follows
that m = 1, proving my claim. Thus n = £(, and our congruence reads
2+ CyF(2C+y) = (zFy)(1F¢) =0 (mod 7P) hence zFy = 0 (mod p). We
cannot have z+y = 0 (mod p), otherwise p | z. Thus y = = (mod p). We may
now apply the same reasoning to the equation (—z)? + 2P = y? and deduce
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that —z = z (mod p). It follows that 0 = 2P + y? — 2P = 3zP (mod p), and
since p 1 z, we obtain p = 3 which has been excluded and treated directly,
finishing the proof of FLT I when p is a regular prime. O

For instance, the irregular primes less than or equal to 200 are p = 37,
59, 67,101, 103, 131, 149, 157, so that FLT I is true up to p = 200 for all but
those primes.

Remark. It is interesting to note that the prime numbers p for which FLT I
can be proved using congruence conditions (i.e., Proposition 6.9.5) and those
for which it can be proved using global methods as above (i.e., Proposition
6.9.8) are essentially independent. For instance by Proposition 6.9.5, FLT I
cannot be proved by congruence conditions for p = 7 or p = 13, but since
these are regular primes, FLT I follows from Proposition 6.9.8. On the other
hand, since p = 101 and p = 131 are irregular primes, FLT I does not follow
immediately from Proposition 6.9.8, although it does follow by congruence
conditions from Proposition 6.9.5. In fact, combining the two approaches, we
have thus proved FLT I for all primes p < 200 except for p = 37, 59, 67, 103,
157.

If we go up to p = 5000, there are 668 odd primes, and among those 279
can be solved by local considerations (Corollary 6.9.5), 407 by global consid-
erations (Proposition 6.9.8), and 522 by one or the other. Of course, using
Wendt’s criterion given above (Proposition 6.9.6), all cases can be solved.

Asymptotically, it is expected (but not proved) that Corollary 6.9.5 can
solve a proportion of 1 — exp(—1/2) = 0.393... of prime numbers, while
Proposition 6.9.8 can solve a proportion of exp(—1/2) = 0.607... of prime
numbers, so that if they are independent one or the other can solve a pro-
portion of 1 — exp(—1/2) + exp(—1) = 0.761...

6.9.6 The Criteria of Furtwangler and Wieferich

Theorem 6.9.9 (Furtwangler). Let p > 3 be prime, let z, y, and z be
pairwise coprime nonzero integers such that x? + y? = 2P, and assume that
ptyz. Then for every q | yz we have ¢°~' = 1 (mod p?).

Note that since z, y, and z are pairwise coprime, at most one can be
divisible by p, so the condition p { yz can always be achieved by permuting
z, y, and —z.

Proof. By multiplicativity, it is sufficient to prove the result for a prime
number ¢ such that ¢ | yz, and by symmetry we may assume that ¢ | y. Let
¢ = (p- As in the proof of Kummer’s theorem on FLT I (Proposition 6.9.8),
since = and y are coprime and p { z the ideals (z + ('y)Z[(] are pth powers
of ideals for all i. In particular if we set a = (z + y)?~2(x + (y), the ideal
aZ[¢] is a pth power. Furthermore we have z + (y = z + y + ({ — 1)y, hence
a = (z4+y)P" +(¢—1)u with u = y(z+y)P~2 € Z.Since (z+y) | 2P +yP = 2P
we have p { (z + y), hence (z +y)? ! = 1 (mod p), and in particular o =
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1+ (¢—1)u (mod p?), where p = (¢ —1)Z[(] is the unique prime ideal of Q(¢)
above p. On the other hand (7% = (1+ (¢ —1))"*=1— (¢ — 1)u (mod p?),
so that ("%a =1 (mod p?), hence ("%« is a primary element in the sense of
Eisenstein reciprocity (see Definition 3.6.34, where £ must be replaced by p
and £ by p).

Since p t y and ¢ | y, we have ¢ # p, and it is immediate to check that
gt N(a), since y is coprime to z and z. Thus applying Eisenstein’s reciprocity
law (Theorem 3.6.38) we have

(), (5),- (), (),

Since (T*aZ[(] = aP for some ideal a, by definition we have ( 1 ) =
P

(Tt
(%)z =1 since (;)p has order p. Furthermore, since ¢ | y we have = + (y =
z+y+y(C—1) =z +y (mod qZ[(]), hence a = (z + y)?~! (mod ¢Z[(]).
Since the value of (% depends only on the class of a in Z[(]/¢Z[(], and
P
since (z +y)? ! = 1 (mod p) is trivially a primary element it follows once
again from Eisenstein reciprocity that

(3): <(w+&y)pl>p - ((x+z)p—1)p -

because the ideal (z + y)Z[(] is a pth power. Combining all these relations
A\ =
we deduce that (q)p =1.

Let ¢Z[C] = [, <ig, 9i be the prime ideal decomposition of ¢ in Z[(], so
that A'(q;) = ¢ and g = (p — 1)/f for some f | (p — 1). By definition, for

any q = ¢; we have
<§> = ¢ =1/P (mod q) ,
p

N——

q

and since both sides are pth roots of unity and p and ¢ are distinct primes it
follows that we have equality in the above congruence, hence by multiplica-

tivity that
(£> = ¢od-1/p
q p

u

It follows that the identity (%) = 1 that we have shown above is equivalent
P

to ug(q¢f —1)/p = 0 (mod p). Since g | (p — 1), p 1 g, and since p { y and

p1 (z+y), we have p { u. It follows that ¢ = 1 (mod p?), proving the theorem

since f | (p—1). O

Corollary 6.9.10 (Wieferich). If FLT I for a prime ezponent p > 3 has a
nonzero solution then 2P~ =1 (mod p?).
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Proof. Indeed, if 2P + y? = 2P with p { zyz, then exactly one of z, y,
or z is even. We may thus assume that 2 | y, so the result follows from the
theorem. 0

Remarks.

(1) The only known values of p such that 2P~! = 1 (mod p?) are p = 1093 and
p = 3511, and there are no others up to 1.25-10'®. On simple probabilistic
grounds it is however believed that there exist infinitely many, and that
their number up to X should be of the order of log(log(X)).

(2) Wieferich’s criterion has been generalized by many authors, replacing
2 by larger integers, and it is by combining these criteria that FLT I
has been proved by “classical” methods up to 10'® as has already been
mentioned.

6.9.7 General Prime n: The Second Case

The second case of FLT, denoted FLT II, is more difficult for several reasons.
We begin by a p-adic remark.

Proposition 6.9.11. For every prime number £ there exist nonzero elements
a, B and 7y in Z, such that afy =0 (mod £) and af + P = ~P.

Proof. Set F(X) = XP + (P — 1. Assume first that £ # p. Then F(X) =
(X —1)(XP~14+...41) (mod ¢). Since £ # p, it follows that 1 is a simple root
of F(X) = 0 (mod £), hence by Hensel’s lemma, (Proposition 4.1.37) F(X)
has a root a € Zy, thus proving the proposition in this case with 8 = £ and
v = 1. Assume now that £ = p. Then |F(1)|, = p ? and |F'(1)|, = p "
Since p > 3, we can once again conclude from Hensel’s lemma that F'(X) has
a root in Z,, proving the proposition. O

We keep the notation of the first case. We begin by two results of Kummer
on units.

Lemma 6.9.12. Let p be a prime number, let ( = (, be a primitive pth root
of unity, let K = Q(¢) and let m = 1— generate the prime ideal p of Z g such
that pZy = pP~ L. Let B € Zx be prime to p and assume that the congruence
ab = B (mod pP) has a solution in Zx, or even in Z,. If L = K (B/?), then
p is unramified in the extension L/K.

Proof. Assume first that of = 8 (mod pP**). Since the absolute ramifica-
tion index e = e(p/p) is equal to p— 1, Lemma 4.1.41 with r = 2 tells us that
there exists a p-adic unit a such that 8 = aP. Thus the polynomial X? — 3 is
totally split in K, and since by Theorem 4.4.41 the splitting of a prime ideal
p in L/K mimics the splitting of the defining polynomial of L/K in K,, it
follows that p is totally split in L/K, and in particular is unramified.
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Assume now that vy (8 — af) = p. Since the statement is trivial when
L = K, we may assume that L # K. Set n = (8'/?—ayp) /7, so that L = K (n).
The minimal monic polynomial f(X) of 5 over K is

(X + ag)? — B) /7P = XP + prad ' /7P X + (af — B) /7P (mod p) .

Since this polynomial is monic and all its coefficients are p-integral (recall that
p/nP~1 is even a p-adic unit), it follows that n is p-integral (more correctly
P-integral for any prime ideal P of L above p, but it is shorter to talk this
way), and since the only prime ideals which can divide the denominator of n
are divisors of p, it follows that n € Z . Now recall that the discriminant of
7 is up to sign the resultant of f(X) with f/(X). However since p/nP~! is a
p-adic unit, the formula above shows that for any z € Z, we have f'(z) =
peP ' 4 p/rP b = p/rP ol # 0 (mod p), so that the discriminant
of 7 is coprime to p. Since L = K(n) the relative discriminant ideal of the
extension L/K divides that of 7, hence is prime to p, so that p is unramified
in L/K as claimed. In fact in this case it is not difficult to show that p is
inert in L/K. |

Corollary 6.9.13. Let p be a regular prime, and let € be a unit of K such
that the congruence € = o (mod «P) has a solution in Z k. Then ¢ = u? for
some u € Zx (necessarily a unit).

Proof. Assume the contrary, and consider the extension L = K(¢'/?).
Since ¢ is not a pth power and ¢ € K it follows that L/K is a cyclic extension
of degree p (the simplest case of a Kummer extension). The relative ideal
discriminant of this extension divides the discriminant of the polynomial
X? — ¢, which is equal to (—1)®~—1)/2pPeP=1 _Since ¢ is a unit, it follows that
it divides p?Z i, hence that p = 7nZ i is the only prime ideal which can divide
it. However by the above lemma, under the above conditions we know that
even p is unramified. Thus no finite prime can ramify in the extension L/K,
and since K is totally complex, L/K is an unramified Abelian extension.
Applying one of the basic results of class field theory, this tells us that L/K
is a subextension of the Hilbert class field H/K. In particular, p = [L : K]
divides h, = [H : K], contrary to the assumption that p is a regular prime.

O

The above proof using quite elementary results of class field theory is very
simple. A direct proof without using class field theory would take two pages
and be much more painful.

We now begin the proof of FLT II for regular primes. We will use Fermat’s
method of infinite descent. For this to work we need to study an equation
which will descend to itself, so we will prove a stronger result.

Proposition 6.9.14. Let p > 3 be a regular prime, and recall that m =1 —(
and p = 7 k. There are no solutions to xP + y? = 2P with z, y, z in Zk,
with p | z, ptzy, and € a unit of K. In particular FLT II holds.
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Proof. Assume the contrary. We again write the equation in the form

(z+y)(z+Cy) - (z+ (P ly) =e2P.

At least one of the factors on the left must be divisible by p, hence all of
them are. On the other hand if ¢ is any ideal of Zk, it is clear that if ¢ # j,
q divides both (z + (’y)Zx and (z + (/y)Z g if and only if both z + (fy and
x + (Jy belong to q, which implies that 7y and mz belong to q, hence that
q divides pa where a is the ideal GCD of 2Z k and yZ k. But conversely a
clearly divides both (z + ('y)Z x and (z + ('y)Z k and is coprime to p since z
and y are, so that pa divides both. We have thus proved that the ideal GCD
of any two distinct factors in the above product is equal to pa. In particular,
the p residues modulo p of the (z+(’y)/ are all distinct, and since Z g /p has
p elements, these residues form a complete system of representatives modulo
p. In particular exactly one of them is divisible by p. Changing y into y¢’
for some j, we may assume that p? | (z + y). It follows that v, (z + (Jy) =1
for 1 < j < p—1, hence that vy(z +y) = p(n — 1) + 1, where n = v,(2). In
particular, we see that n > 2.

Since the product of the ideals (z + (‘y)Z is the pth power of an ideal
and since the GCD of any two is equal to pa, it follows that there exist ideals
bj such that (z + (7y)Zk = pab} for 0 < j < p — 1. Now we know that
in any ideal class there exists an integral ideal coprime to any fixed ideal.
In particular, we can find an integral ideal ¢y belonging to the ideal class of
a by 1 and coprime to p. We set ¢ = acg, which is still coprime to p and
belongs to the ideal class of by '. Since ab} = ((z + y)/7)Zxk and cby are
principal ideals, it follows that a='¢? = (ab})~!(cbo)? is a principal ideal
BZ k, say, and € Zk since a | ¢. Multiplying by /7 our p equations, we
obtain

((Bz + ¢7By) [m)Zx = (cb;)" .

Thus the pth power of the ideal cb; is a principal ideal, and since p is a regular
prime, as in FLT I we deduce that cb; itself is a principal ideal o;Z g, so that
for some units £; we have

Bz + By = mejal .

Recall that a and ¢ are prime to p, hence 8 also. Since we know v, (z + (Yy)
for all j, we deduce that «; is prime to p for 1 < j < p — 1, and that
vp(ap) = n — 1. Adding to the equation for j = 1 ¢ times the equation for
p — 1 we obtain

1+ QB +y) =n(era] + (ep_10p_y)
and since the equation for j = 0 gives S(z + y) = meoah, we get

107 + (ep—105_1 = (1 + ()eoag -
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Since n > 2, vy(ap) = n —1 and vp(a;) =0 for 1 < j < p—1, it follows
that Cep—16;* = (—a1/ap—_1)? (mod pP). Now by the crucial Corollary 6.9.13
proved above, this implies that Csp_lel_l = P for some unit 7. Note that this
is really the only difficult step in the proof, the rest being quite standard and
automatic. Thus, dividing by €; we obtain

of + (nap—1)? = (L + ()eoe; 'af

where we note that (1+¢)eoer " is a unit, for instance because (1+¢)(¢+¢%+
-++4(P~2) = —1. We have thus obtained a new solution to our Diophantine
equation aP + y? = e2P, such that v, (2) = vp(ag) = n — 1. If we had started
with a solution where v, (2) was minimal, we would thus obtain a solution with
a strictly smaller value of v,(2), a contradiction, proving the first statement
of the proposition. In addition, if z? + y? = 2? with p | z for instance, we
can write instead y? + (—2)? = (—z)?, so we may always assume in FLT II
that p | z, proving the second statement, hence FLT in general for a regular
prime. O

Remark. Denote by hf the class number of the totally real subfield K+ =
Q(¢ +¢ 1) of K, of index 2. By Proposition 3.5.20, we know that hf | hy. It
can be shown with not too much extra trouble that FLT holds if the weaker
condition p ¢ h; is satisfied. The advantage of this is that in fact we do not
know of any p such that p | h;. The hypothesis that such p do not exist is
known as Vandiver’s conjecture. It is however believed among experts that
this conjecture is probably false, although the smallest counterexample may
be rather large (it has been verified up to several million). The problem with
this is that, although as already mentioned, there is an algorithm to verify
FLT 1, if one finds a p such that p | Al (a counterexample to Vandiver’s
conjecture) it may be that one does not know of any way to prove FLT using
classical methods (i.e., not using Wiles) for that p.

6.10 An Example of Runge’s Method

A good description of this method can be found in a paper by G. Walsh,
see [Wals]. We will only give a typical example, and note that we will again
use this method in the context of Catalan’s equation, see Section 6.11. We
begin by the following lemma, which is typical of Diophantine approximation
techniques in which we need to bound both the denominator and the absolute
value of certain coefficients.

Lemma 6.10.1. Let S(X) = > ;5 sk X¥ be a power series with integral
coefficients such that so = 1 and not identically equal to 1, let d > 2 be an
integer, and write S(X)'/* =3, ax X* with ag = 1. Then

(1) We have Dyay, € Z, where Dy, = d* Hp‘dpvp(k!),
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(2) Let ko be the smallest strictly positive index such that sk, # 0, and assume
that there exists a prime p dividing d such that vp(sg,) = 0. Then when
ko | k we have vp(ar) = —(kvp(d) + vp(EY).

(3) Assume that S has a monzero radius of convergence R in C, and let
M =inf|, | <R, s(z)=0|2| be the infimum of the zeros of S(z) in the open
disk of radius R if there exists such a zero, otherwise let M be arbitrary
such that 0 < M < R, and finally let N = Y7, |sx|M*. Then M < 1,

and for all k we have the inequality |ay| < N'/4M~F.

Proof. (1). Set g(X) = 345, s£ X" and write g(X)’ = 3,5 ; g5 X*. We
have

S(X)Y4 = 1+ g(X)/1 =1+ Z (1/.d) Zgj,ka

21 k2j

=14+ X+ > (1§d>gj,k :

k21 1<k

so that ax = }°; ;¢ (léd)gj,k. Since g;jr € Z, Lemma 4.2.8 implies that
Dyay, € Z with Dy, = Hp‘dpk’up(d)"‘vp(k!), proving (1)

(2). We have g(X) = > 4, s X ¥, hence g(X)? = 2 k> ko 9.k X" with
i.jko = Sk, and ay, = Y i<i<k ko (léd)gj’k. By Lemma 4.2.8, if p | d we have
vp((léd)) = —(jup(d) + vp(4!)), which is a strictly decreasing function of j.
Since vp(gk/ko,k) = (k/ko)vp(so) = 0, it follows that vy(ar) = —(kvp(d) +
vp(k!)), proving (2).

(3). First note that the series S defines an analytic function for |z| < R,
hence S(z) has only a finite number of zeros in this disc, and since S(0) = 1
we deduce that 0 < M < R. I claim that M < 1. We consider two cases. If
S(X) is not a polynomial, then s; # 0 for an infinity of k, and since s € Z
it follows that R < 1, hence M < R < 1. On the other hand, if S(X) is a
polynomial of degree n, say, then the product of the roots of S is equal to
(—1)"/sp, and since s,, € Z we have |(=1)"/s,| < 1 so at least one root must
have a modulus less than or equal to 1, as claimed.

To obtain an inequality for |ag| we simply apply Cauchy’s formula. If C,
denotes the circle of radius r centered at the origin, then if r < M we have

1 S(z)1/d

ap = —— 4
2im Jo, 2kt ’

since S(z) has no zeros or pole in |z| < r, so that we can choose a fixed
determination of the logarithm to define S(z)'/¢ = exp(log(S(z))/d). Thus

1/d
lag| <r7* (sup IS(z)I> < Nk

zZ|=Tr
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Since this is true for all r < M we obtain (3). O

We also need the following completely elementary lemma.

Lemma 6.10.2. Assume that for some integer d > 1 and real numbers a,
b and r we have the inequality (a —r)? < b < (a + r)%. Then we have
|sign(r)b'/¢ —a| < |r|.

Proof. If d is odd, then a —r < b'/? < a+r (where hereafter, b'/¢ denotes
the unique dth root of b when d is odd), hence r > 0 and [b*/? — a| < 7.
If d is even then b > 0 and |a — r| < b*/? < |a + 7| (where hereafter b'/?
denotes the unique positive dth roof of b when d is even and b > 0). The
first inequality gives r — b'/? < a < r + b'/?. The second inequality gives
a>—r+b/%or a < —r— b4 If r > 0 the inequalities a > r — b'/¢ and
a < —r — b'/% are incompatible, hence —r + b'/? < a < r + b'/?, in other
words once again |b'/? — a| < r. If r < 0 the inequalities a < r 4 b'/¢ and
a > —r + b'/% are incompatible, hence r — b'/? < a < —r — b'/?_ in other
words [b'/¢ + a| < |r|. O

Proposition 6.10.3. Let f(X) = Y o¢;c,, [iX* € Z[X] be a monic polyno-
mial of degree n, let v > 2 be an integer, set d = ged(r,n), m = n/d, and
let h(X) be the polynomial of degree m obtained by truncating the power se-
ries expansion in 1/X of f(X)V/?. We assume that f(X) is not identically
equal to h(X)? (so that in particular d > 1). Let U (resp., L) be the largest
(resp., smallest) real number which is a root of one of the two polynomials
01(X) = £(X) = (h(X) = 1/Dy)? and g 1(X) = f(X) — (h(X) + 1/Dyp)?.

(1) If (x,y) is an integral solution to the Diophantine equation y™ = f(x) then
either L < x < U or z is a root of the nonzero polynomial f(z) — h(z)?.

(2) Let ko be the largest index such that ko < n with fr, # 0 (which must exist
otherwise f(X) = (X1 is a dth power), and assume that (n—ko) | m.
If in addition there ezists a prime p | d such that vp(fr,) = 0 then when
x € Z we have f(x) — h(z)? ¢ Z, and in particular f(z) — h(z)? has no
integral Toots.

Proof. By definition of h(x) we formally have f(X)/¢ = h(X) + O(1/X)
hence for a = £1 we obtain g,(X) = (da/D.,) X"~ ™ + O(X"~™~1), so that
the degree of g,(X) is equal to n —m and the sign of its leading term is equal
to a.

If £ > U we have g1(x) > 0 and g_1(x) < 0, in other words (h(z) —
1/D,)* < f(z) < (h(z) + 1/D,,)%, hence by the above lemma |f(z)'/? —
h(z)| < 1/D,,. Similarly, if x < L we have sign(g;(z)) = (—1)"™ and
sign(g_1(z)) = (—=1)"™~! hence if n—m is even we obtain the same conclu-
sion, while if n—m is odd we have (h(z)+1/D,;)¢ < f(z) < (h(z) —1/Dy,)4,
hence by the above lemma |f(z)'/? + h(z)| < 1/D,,, and this can happen
only if d is even. Thus in any case when z > U or < L there exists e; = +1
such that |f(z)Y/? — e1h(x)| < 1/D,,, and we have e = 1.
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Now let (z,y) be an integral solution to y” = f(z) with z > U or = < L.
Writing Y = y"/? we see that f(x)'/? = &,Y € Z where g5 = +1 is such
that e = 1. If we set I = e2D,,Y — e;D,,h(z) it follows from the above
inequality that |I| < 1. On the other hand, by Lemma 6.10.1 applied to the
series S(X) = X"f(1/X) and the fact that Dy | D, if & < m, we know
that D, h(X) € Z[X], hence D, h(z) € Z,so I € Z. Since |I| < 1 it follows
that I = 0, in other words Y = e1e5h(z). Since ¢ = ¢ = 1 we thus have
f(z) = Y% = h(x)?, so that z is a root of the nonzero polynomial f(z)—h(x)?,
proving (1).

For (2), let = € Z be such that f(z) — h(z)? € Z, hence h(z)¢ € Z. Since
hX) € QX], h(z) € Q and h(z) is an algebraic integer, hence h(z) € Z.
However, with the notation Lemma 6.10.1, we have h(z) = >, arz™ ¥,
and since ko | m we have by the lemma vp(an) = —(mvy(d) + vp(m!)), while
for k < m we have

op(@ra™ %) > vplar) > —(kvp(d) +p (kD) > —(muy(d) +vp(mD)) = vp(am)
Thus vp(h(z)) = vp(am) < 0, so h(x) ¢ Z, a contradiction. O

Remarks.

(1) Tt is easy to see that the type of reasoning used in the proposition can be
generalized as soon as we are able to compute y (or some integral power
of y) as a formal power series in z. This is the case, for instance, for
hyperelliptic equations of the form y? = f(z) with f € Z[X], the leading
term of f(X) being of the form a2X?2* for a € 7Z. More generally still,
the method can easily be extended to equations of the form g(y) = f(z),
where f and g are monic polynomials of noncoprime degree (see Exercise
42).

(2) More generally, let E € Q be some expression involving a possible solution
to a Diophantine equation. Then we say that we use Runge’s method if
on the one hand we find some analytic bound of the form |E| < ¢ for
some small ¢, say, and on the other hand if we can find an arithmetic
bound D for the denominator of E. Then if De < 1 we deduce as above
that E = 0, leading to very strict restrictions on the possible solution.

(3) It has not been necessary to use the bounds for a; obtained in Lemma
6.10.1, since we can obtain much better inequalities for z directly as we
have done above. In other situations however these bounds (or stronger
ones obtained by similar methods) are the only available ones.

(4) Clearly this type of method can only apply to the search for integer
solutions to Diophantine equations, and not rational solutions.

(5) The above method cannot apply to equations y™ = f(z) where r and n
are coprime (for instance, think of the problem of finding integral points
on elliptic curves y> = 2® + ax + b), or to such equations where f is
nonmonic, with a leading term not an exact rth power (for instance,
think of the “trivial” Pell equation y? = dz? + 1).
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As an example, we have:

Corollary 6.10.4. (1) The only integer solutions to y> = z* + 23 +22 +z+1
are (z,y) = (—1,%1), (0,%1), and (3, £11).

(2) The only integer solutions to y?> = z% — z* + 1 are (z,y) = (£2,47),
(z,y) = (£1,£1), and (0,£1).

Proof. For (1), we easily find that L = —1 and U = 3, and the second
condition is satisfied with kg = 3. Thus we need only to look at —1 < z < 3 to
prove the corollary, which is immediate. We leave (2) to the reader (Exercise
41). O

6.11 First Results on Catalan’s Equation

I am very much indebted to Yu. Bilu and R. Schoof for help in writing this
section and showing me their simplifications of the proofs of Cassels’s and
Ko Chao’s theorems. I also invite the reader to read the notes of M. Mischler
available on the Web [Mis].

6.11.1 Introduction
Catalan’s conjecture, now a theorem, is the following:

Theorem 6.11.1 (Mihailescu). If n and m are greater than or equal to 2
the only nmonzero integral solutions to

" -yt =1
arem=2,n=3,x=23,y=2.

This conjecture was formulated by Catalan in 1844 (see [Cat]) and re-
ceived much attention. As already mentioned in Chapter 1, it was finally
solved in 2002 by P. Mihailescu. Complete proofs are available on the Web
and at least two books are being written on the subject. We will prove this
conjecture in two parts. First, in this section we prove the classical results
of Cassels on the subject (see [Cas3]) which are essential for the final proof.
Then in Chapter 16 the reader will find Mihailescu’s complete proof of the
conjecture in an essentially self-contained form except that we will have to
assume the validity of an important theorem of F. Thaine.

First, as for FLT we may evidently restrict ourselves to the case where
m and n are prime numbers (we do not have to treat the special case n or
m equal to 4 since the conjecture is enunciated also for n =2 or m = 2). In
addition the conjecture is clearly true if m = n, see Exercise 45.

Theorem 6.11.2. Let p and q be distinct primes, and let x and y be nonzero
integers such that x? —y?=1. Thenp=2,q=3,x =23 and y = 2.
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Note that we have already proved this theorem for ¢ = 2 (see Proposition
6.7.13). We will prove it for p = 2 below (see Theorem 6.11.8).

Since we can write y? = (z — 1)((z? — 1)/(z — 1)), we can expect as usual
that each factor on the right will be close to a gth power. Indeed, first note
the following,.

Lemma 6.11.3. Let p be prime, let x € Z be such that x # 1, and set
rp(z) = (2 —1)/(z - 1).

(1) If p divides one of the numbers (x — 1) or rp(x) it divides both.

(2) If d = ged(z — 1,7p(x)) thend =1 or d = p.

(3) Ifd=p and p > 2, then rp(z) = p (mod p?).

Proof. Expanding r,(z) = ((# — 1+ 1)» — 1)/(z — 1) by the binomial
theorem we can write

_ p—1 _ - p _1)k—1
R R M (WY )

=1

and all three results of the lemma immediately follow from this and the fact
that p | (,%,) for 1 <k < p— 2. Note that (3) is trivially false for p=2. O

Corollary 6.11.4. Let (2,y,p,q) be such that xP—y? = 1. Then ged(rp(x), z—
1)=pifp|y and ged(rp(z),z — 1) = 1 otherwise.

Proof. Since y? = (z — 1)rp(z) it follows that p | y if and only if p divides
either z — 1 or r,(z), hence by the above lemma, if and only if ged(r,(z), z —
1) =p. |

The fundamental result of Cassels is the following.

Theorem 6.11.5 (Cassels). Let p and g be primes, and let x and y be
nonzero integers such that P —y?=1. Then p |y and q | z.

Thus the case ged(rp(z), 2 — 1) = 1 of the above corollary does not hap-
pen. The proof of this theorem is the object of the next subsections, but we
immediately give the most important consequence.

Corollary 6.11.6. If x and y are nonzero integers and p and q are odd
primes such that x? —y? = 1 there exist nonzero integers a and b, and positive
integers u and v with ¢{u and ptv such that

z=gqgbu, x —1=p?tal,

= ’Uq
7 —1 pv7,

y?+1

yr1 o

y =pav, y+1=q"""bP,
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Proof. Since p | y, by the above corollary we have ged(rp(z),z — 1) =
p, so by Lemma 6.11.3 (3) we have rp(z) = p (mod p?), and in particular
vp(rp(x)) = 1. Thus the relation y? = (z — 1)rp(z) implies that there exist
integers a and v with p { v such that  — 1 = p?'a?, r,(z) = pv?, hence
y = pav, and since r,(x) > 0, we also have v > 0. This shows half of the
relations of the theorem, and the other half follow by symmetry, changing
(z,y,p,q) into (—y, —z,q,p) and noting that p and ¢ are odd. O

6.11.2 The Theorems of Nagell and Ko Chao

Since by Proposition 6.7.13 we know that the equation zP? — y? = 1 has
no solutions with zy # 0 for ¢ = 2, we may assume that ¢ # 2. The first
important step, due to Nagell, is to prove Theorem 6.11.5 for p = 2. This
will enable us to finish the proof of Catalan’s conjecture in that case (or,
equivalently, of the equation y? = z™ + ¢ with ¢t = 1).

Proposition 6.11.7 (Nagell). If z and y are nonzero integers and q is a
prime such that 2> —y? =1 then 2|y and q | z.

Proof. As already mentioned, we may assume that ¢ # 2, and since zy # 0,
we have y > 0 and we may assume z > 0. If y is odd, then z is even, hence
2 —1 and z + 1 are coprime, and since (z — 1)(z + 1) = y? this means that
z — 1 and  + 1 are both gth powers, which is impossible since two distinct
gth powers cannot differ by 2. Thus 2 | y.

Assume by contradiction that ¢ { z. From the equality z?> = (y +
Dre(—y) = (y+ 1)((y? + 1)/(y + 1)) and Lemma 6.11.3, we deduce that
y+1and (y?+1)/(y+1) (which are positive) are both squares, so we write
y+1=2a% (y?+1)/(y +1) = b2 hence x = ab, with a > 0, b > 0. In
particular, since y # 0, y is not a square.

On the other hand if & = z + y{~V/2 /5 € Z[,/y], then the norm of « is
equal to 1, and « is an algebraic integer, so it is a unit of the order Z[,/y].
By Proposition 6.3.16 we know that the group of units of a real quadratic
order is equal to {#1} times an infinite cyclic group. Furthermore ¢ = a+/y
is clearly a fundamental unit (i.e., a generator strictly greater than 1 of the
infinite cyclic group): indeed, let €9 = u + v,/y be the fundamental unit, so

that & = e for some k. Then g9 — g9 = 2v/7 divides § — ek = 2,/7, hence
v|1,s0 v =1 and € = g as claimed. It follows that there exists £ > 0 such
that

z+y Y2 g = (a+ ).

We first reduce this equation modulo y. We obtain z = a* + ka*~1/y
(mod yZ[,/y]), in other words y | a* — z and y | ka*~', and since y and
a are coprime, y | k. Since y is even, it follows that & is even.

We now reduce the above equality modulo a, using x = ab = 0 (mod a),
and y = a®— 1 = —1 (mod a), so we obtain (—1)(~1/2 /5 = yk/2 = (—1)k/2
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(mod aZ[,/y]), in other words a | 1, so a = 1, contradicting the assumption
y#0. O

We can now easily prove the theorem of Ko Chao (see [Ko]), using a proof
due to E. Chein.

Theorem 6.11.8 (Ko Chao). If q is prime there are no nonzero solutions
to the equation x*> — y? = 1 apart from (z,y) = (£3,2) for ¢ = 3.

Proof. We may clearly assume q # 2. Furthermore, we have proved in
Corollary 6.5.3 that there are no solutions for ¢ = 3 apart from the given
ones. We may thus assume that g > 5. By Nagell’s result, we know that x is
odd, and we may of course assume x > 0. Choose ¢ = £1 such that x = ¢
(mod 4). As in the proof of Corollary 6.11.6 the equality (z —&)(z +¢) = y?
with vy(z +¢) = 1 implies that there exist positive integers a and b such that
r—¢=29"1a? and x+¢ = 2b%. Since ¢ > 5 we have a? = (b7 —¢) /2972 < b4,
hence a < b. On the other hand we have

b2 — (2ea)? z+e\’ -3¢\’
2 _9a)— " — p29_ (92¢q)? = —%(r—¢) = .
(b* —2¢a) 2 %ea b°? —(2za) ( 5 ) e(x—e) ( 5 )

By Nagell’s proposition above, we know that ¢ | z. Since ¢ > 5, it follows that
g1 (z—3¢)/2, hence by Lemma 6.11.3 the two factors on the left are coprime,
hence are both squares. However since we have seen above that a < b, and
a > 0, we have

(b—1) =0 -2b+1<b*-2a<b><b?>+2a<b>+2b+1=(b+1),

which shows that b> — 2ea cannot be a square, a contradiction. O

6.11.3 Some Lemmas on Binomial Series

Before proceeding to the proof of Cassels’s theorem below we need an arith-
metic result and two analytic results. The arithmetic result is the following.

Lemma 6.11.9. Set w(j) = j + v,(j!). Then q*\¥ (”;q) is an integer not
divisible by q, and w(j) is a strictly increasing function of j.

Proof. By Lemma 4.2.8 (2) (a) and (c), we know that (”éq) is an (-adic

integer for ¢ # ¢, and that its g-adic valuation is equal to —w(j), proving the
first assertion. Since w(j + 1) —w(j) = 14+ vy(j + 1) > 1 the second assertion
is also clear. O

The first analytic result that we need is the following.

Lemma 6.11.10. (1) For all z > 0 we have (z + 1) log(z + 1) > zlog(z).
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(2) Let b € Rsq. The function (b* + 1)1/t is a decreasing function of t from
Rso to Rso and the function (b* — 1)/ is an increasing function of t
from Rsg to Rg.

(3) Assume that ¢ > p € Ryg. If a € Ry then (a? + 1)P < (a? +1)? and if
a € Ry then (a? — 1)P > (a? — 1)4.

Proof. Since log(x) is an increasing function of z and log(z + 1) > 0 we
have (z + 1)log(z + 1) > zlog(z + 1) > xlog(z) so (1) is clear. For (2), we
note that for ¢ = +1 the derivative of the logarithm of (b* + €)'/t is equal
to btlog(bt) — (b* + &) log(b! + &) which has the sign of —¢ by (1), so (2)
follows. Applying the first inequality of (2) to t = p and t = ¢, we deduce
that (a? + 1)1/7 < (a? 4+ 1)'/?, giving the first inequality of (3) for a > 1,
and the second follows similarly. Note that the first inequality of (3) is also
trivially true if a = 1. O

The second analytic result that we need is more delicate.

Lemma 6.11.11. Assume that p > q, set F(t) = ((1 + t)P — tP)1/9, let
m = |p/q| + 1, and denote by F,,(t) the sum of the terms of degree at most
equal to m in the Taylor series expansion of F(t) around t = 0. Then for all
t € R such that t| < 1/2 we have

|t|‘m+1

IF() = (8] < s -

Proof. Set G(t) = (14t)P/4. It is clear that the Taylor coefficients of F'(t)
and G(t) around t = 0 are the same to order strictly less than p, and in
particular to order m since m < p/3 + 1 < p (since p > 5). In what follows,
assume that |t| < 1. By the Taylor-Lagrange formula applied to the functions
/¢ and G(x) respectively there exist ¢; and t2 such that

|F'(t) = F(8)] < |[F(t) = G(B)] + |G (2) — F(2)]

[t 1

g Hgt/amt pymil___— _qmt)(y
g ! + 1t (m+1)! (t)

[t 171 p/q e
il t m—+1 1+ ¢ p/qg—m—1
q 1 +| | +1 ( + Z) ’

IN

with ¢; between (1 + ¢)? and (1 + t)? — ¢?, and ¢, between 0 and ¢. Now
note that p/¢g < m < p/g+1, sothat —1 < p/g—m < 0 and for all j > 1
0<p/g—(m—j)=j—(m—p/q) <jhence

o< JI ®wa-m-in< I[ i=m.

1<j<m 1<j<m

It follows that
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‘( p/q )‘ _ (m —p/q) ngjgm(p/q— (m —j)) < 1

m+1)| m+1 m! Sm+1

Since 1/¢ — 1 < 0 and p/g — m — 1 < 0 we must estimate ¢; and 1 + ¢2
from below. If ¢ > 0 both (1 + ¢)? and (1 + )P — t? are greater than 1, so
t1 >1>1—tP. ¢t <0then (1+¢)? = (1—[¢)? and (1+¢)? —tF =
(1 —|t)? + |t|P > (1 — |t])?, so that ¢, > (1 — [¢|)P in all cases. On the other
hand we have trivially |1+#,| > 1—|¢|. Putting everything together we obtain

|t[” |t

F@t)-F, < (1- —p+p/aq 1— p/g—m—1
|F'(t) @)l . (L —1¢)) + m+1( [t])

The above inequality is valid for all ¢ such that |¢t| < 1. If we assume that
|t| < 1/2 then [t[P~™ ! < (1 — [t])P~™ ! (since m < p— 1), hence [t[P(1 —
[t])~P+P/a L || H (1 — |¢|)P/9-m L. Tt follows that

1 1
F(t) = Fp(t)| < ( = + —— ) [t|™"' (1 = g)P/a—m" .
PO = P01 < (5 + 0 ) ™0 = 1)
Since p/g—m —12> —2 and 1/¢+ 1/(m + 1) < 1 the lemma follows. O

6.11.4 Proof of Cassels’s Theorem 6.11.5

We now prove Cassels’s theorem saying that if p and ¢ are primes and x? —
y? = 1 with 2y # 0 then ¢ | z and p | y. We have already seen that the
case p = q is impossible. By Proposition 6.7.13 the case ¢ = 2 is impossible,
and Nagell’s Proposition 6.11.7 is the special case p = 2 (in fact in this case
Ko Chao’s Theorem 6.11.8 shows that the only nontrivial solutions occur for
(z,y) = (£3,2) and ¢ = 3). We may thus assume that p and ¢ are distinct
odd primes. It is then sufficient to prove that p | y since when p and ¢ are
odd we can change (p, ¢, z,y) into (¢,p, —y, —z). The proof of Theorem 6.11.5
will be done by considering separately the cases p < q and p > q. We begin
by the case p < ¢ which is considerably simpler.

Proposition 6.11.12. Let © and y be nonzero integers and p and q be odd
primes such that 2P —y? = 1. Then if p < q we have p | y.

Proof. Assume on the contrary that pty. It follows from Corollary 6.11.4
that  — 1 and rp,(x) are coprime, and since their product is a gth power,
they both are. We can thus write  — 1 = a? for some integer a, and a # 0
(otherwise y = 0) and a # —1 (otherwise z = 0), hence (a? + 1)? —y7 = 1.
Consider the function f(z) = (a?+1)? —2%—1, which is trivially a decreasing
function of z. Assume first that a > 1. Then f(a?) = (a9+1)?—a??—1 > 0 by
the binomial expansion, while f(a? +1) = (a?+1)? — (a? +1)7—1 < 0 by (3)
of Lemma 6.11.10. Since f is strictly decreasing it follows that y which is such
that f(y) = 0 is not an integer, a contradiction. Similarly, assume that a < 0,
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so that in fact a < —2, and set b = —a. Then since p and ¢ are odd f(a?) =
(a4 1) —aP? —1=—((b? — 1)? — b*? + 1) > 0 by the binomial expansion,
while f(a? +1) = (a?+1)P — (@’ +1)1 —1 = —((b¢ = 1)P — (b —1)7+1) < 0
again by (3) of the Lemma 6.11.10 since b > 1. Once again we obtain a
contradiction, proving the proposition. O

The following corollary, essentially due to S. Hyyr6, will be used for the
case p > q.

Corollary 6.11.13. With the same assumptions as above (and in particular
p < q) we have |y| > p?~ ! + p.

Proof. Since by the above proposition we have p | y, as in Corollary 6.11.6
we deduce that there exist integers a and v with a # 0 and v > 0 such
that £ — 1 = p?~taP, (z? — 1)/(z — 1) = pv? and y = pav. Set P(X) =
XP —1—p(X —1). Since P(1) = P'(1) = 0, it follows that (X —1)? | P(X),
hence that (z — 1) | (z? —1)/(z — 1) —p = p(v? — 1). Since p? 1 | z — 1
it follows that v¢ = 1 (mod p?~2). However the order of the multiplicative
group modulo p?~2 is equal to p?~3(p — 1), and since ¢ > p this is coprime
to ¢. As usual this implies that v = 1 (mod p?~—2).

On the other hand, I claim that v > 1. Indeed, assume otherwise that
v = 1, in other words P ' +--- 4+ 2+ 1 = p. If z > 1 then 2?71 > p
so this is impossible. Since p and ¢ are odd primes and a # 0 we have
|z — 1| = p?t|a|P > 9, hence when z < 1 we must have in fact z = —z > 8.
But then since p — 1 is even we have

p=2P =P p 12 P (e —1) 2P 20

a contradiction which proves my claim. Since v = 1 (mod p?~2), it follows
that v > p?~2+1, hence |y| = pav > pv > p?~! +p, proving the corollary. O

We now prove the more difficult case p > ¢ of Cassels’s theorem.

Proposition 6.11.14. Let © and y be nonzero integers and p and q be odd
primes such that P —y? = 1. Then if p > q we have p | y.

Proof. We keep all the notation of Lemma 6.11.11 and begin as for the
case p < ¢ (Proposition 6.11.12): assuming by contradiction that p t y and
using Corollary 6.11.4, we deduce that there exists a € Z \ {0} such that
z —1=af, hence y? = (a? + 1)? — 1, so that y = a?F(1/a?). Thus if we set
z=am1"Py—a™F,,(1/a?) we have z = a™1(F(1/a?) — F;,(1/a%)). Applying
Lemma 6.11.11 to ¢t = 1/a? (which satisfies |¢| < 1/2 since a # £1) we obtain

la? 1 1
lajt —1)2 = Jal1 =2 7 |2[ -3

|z|<(

By Taylor’s theorem we have t™Fn(1/t) = > ocicm (péq)tm_j, and by

Lemma 6.11.9 D = ¢™*% (™) ig 3 common denominator of all the (péq)
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for 0 < j < m. It follows that Da™4F,,(1/a%) € Z, and since mq > p that
Dz € Z. We now estimate the size of Dz. By Hyyrd’s Corollary 6.11.13 (with
(p,q,z,y) replaced by (¢,p, —y, —)) we have |z| > ¢~ + ¢ > ¢~ + 3, so
by the above estimate for |z| we have

D

< gmHva(mh)—(p—1)
2 =3 8¢

D2 <

Now for m > 1 we have vy(m!) < m/(qg — 1), and since m < p/q + 1 we have

1):3-%p;f¥q—%

m+vq(m!)—(p—1)<m—qzl—(p— <0
since ¢ > 3 and p > 5 (note that it is essential that the above inequality be
strict). Thus |Dz| < 1, and since Dz € Z, it follows that Dz = 0. However

note that
Dz = Da™% Py — Z D (p/.q) adlm=3) |
ogjsm J

and by Lemma 6.11.9 we have

o ((19) <= ((29) -

for 0 < j < m—1,s0 that 0 = Dz = D(*/9) # 0 (mod ¢) by the same lemma.
This contradiction finishes the proof of the proposition hence of Cassels’s
theorem. 0

Remark. The reasoning that we have just used is a special case of Runge’s
method seen in Section 6.10 in a slightly different context.

We have seen that Corollary 6.11.6 summarizes the most important con-
sequences of Cassels’s theorem. For future reference, we note that Hyrro’s
Corollary 6.11.13 is valid without restriction on p and ¢:

Proposition 6.11.15. Let p, g be odd primes and x, y be nonzero integers
such that 2? —y? = 1. Then |z| > ¢*~' + ¢ and |y| > p?*~* + p.

Proof. Since we can change (p, g, z,y) into (g, p, —y, —z), it is enough to
prove the statement for y. If p < g, this is Hyrrd’s result. Otherwise we have
p > q, hence p > ¢ since p # q. By Cassels’s Corollary 6.11.6 we have y +1 =
g?~1b?, hence |y| > ¢! —1. I claim that when p > q we have ¢?~! > p?~—1+4p,
which will prove the proposition. Indeed, set f(z) = log(z)/(z — 1), so that

_ log(g?") —log(p?™*)
P-D-1)

The inequality to be proved is thus equivalent to f(q) — f(p) > log(l +
1/p?2)/((p — 1)(g — 1)), and since log(1 + z) < = for = > 0, this will follow

flg) — f(p)
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from the inequality f(q) — f(p) > 1/(p? 2(p — 1)(g — 1)). Now by the mean
value theorem we have f(q) — f(p) = (¢ — p)f'(c) for some ¢ €]q,p[. We
have f'(z) = —(zlog(z) — (z — 1))/(z(z — 1)?), and this is easily seen to
be strictly negative as soon as x > 1. Furthermore we easily check that
f"(z) > 0 for > 2, hence it follows that f'(q) < f'(c) < f'(p) < 0, hence
(g—p)f' (@) > (g=p)f'(c) > (g—p)f'(p) > 0 since p > q. It is thus sufficient
to prove that (¢ — p)f'(p) > 1/(p?=2(p — 1)(¢ — 1)), in other words that

(p—q)(g —Dp?*(plog(p) — (p—1))/(p(p — 1)) > 1, or

p (log(p) 1
—q)(g—1)p? 2(——— >1.
O
Now an immediate study shows that for z > 5 we have log(z)/(z—1) > 2/z.
Since p > ¢ > 3 are odd we have p > 5, hence

(p—q)(g—1)p?? (lggf(pl) - 1—17) >2(p—q)(g—1Dp?? >1

since g > 3, proving the proposition. O

6.12 Congruent Numbers

We give a short description of the congruent number problem, and refer to
the excellent book by N. Koblitz [Kob2] which is entirely devoted to that
problem.

6.12.1 Reduction to an Elliptic Curve

Recall from the introduction that a congruent number is an integer n which
is the area of a right-angled triangle with rational sides (i.e., a Pythagorean
triangle). Since an area is homogeneous of degree 2, it is clear that we can
assume without loss of generality that n is squarefree. For instance, from the
well-known (3,4,5) triangle we deduce that n = 6 is a congruent number.
Several problems can be asked about congruent numbers, but the most im-
portant are the following: give a criterion for determining whether or not a
given number n is congruent; if it is, determine a corresponding Pythagorean
triangle. Both problems are difficult, and we will say a little of what is known
on both.

Proposition 6.12.1. A number n is a congruent number if and only if there
exists a rational point on the curve y? = x(x? — n?) with y # 0. More pre-
cisely, if (a,b,c) is a Pythagorean triangle of area n, then the four points
(a(a+c)/2,a*(a%c)/2) and (b(b+c)/2,b*(b+c)/2) are points on the curve
with nonzero y coordinate, and conversely such a point (x,y) gives rise to
a Pythagorean triangle (a,b,c) of area n with a = |y/z|, b = 2n|z/y| and
c= (2> +n?)/lyl.
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Proof. The proof consists in simple verifications: if for example z = a(a +
¢)/2,y = a*(a+c)/2 and n = ab/2 is the area of the triangle, then
2 2 _ 232 3
2(z? —n?) = aa;ca (cH—cA)1 a’d’® _a (a8+ c) (@ + 2ac + ¢ — 1?)

atla+c)?
- Y

since ¢2 = a? + b%. The other cases follow by exchanging a and b and/or
changing ¢ into —c (even if this has little geometrical meaning). Conversely,
if (z,y) is a rational point on the curve with y # 0 and if a, b, ¢ are as given
in the proposition, then a, b, ¢ are strictly positive, and we have

2 y> +4 ,r?  z?—n? N 4n’zx (22 — n?)% + 4n22?
a = — n°— = =
x? y> x 2 —n? z(z? — n?)
(2 +n?)?
R

O

Thanks to this proposition, an easy computer search reveals for instance
that the integers n = 5, 6 and 7 are congruent numbers. However, the cor-
responding triangles are not as simple as the one for 6: for n = 5 we find
(for instance) the point (z,y) = (—4, 6), giving the triangle (3/2,20/3,41/6);
for n = 7 we find the point (z,y) = (—63/16,735/64), giving the trian-
gle (35/12,24/5,337/60), which is already a little more complicated. On the
other hand, a more extended computer search does not give any solution for
n =1, 2 and 3, and indeed these are not congruent numbers. However this
is more difficult and needs a proof. We simply give the example of n = 1.

Proposition 6.12.2. The number n = 1 is not congruent.

Proof. Assume by contradiction that 1 is a congruent number, so that
there exists (z.y) € Q* with y # 0 such that y? = z(2? — 1). Writing z =
p/q and y = u/v with ged(p,q) = ged(u,v) = 1, we obtain (¢*/v?)u? =
pq(p? — ¢?). Since ged(u,v) = 1, it follows that v? | ¢*, i.e., v | g2, so that
pq(p? — ¢?) is the square of an integer. Since ged(p,q) = 1, the three factors
are pairwise coprime, hence they are all three squares. Writing p = p?, ¢ = ¢%
and p? —q? = w? we obtain the equation pj —¢{ = w?. By Proposition 6.6.14,
we know that this equation has no nontrivial solutions. Since ¢ # 0 hence
g1 # 0, the only possible solution is thus with w = 0, in other words p = +¢q
hence y = 0, a contradiction. O

6.12.2 Use of the Birch and Swinnerton-Dyer Conjecture

By Proposition 6.12.1, we know that n is a congruent number if and only if
there exists a point (z,y) on the curve y2 = z(z? — n?) with y # 0. Such
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curves are called elliptic curves, and are among the most beautiful objects in
mathematics, certainly in number theory. Fermat noticed in the seventeenth
century (in another language) that such curves, considered in projective co-
ordinates, have an abelian group law, obtained simply by taking secants and
tangents though known points. This observation was strengthened by Mordell
in the beginning of the twentieth century who proved that this group is finitely
generated, in other words isomorphic to T x Z", where T is a finite group.
The group T can easily be determined. For instance for our curves it is inde-
pendent of n and always isomorphic to Z/2Z x Z /27 (the elements of T are
the three points with y = 0 together with the point at infinity of projective
coordinates (0, 1,0)). On the other hand the rank r is in general very difficult
to compute. From Proposition 6.12.1 and our assertion concerning 7', it is
clear that n is a congruent number if and only if the rank of the correspond-
ing elliptic curve is strictly positive. In particular, if n is congruent, i.e., if
there exists a Pythagorean triangle of area n, then there exist infinitely many,
obtained by taking multiples of the given one for the group law on the curve
(see Exercise 43).

Luckily, the BSD conjecture predicts that the rank r should be equal
to the order of vanishing at s = 1 of a certain natural analytic L-function
attached to the elliptic curve. Unfortunately, even this conjecture does not
answer the problem completely, although on a computer it does give strong
indications: the reason is that it is impossible to prove (except of course in
certain cases) that a certain analytic function vanishes exactly at a given
point.

There is one important special case where it does give a result. Like most
L-functions, the L-function of an elliptic curve satisfies a functional equation,
specifically of the form A(2 — s) = eA(s), where A(s) is equal to L(s) times
a suitable gamma and exponential factor, and € = £1 is the so-called sign
of the functional equation (what else?). Thus, when ¢ = —1, we know that
L(1) = 0, so that assuming the BSD conjecture we have > 0, hence n is a
congruent number. It is easily shown that when n is integral and squarefree
(which we always assume), then ¢ = —1 if and only if n = 5, 6 or 7 modulo
8. It follows that, assuming the conjecture, all of these numbers should be
congruent, and indeed, we have seen that 5, 6 and 7 are indeed congruent.

On the other hand, when £ = 1, the order of vanishing of L(s) at s =1
is even, so assuming the conjecture the rank r should be even. It is in fact
very often equal to 0, but not always. For instance we have r = 0 for n = 1,
2 or 3, so that these numbers are not congruent. On the other hand it can
be shown that we have r = 2 for n = 34, 41 and 65 for instance (and for no
other squarefree n < 100), so that these numbers are indeed congruent.

The most precise conjecture on the distribution of congruent numbers is
thus the following, where the second part comes from random matrix theory
as in the case of sums of two cubes, so is quite speculative but well supported
by numerical evidence, see [Kea-Sna).
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Conjecture 6.12.3. (1) Any squarefree integer congruent to 5, 6, or 7 mod-
ulo 8 is a congruent number.

(2) Denote by C(X) the set of squarefree integers less than or equal to X
which are congruent to 1, 2, or 3 modulo 8 and which are congruent
numbers. Then C(X) has density 0, more precisely there exists a strictly
positive constant ¢ such that

C(X) ~ cX3/*log(X)1/8

6.12.3 Tunnell’s Theorem

The congruent number problem was finally completely solved by Tunnell in
1980, up to a weak form of the BSD conjecture. For this, in addition to the
standard ingredients in the theory of elliptic curves and the related theory of
modular forms, he used modular forms of half-integral weight. In fact, we will
see in Chapter 10 that the theta function attached to a Dirichlet character
is the prototypical example of such a form. It is impossible to enter into the
details of Tunnell’s proof, but we give his result:

Theorem 6.12.4 (Tunnell). Let n be a squarefree natural number.

(1) Assume that n is odd. Then if n is a congruent number the number of
solutions in Z of n = x2 + 2y? + 822 with z odd s equal to the number of
solutions with z even.

(2) Assume that n is even. Then if n is a congruent number the number of
solutions in Z of n/2 = x2 + 4y® + 822 with z odd is equal to the number
of solutions with z even.

In both cases if a weak form of the BSD conjecture holds (more precisely if
L(E,1) =0 implies that r > 0 for the corresponding elliptic curve), then the
converse also holds.

The enormous advantage of this theorem is that it is very easy to check
Tunnell’s conditions, since we are dealing with representations by positive
definite ternary forms which can easily be enumerated. In particular, it is
easy (up to BSD) to make exhaustive tables of congruent numbers up to
any desired reasonable limit. Thus the problem is completely solved, except
of course that we must wait for the solution to the BSD conjecture to be
absolutely sure. Note that this is one of the most beautiful and important
conjectures in all of mathematics, and that a 1 million dollar Clay prize has
been offered for its solution (see also Section 10.6).

For instance, we see from Tunnell’s result what was already expected from
the BSD conjecture, i.e., that the (squarefree integral) congruent numbers less
than or equal to 100 are the numbers congruent to 5, 6 or 7 modulo 8 together
with the three numbers n = 34, 41 and 65.

In the following table, which does not depend on BSD since in the range
of the table we only have curves of analytic rank 0 or 1 or of proven rank 2
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or 3, the entry in row numbered R and column C' (with C going from 1 to
64) gives the rank of the elliptic curve corresponding to n = R + C, so that

n is congruent if and only if the entry is at least equal to 1.

O OONWOOFONWOTH ONWOTHONOOFONOOFONOOF
OANDNLONOF =HIN-F O LOMNNON LD OO FH O NM OO NDLOND
=AM FHLOLOON MO0 O O NN M FHLOWWONN 0N
e e e e

Congruent Numbers up to n = 2048
In most cases, the reason for which the Diophantine equations are un-
solved is that they reduce to finding rational points on curves or higher di-
mensional varieties which are of general type, in a suitable sense. For curves,

For many other such problems, we refer to the vast literature on the
subject, for instance the books by Mordell [Mor] and Guy [Guy]. Note that

we do not mention other well-known problems such as Waring’s problem,

Evidently there are infinitely more unsolved Diophantine problems than there
are solved ones, and we have already mentioned a few. We recall them here,
and add a couple more. They all have some aesthetic value, and many people

have tried to solve them.
are of quite a different nature and are not tackled using the tools developed

Goldbach’s conjecture, or the twin prime conjecture, since these problems
in this course.

6.13 Some Unsolved Diophantine Problems
means surfaces of general type. We have no algorithmic way of searching for

this means curves of genus greater than or equal to 2, for surfaces it really
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the complete set of points except in very special situations. On the other
hand, if the Diophantine problem reduces to finding rational points on more
special kinds of varieties, for instance curves of genus 1 or K3 surfaces, then
even though we do not have real algorithms for finding rational points, we
do have a lot of available methods.

Here is a small list, including some that we have already mentioned.

(1) Show that the quadratic forms 2? +2y%+522+ 22, % +3y*+622+ 1y +2y2,
and 22+ 3y% 4722+ 2y +x2 represent all odd positive integers (see Section
5.4.3). It is known that they represent all sufficiently large odd integers,
but the bound is ineffective.

(2) Show that any squarefree integer congruent to 4, 6, 7, or 8 modulo 9 is a
sum of two cubes of elements of Q (Conjecture 6.4.18).

(3) Show that an integer n is a sum of three cubes of integers if and only
if n £ 4 (mod 9) (it is clear that this latter condition is necessary). In
addition show that there are infinitely many representations, in other
words that if n # 4 (mod 9) the Diophantine equation z° + ¢ + 2% = n
has infinitely many integer solutions (Conjecture 6.4.21).

(4) Prove that every integer is a sum of four cubes of integers, in other words
that for all n the Diophantine equation z3 + 33 + 23 + 3 = n has an
integer solution (Dem’janenko’s Theorem 6.4.25 shows that this is true
when n Z £+4 (mod 9)). In fact, show that it has an integer solution with
t = z, in other words that the equation 223 + y> 4+ 22 = n has an integer
solution (Conjecture 6.4.23).

(5) Prove that any squarefree integer n congruent to 5, 6, or 7 modulo 8 is a
congruent number, in other words that the equation y2 = 23 —n22 has a
solution in rational numbers with y # 0 (Conjecture 6.12.3). This would
follow from the Birch and Swinnerton Dyer conjecture, in fact from a
weak form of it.

(6) The rational cuboid problem: does there exist a rectangular parallelepiped
all of whose sides, face diagonals and main diagonals are rational? In other
words, does there exist nonzero rational numbers a, b and ¢ such that
a® + b2, a® + 2, b + ¢ and a® + b2 + ¢? are all rational squares? The
answer is positive if any one condition is dropped: for instance (a, b, ¢) =
(44,117, 240) satisfies the first three conditions but not the fourth, and
(a,b,c) = (117,520, 756) satisfies the first, second, and fourth conditions,
but not the third.

(7) The 4/n problem: is it true that for any integer n > 1 there exist positive
integers a, b, and ¢ such that 4/n = 1/a + 1/b + 1/¢? Note that it is
very easy to find arithmetic progressions of n for which this is true other
than the set of multiples of a given integer (for instance n = 3k + 2),
that the number of counterexamples has asymptotic density zero, that
the smallest counterexample, if any, is necessarily a prime number, and
that for a given n there seems to be a large number of solutions a, b, ¢,
see Exercise 46. The problem is that we do not know how to prove that
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this large number is at least equal to 1! See Exercise 48 for a very similar
but much easier problem.

6.14 Exercises for Chapter 6

1.

(a) Solve the Diophantine equation y? = (z 4+ 1) — z® in integers.
(b) Solve the Diophantine equation (z —)® = z* — y® by reducing it to the above
equation.

2. Prove that for any positive integer n there exists z, y, and z such that n =
z? + y2 + 23

3. Let C be the curve y*> = z° 4+ t with £ > 3 prime. Compute |C(F,)| in charac-
teristic 2 and £ and when ¢t = 0 in F,.

4. Show that, as stated in the text, the general integral solution to az + by +
cz = 01is ¢ = mb/ged(a,b) — Lef ged(a, ), y = ke/ ged(b, ¢) — ma/ ged(a, b),
z = La/ ged(a, ¢) — kb/ ged(b, ) for any integers k, £ and m.

5. Consider the parametrization given by Proposition 6.3.6. It is quite trivial to see
how to obtain the values of s, t and d corresponding to the solutions (zo, —yo, 20)
and (—zo, Yo, 20)-

(a) Find the values for s, t and d (which are unique up to a simultaneous change
of sign of s and t) corresponding to the point (xo,yo, z0) itself.

(b) More generally, if (z,v, 2) is a solution of Az? + By? = C2* with the parame-
ters s, t and d, find the corresponding parameters for the solutions (—z,y, z),

(x: -Y Z) and (.’L‘, Y, _z)'

6. Using the particular solution (1,0,1) to the equation z? + Ny® = 2%, give a
complete family of disjoint parametric solutions to this equation. It will be
useful to distinguish the cases N odd, N = 2 (mod 4), 4 | N with v2(N) even
and finally 4 | N with v2(N) odd.

7. Prove that the general integral solution of 2> + > = 22 with z and y coprime
is given by x = (5% + 2st — t?), y = £(s? — 2st — t?), z = +(s> + t?), where s
and t are coprime integers of opposite parity and the =+ signs are independent.

8. Let @ be an indefinite quadratic form, and with the usual Gram—Schmidt no-
tation assume that |p; ;| < 1/2 for all j < i. Show that |(b} + pii—1bj_1)?| >
(1/7 + 1/4)|(b;_1)?| implies |(b})?| > (1/7 + 1/4 — pf;1)|(bi_1)?|, but that
the converse is not necessarily true.

9. Let C be a cube of side a in Euclidean three-space R®. Assume that all the
vertices of C' have coordinates in Z>. Translating C, we assume that one of its
vertices is at the origin, and we denote by (z;,y;, z;) the coordinates of the 3
vertices of C' adjacent to the origin.

(a) Let ]\t/I be the 3 x 3 matrix whose rows are the (z;,y;, z;). Compute explicitly
MM?*.

(b) For 1 £ j < 3 let a; be the complex number o; = z; + 4y;. Deduce from (a)
that af + o3 + o3.

(c) Find the general solution to the equation z? 4+ y? 4+ 2> = 0 in the Euclidean
ring Z[i], generalizing Corollary 6.3.13.

(d) Deduce finally a parametrization of triples ((z1,y1), (z2,¥2), (z3,¥3)) of points
in Z? which are the orthogonal projections of cubes C as above.
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(e) Give a few numerical examples of such triples.

10. Let D be a nonsquare integer (in fact rational number is sufficient). Prove that
the general rational solution to the Diophantine equation x> — Dy® = 1 is given
by £ = +(s>+ D)/(s> — D), y = 2s/(s> — D) for s € Q.

11. Let f(X) = anX™ + -+ + ao € Z[X] be a polynomial with integer coefficients,
an #0 and ag # 0. If ¢/d € Q is a root of f(X) = 0 with ged(c,d) = 1, show
that d | a, and ¢ | ao.

12. Let S be the cubic surface with affine equation z* + y® + 2% = 10, on which
there is the evident point P = (1,1, 2).

(a) In view of Manin’s conjecture 6.4.1, using tangents at the point P find a two
parameter family of rational points on S.

(b) Show that none of these points (except the point P) have all three coordinates
strictly positive.

(c) By iterating the processs starting from one of the new rational points, find
a rational point on S with strictly positive coordinates other than (1,1,2),
(1,2,1) and (2,1,1).

13. Show that the equation 2723 +2y3+32% = 0 has no solutions with x, y, z integers
such that gcd(y, z) = 1, although the equation x>+ 23+ 32 = 0 has an infinity
of rational solutions (you may need to use the chapters on elliptic curves for
this). This shows that the cubefree condition in Lemma 6.4.3 is necessary.

14. Show that an immediate corollary of Theorem 6.4.5 is the following: the equation
z® + cy® + ¢2® = 0 has no solutions in nonzero integers when ¢ = 1, 9, p or p?
with p = 2 or 5 modulo 9, except for ¢ = 4 where it has the unique solution
(z,y,2) = (—2,1,1) (up to multiplication by a constant), and it has no solutions
with 3 | z when ¢ = p or p? with p = 8 (mod 9).

15. (Taken from [Cas2].) Let p and g be prime numbers such that p = 2 (mod 9)
and ¢ = 5 (mod 9), and let ¢ = pq. Theorem 6.4.5 (3) asserts that the equation
22+ 9% +c2® = 0 does not have any solutions with 3 | z. The aim of this exercise
is to show that it does not have any nontrivial solutions at all. For this, let p
be a primitive cube root of unity, and set A = p — p~' = /—3. We will show
more generally by descent that our equation has no solutions in Z[p]. Without
loss of generality, let (z,y, z) be a pairwise coprime solution to our equation in
Z[p] with |zyz| minimal.

(a) By factoring our equation, show that there exist elements «, 83, 7, u, v, and w
in Z[p] with u, v, and w pairwise coprime, such that either

‘e +py=yw®, aBy=c, or

1

s+y=ou’, pr+ply=pv°, p°

g+y=Xav’, pr+p ly=AB’, plz+py=XIw’, afy=c,
and hence au® + Bv® + yw® = 0 and afy = ¢ in both cases.

(b) Noting that we may multiply simultanously z, y, and z by any unit, show that
without loss of generality we may assume that (a,3,7) is a permutation of
(£1,£1,+¢) or of (£1,+p, +q).

(c) As in the proof of Theorem 6.4.5 (3), prove that u®+pv®+qw® = 0 (mod 9Zp])
is impossible with u, v, and w pairwise coprime.

(d) Prove that |uvw| < |zyz|, and hence deduce by descent that our equation
z® + 42 + ¢2® = 0 has no nontrivial solutions.
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Show that one can give a more general theorem than Theorem 6.4.12 by re-
placing condition (1) by ¢ Z £1 (mod 9) and 3t f (recall that this is automatic
if ¢ = £3 (mod 9)), removing condition (3), and finally replacing condition (4)
by the following: for every suitable divisor b of b there exists a generator « of b®
such that if we set ae’ = 2§ + 20 + 2576? with ) € Q then for all j such

that 0 < j < 2 we have v3(z{)) = 0 when e = 1, or v3(x§”2 —4z{z) =0
when e = 2.

However, show that if the equation az® + by® + cz® = 0 is everywhere locally
soluble, then the above result is not stronger than Theorem 6.4.12 (in other
words conditions (1) and (3) of that theorem are satisfied), hence the result of
(a) cannot give additional examples of failure of the Hasse principle.

Keep the assumptions of Lemma 6.4.6, but in addition assume that ¢ Z +1
(mod 9), and write ¢ = ¢1¢3 with ¢1 and c2 coprime and squarefree.

Show that f = c2 and that 1, 8, §2/f is a Z-basis of Z k.

Deduce that if m | (uo + 110 + u20?)Z k then m | ged(uo, u1, fusz).

If 23 + by + cz®> = 0 with b and ¢ cubefree, x, ¥y, # pairwise coprime and
¢ # %1 (mod 9), show that with the notation of Lemma 6.4.9, for every m |
bo = bZx/b1 we have m® | b, m | f and for every prime p | m then ¢/b is a
nonzero cube modulo p.

It follows that by using this as a new definition of suitable divisor of b, Theorems
6.4.10 and 6.4.12 are still valid. However, as in the preceding exercise show that
if the equation is locally soluble this cannot give any additional examples of
the failure of the Hasse principle.

In most results on the equation z® 4 by® + cz® = 0 given in the text we have
assumed that ¢ Z £1 (mod 9). Assume now that ¢ = +1 (mod 9). With the
notation of the preceding exercise it can be shown that 1, 8, (8% +cf+c3)/ (3022
is an integral basis of K, hence that f = 3¢z, and that 3 ramifies as 3Z x = p1p3
with p1 # p2 (see for instance Sections 6.4.3 and 6.4.4 of [Coh0]). Let z, y, z
be pairwise coprime integers such that z® + by® 4+ cz® = 0, where b and ¢ are
assumed cubefree.

Show that if we replace the assumption ¢ Z £1 (mod 9) by 3 { y the conclusion
of Theorem 6.4.10 and Proposition 6.4.11 still hold. In other words if we make
this replacement and keep the other assumptions, then if z3 + by® + c2® = 0
with z, y, z pairwise coprime we must have 3 | y.

Assume now that 3 | y, hence that ¢ = £1 (mod 9). Show that there exist
integral ideals a; and b; such that LZ x = pip2b1a3, QZx = p1p3b2ad, biby =
bZx, arazp1p2 = yZk, ged(ar, 02) = Zk, ged(LZk, QZK) = pipz ged(by, b2),
p2 )( a1b1, and p1 )( azbo.

In addition show that the ideal b; is a suitable divisor of b such that p2 { b1
and p;1 { by = bZx/b1.

Deduce that Theorems 6.4.10 and 6.4.11 are still valid if we modify the defini-
tion of suitable divisor b by adding that p> { b and p1 t bZ k/b.

Although this is slightly stronger than the results given in the text, does this
give any additional examples of the failure of the Hasse principle? (I do not
know the answer to this question.)

Prove that if the assumptions of Theorem 6.4.12 on c¢ are satisfied, in other
words if ¢ Z £1 (mod 9) and ¢ Z 0 (mod 9) (this last condition being in fact
unnecessary), if the exponent of the class group of K = Q(cl/ %) is equal to 1 or
2 and if the fundamental unit € of K is such that ¢ = +1 (mod 3Z k), then in
fact ¢ = £3 (mod 9).
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20. Prove Proposition 6.4.17 by writing 2* + ¢ = (z + y) (2 — zy + 3°).

21. Find parameters d, s, and ¢ in Proposition 6.4.26 giving the solution (w, z,y, 2) =
(1,6,8,—9) to w* + 2 + y* + 2* = 0.

22. Let (a1, a2, a3, aq) be four integers satisfying a? +a3 +ad +al = 0 with a; # —a;
for any (i, 7).

(a) Show that there exist a (partial) parametrization of w® + 22 4+ 3® + 2% = 0 of
the form

2 2 2 2

(w, 2,9, 2) = (a1u” + buv — azv”,a2u” — buv — a1v”,
2 2 2 2
asu” + cuv — aav”, aqu” — cuv — azv”)

with b and ¢ rational numbers (not necessarily integers) if and only if P =
—(a1 + a2)(as + a4) is a square, and express b and c¢ as a rational function of
the a; and of the square root of P.

(b) Find the parametrizations coming from the integral solutions (3, 5,4, —6) and
(1,—9,—10,12), and show that (1,6,8, —9) (in any order) does not give rise to
any such parametrization.

(¢) By considering the integral solution (12,86,159, —167), show that b is not al-
ways an integer (when b or c is not an integer one can multiply the a;, b and ¢
by a common denominator of b and ¢ to obtain an integral parametrization).

(d) Give a complete parametrization of (a1, az, a3, a4) such that a +a3 +a3+a =
0, P a square and b = —a1, ¢ = —as, and deduce that there exist an infinity of
parametrizations as in (a).

23. Find all integral solutions to the Diophantine equation y* = &3 + 16.
24. Let K be a quadratic field and let o € Zk.

(a) Assume that K is an imaginary quadratic field of odd class number and different
from Q(4). Show that aa is a square in Z if and only a = n8> for some n € Z
and B € Zg, thus in particular proving Lemma 6.5.6.

(b) How must this statement be modified if K is real quadratic of odd class num-
ber?

(c) Give examples showing that the result is false if K = Q(i) or if K does not
have odd class number.

25

(a) Find an analogue of Corollary 6.6.3 for everywhere local solubility in every com-
pletion of K = Q(3), with 4> = —1 (show for instance that the local condition
at 2is ¢ =1, 2, or —3 modulo p3, where p» = (1 4+ 4)Z k).

(b) What about the field K = Q({s) generated by a primitive 8th root of unity?

26. Using a descent method, find all coprime integer solutions to the Diophantine
equation z* + y* = 2z%.

27. Using Corollary 6.6.10 prove that the equation z* +y* = ¢ with ¢ = 7361 has no
rational solutions, although it is everywhere locally soluble by Corollary 6.6.3,
and although the groups E.(Q) and F.(Q) have rank 2.

28. It follows from Proposition 5.7.3 and its proof that the equation 2y* = z* — 17
is everywhere locally soluble, but not globally soluble. The aim of this exercise
is to give an alternate proof of this last fact.

(a) Prove that if z, y is a rational solution, there exist a, b, and ¢ in Z such that
z=ajc,y=>b/c", ged(a,b,¢) =1, and

(5a” + 17¢% + 4b)(5a” + 17¢* — 4b) = 17(a” + 5¢°)” .
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(b) Show that p = 2 is the only prime which can divide both factors on the left.
(c) Deduce that for a suitable choice of signs and e = 1 or 2, there exist u and v
in Z such that

5a° +17¢° £ 4b = 17ew’, 5a° +17¢ F4b =ev®, and a’ + 5¢° = ewv

(d) Show that there does not exist any solution of these equations in Q;7, hence
that our initial equation has no global solution.

29. Generalize Exercise 28 as follows. Assume that ¢ is a sum of two squares, say
¢ = ¢} + c}. Using the identity

(ca® + cod® + c1b)(ca® + cod® — c1b) = c(coa’® + d*)?

already used in Exercise 28, give sufficient conditions for the equation y? =
cz* — 1 to have no rational solutions (hence for the equation z* + 3> = cz* to
have no nontrivial integer solutions.

30.

(a) Show that the equation z®+2y®4+42° = 0 (mod 11) has no nontrivial solutions,
although 11 apparently has nothing to do with the exponent or the coefficients.

(b) Show that if p { ABC and p > 11 the equation Az® + By® + Cz° = 0 has a
nontrivial solution in Z,.

31. Generalizing Propositions 6.7.3, 6.7.5 and 6.7.8, find the integral solutions to
the Diophantine equation y? = xP + 4t for general p, then for p = 3 and p = 5,
with the same assumptions on ¢ as in the above propositions. As an example,
find all the integral solutions to 3> = x> — 4.

32. Assume H(p,t). Prove that if a € A,(t) then |a| < pv/—%/7, hence that apart
from the special solutions, if (z,y) is a solution to y* = 2P +t we have z = a* —t
with |a| < py/—t/7. Hint: write the defining equation for A,(t) in terms of
6 = atan(\/—t/a).

33. Assume H(p,t). Looking now also at 3-adic valuations and using a similar
reasoning to the preceding exercise, prove that if ¢ is congruent to 3, 12, 15,
21, or 24 modulo 27 and not congruent to —1 or 3 modulo 16, or when t = 14
(mod 24) there are no integer solutions to the Diophantine equation y? = P +1
(for these two exercises, see [Cohn1] if you need help).

34. Give explicitly 6 gresp., 16) integral points (x,y) € Z? satisfying the Diophantine
equation y* = z° + ¢ for t = —39 (resp., t = 17). Note that in these cases, we
have t = 1 (mod 8) (and even ¢t > 0 in the second). Using the techniques of
Section 8.7, one can show that there are no other solutions.

35.

(a) Prove that the only roots of unity of the form (a + v/t)/(a — V) with a # 0
obtained for a = +1 when ¢t = —1, and for a = £+1 or ¢ = +3 when ¢t = —3.

(b) With the notation of the proof of Corollary 6.7.12, prove that if p > 7 we have
|up(a + vt,a —+/t)| > 1 for the above values of t and a.

36. Assume H(p,t). Using a similar reasoning to that of Proposition 6.7.13, prove
that if t = 3 (mod 4) with va(t+1) odd the equation 4> = 2P +t has no integral
solutions.

37. Prove Theorem 6.8.3 (1) by considering separately the cases n = 1 (mod 4),
n =3 (mod 4), n =0 (mod 6) and n = £2 (mod 6). Similarly, prove (2).

38. Using the results of Section 6.8.1, find all integral solutions to the Diophantine
equations 5y% = z? + a for a = +1 and a = +4.
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39. Find all integers n such that F, = 3z> or L, = 3z for some z € Z.

40. (Bremner—Tzanakis.) Let P, @ be nonzero integers, and consider the sequence
F, = F,(P,Q) defined by Fy = 0, Fy = 1, and Fny1 = PF, — QF,_;. This
generalizes the Fibonacci sequence which corresponds to (P, Q) = (1,—1). A
natural problem, which we have solved in the text for the Fibonacci sequence,
is to ask for which n is F,(P,Q) a perfect square. We now ask the converse
problem: given n > 1, for which (P, Q) can F,,(P, Q) be a perfect square.

(a) Show that the answer to the direct problem is trivial when (P, @) = (£1,1)
and (+2,1).

(b) Show that if we do not assume gcd(P, Q) = 1, there exists a solution to the
inverse problem for any even n. Thus from now on we exclude the values found
in (a) and we assume gcd(P, Q) = 1.

(c) Give a complete parametrization of the coprime pairs (P, Q) other than that of
(a) which solve the converse problem for 1 < n < 6. See Exercise 7 of Chapter
8 for the other values of n.

(a) Prove Corollary 6.10.4 (2).

(b) Show that there are 14 integer solutions (x,y) to the Diophantine equation
y? =a* — 3% —4a® 4 20 4 4.

(c) Show that the only integer solutions (z,y) to the Diophantine equation y? =
z* —52® — 5z? — bz — 2 are (z,y) = (=129, £16958), (—1,%2), and (6, £2).

(d) Show that there are 16 integer solutions (x,y) to the Diophantine equation
y?=2%—32° + 32t —2® — 42 + 4z + 1.

(e) Find all the solutions to Diophantus’s equation 3> = z°® 4+ 2 + 1 for which
x is a rational number whose denominator is at most equal to 4 (see Section
13.3.4).

42. Try to generalize Proposition 6.10.3 to equations of the form g(y) = f(z), where
f is a monic polynomial of degree n, g a monic polynomial of degree d such
that d | n (for help, see for instance [Ten]).

43. Assume that (a,b,c) are the sides of a Pythagorean triangle of area n. Using
the group law on the corresponding elliptic curve (more precisely the formula
for doubling a point, obtained by computing the coordinates of the third point
of intersection of a tangent), find another Pythagorean triangle with the same
area. It is easy to show that repeating this process gives an infinite number of
them.

44. Let £ and p be odd prime numbers. We will say that condition C(¢, p) is satisfied
if there exist integers a, b and ¢ such that the congruence az® + by’ + c2° =
(mod p) has no solutions in Z. This implies in particular that for such integers
the Fermat-type equation ax® + bylZ + ¢z% = 0 has no nontrivial solution in Z.
Assume that C(¢,p) is satisfied.

(a) Show that p =1 (mod 2¢).

(b) Using the Weil bounds, show that p < B(£), where B(£) is an explicit function
depending only on £. It follows that for a given £ the set E(£) of primes p such
that condition C(¢,p) is satisfied is finite.

(c) Using a computer algebra system for the higher values, show that E(3) = 0,
E(5) = {11}, E(7) = {29,43,71}, E(11) = {23,67,89,199,419}, E(13) =
{53, 79,131, 157,313, 547}.

(d) For £ =15, 7,11 and 13 give explicit values of a, b and ¢ for which one can easily
prove that az’ + by + cz* = 0 has no nontrivial solution in Z by congruence
arguments.



45.

46.
(a)

(b)
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Let m € Zy». Show that ™ — y™ =1 is impossible in nonzero integers = and
y (when for instance £ > y > 0 prove that ™ — y™ > m + 1, and proceed
similarly otherwise).

This exercise gives some easy results on the rational cuboid problem.

Show that if there exists £ = 3 (mod 4) such that & | (n + 4) then there exist
positive integers a, b, and ¢ such that 4/n =1/a +1/b+ 1/c (for instance this
is the case if n = 2 (mod 3)).

Deduce that if n+ 4 is not the sum of two integer squares, the equation has a
solution (it can be shown that the number of integers n < X which are sums
of two squares is asymptotic to CX/+/log(X) for a suitable constant C > 0, so
this shows that exceptions to the rational cuboid problem, if they exist, have
asymptotic density zero).

Find more general criteria than (a).

Assume that 4/n =1/a+1/b+1/c with a < b < c. Prove that n/2 < a < 3n/4,
that an/(4da —n) < b < 2an/(4a —n), and deduce that for given n the number
N(n) of solutions is finite. More precisely, show that N(n) < n?log(n)/16 +
O(n?) (this bound is far from optimal).

47. Let n € Z 2 be an integer. Prove that there exist positive integers a and b such

that 3/p = 1/a + 1/b if and only if not all prime divisors of n are congruent to
1 modulo 3.

48. Show that every positive rational number m/n can be written as m/n = 1/a; +

1/az + --- + 1/as for some s, with 1 < a1 < a2 < --- < as. (Hint: reduce
to rational numbers less than 1/N for some N by using the divergence of the
harmonic series Y 1/k, and then use induction.)



8. Diophantine Aspects of Elliptic Curves

8.1 Elliptic Curves over Q

8.1.1 Introduction

The Hasse-Minkowski theorem implies that the existence of rational points
on a curve of genus 0 can be decided by local arguments, and then the rational
points have a parametrization in terms of rational functions of a single pa-
rameter ¢t € P1(Q), or equivalently a pair of coprime integers (see for example
Corollary 6.3.6).

On the other hand the parametrization of the group of rational points on
an elliptic curve is of a more difficult kind, and we have already seen several
examples where the local to global principles fail. Since it is the simplest case
after curves of genus 0, the Diophantine aspects of elliptic curves have been
extensively studied, and even though far from being solved, several techniques
have been developed. Many proofs are quite difficult and involved, hence some
of them will be omitted.

There are two main questions, and correspondingly two main theorems
about Diophantine aspects of elliptic curves. The first one is the existence and
structure of the set of rational solutions. The answer to this is that this set
is an abelian group (in essence this is due to Fermat), but the more difficult
theorem due to Mordell is that this group is finitely generated, in other words
isomorphic to E; x Z", where E; is a finite abelian group consisting of the
rational torsion points on the curve. It is very easy to compute F; effectively.
On the other hand the integer r, called the algebraic rank of the curve, is
much more difficult to compute, and no general algorithm is known.

The second question concerns the set of integral points on the curve.
Here the situation is more satisfactory: a theorem of C.-L. Siegel says that
this set is finite, without giving any effective way of computing it. However,
recent techniques based on Baker-type bounds due to S. David on elliptic
logarithms, combined with the use of the LLL algorithm, make the search
for the complete set of integral points almost automatic when (and that is of
course a big “when”) one knows explicitly the group of rational points, see
for example the book by Smart [Sma]. We will give an outline of this method.
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8.1.2 Basic Results and Conjectures

There are basically five main results and conjectures on this subject (not
counting the existence of the group law, due in essence to Fermat in the
seventeenth century). In increasing order of difficulty, these are the Mordell-
Weil theorem, proved in the case of Q by Mordell in the 1920’s, Siegel’s
theorem, proved in the 1930’s, the isogeny conjecture, proved by Faltings
in the 1980’s together with the Mordell conjecture, the Taniyama—Shimura—
Weil conjecture, proved by Wiles et al. between 1995 and 2000, and finally
the Birch-Swinnerton-Dyer conjecture, still unproved.

We begin by the celebrated theorem of Mordell (or Mordell-Weil in the
case of number fields).

Theorem 8.1.1 (Mordell). Let E be an elliptic curve defined over Q. Then
E(Q) is a finitely generated abelian group. In other words the torsion subgroup
E(Q) of all T € E(Q) such that there exists a nonzero integer k such that
k-T =0 is finite, and there exists an integer r (called the algebraic rank) and
points P; € E(Q) for 1 < i < r such that any point P € E(Q) can be written
uniquely as P =T + 21@'@ x; - P;, with T € Ey(Q) and the x; € Z.

The proof of this theorem is not too difficult, and we will give one be-
low (see Theorem 8.2.7 and Corollary 8.3.8). However, an important point
must be noted: it is easy to compute E;(Q) algorithmically (more on this
below), but it is difficult (and in fact there is no rigorous algorithm known)
to compute the rank r and a fortiori the generators P;. It is conjectured that
r is unbounded, and the present record is r = 24 (see [Mar-McM]) using a
method first introduced by Mestre, see 10.

The second theorem, due to Siegel, deals with integral points. Here an
important remark must be made. The group of rational points does not de-
pend on the particular model chosen for the curve E: if we transform the
equation(s) of E by a birational transformation, the structure of the group
of rational points will be unchanged. This is absolutely not true for the set
of integral points, which depends on the chosen model. To give an example
in the even simpler case of genus 0, the curve z2 + y2 = 1 has only (£1,0)
and (0,41) as integral points, while the Q-isomorphic curve z? + y? = 25
has (£5,0), (£4, £3), (£3,+4) and (0, £5) as integral points. Thus when one
speaks of the set of integral points, it is always with respect to an equation
or sets of equations. Furthermore, the notion of projective coordinates loses
much of its meaning (when is the projective point (z,y,2) an integral point?
it cannot be when z, y, and z are integral since any rational point has a
representative of that form. It could be when z/z and y/z are integral, but
why choose z as special coordinate?). Siegel’s theorem is as follows.

Theorem 8.1.2 (Siegel). Let f(z,y) = 0 be the affine equation of a non-
singular plane cubic with integer coefficients. There exist only a finite number
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of pairs (a,b) € Z? such that f(a,b) = 0, in other words the equation has only
a finite number of integral points (possibly none).

This theorem is fundamentally ineffective, in other words it does not give
any bound on the size of the solutions, or even on their number. A break-
through in these and many other types of similar subjects was made by
Baker at the end of the 1960’s by his results on linear forms in logarithms
of algebraic numbers (see Chapter 12 for an overview). Baker’s results trans-
formed all of this type of problems into effective results, although with huge
constants. Soon afterward it was realized that the use of lattice reduction
algorithms, and in particular the LLL algorithm when it was invented, could
drastically reduce these huge bounds to a point where they can be used for
practical computations.

As noted in the introduction, finding integral points on an elliptic curve
in practice has become a routine (if not completely trivial) task, and we will
devote Section 8.7 to a detailed explanation. We will proceed as follows. We
first need a finite generating system (P;)1<ig<n (not necessarily a basis) of the
Mordell-Weil group, and this is of course the hardest part. Second, we use
Baker-type bounds on linear forms in elliptic logarithms (see above) to find
a huge but effective upper bound on the integer coefficients z; of the integral
points expressed as a linear combination of the P; (for the group law of the
curve). Third, using the LLL algorithm in a suitable manner, possibly two or
three times, we reduce the upper bound to something manageable, often less
than 10, see Section 2.3.5. Fourth and final step, we explore systematically all
the possible linear combinations of the P; with coefficients up to the bound
that has been found, and all the integral points will be found during this
search. Of course many things must be explained, and many tricks exist to
improve on the above method (see [Sma]), but the main thing to understand
is that the method is quite straightforward.

To explain in more detail the other results, we now introduce the notion
of minimal model and of reduction modulo a prime. By making a suitable
change of variables, we may always assume that our elliptic curve is given by
an equation y? = 23 +ax + b with a and b integral. If a prime number p does
not divide the discriminant of the curve disc(E) = —16(4a®+27b?), it is clear
that the curve obtained by taking the reduction modulo p of @ and b is still
an elliptic curve, i.e., is nonsingular. For those p which divide disc(E) the
curve is singular, but we may hope that by using other changes of variables
certain other p may become acceptable. The fact is that the right context in
which to consider this problem is that of generalized Weierstrass equations
of the form

y2 + a1y + aszy = %+ a2x2 + a4 + ag

already considered in the preceding chapter.
The main result is that there exists a minimal model in generalized Weier-
strass form with the a; € Z, which among other properties has the smallest
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possible discriminant. However this is not a satisfactory definition: the im-
portant property is that if p divides this minimal discriminant then whatever
birational transformation is applied, the equation of the curve will remain
singular at p. It is to be noted that the existence of a minimal model is due
in large part (but not only) to the fact that Z is a principal ideal domain.
An elliptic curve over a number field of class number strictly greater than 1
does not always have a global minimal model.

Let E be given by a minimal Weierstrass equation. We now introduce
the global L function of E. When p does not divide the (minimal) discrim-
inant of E, the reduction of E modulo p is nonsingular hence defines an
elliptic curve over IF,. We have seen in Section 7.3.4 how to define L,(E,T)
in that case. When p does divide the minimal discriminant, we must proceed
a little differently. The singularity of the curve is necessarily unique, and by
Proposition 7.1.4 (which can easily be extended to more general equations)
it can come in one of three types. Assume for simplicity that the equation is
y? = 22 +asx? + a4z +ag as in the proposition. The only possible singularity is
at a point Py = (xo, 0), where ¢ is a multiple root of the third degree polyno-
mial. If Py is a cusp (resp., a double point with distinct tangents defined over
K, resp., a double point with distinct tangents not defined over K), in other
words if we have additive (resp., split multiplicative, resp., nonsplit multi-
plicative) reduction, we set L,(E,T) =1 (resp., L,(E,T) =1/(1—T), resp.,
L,(E,T) = 1/(1+T)). By the example following Proposition 7.1.4, these
three formulas can be unified using the single formula L,(E,T) = 1/(1—a,T),
where as usual ap =p+ 1 — |E(F,)|. Thus for all primes p we can write

1
L,(E,T)= )
A R ST
where x(p) = 1 if p is a prime of good reduction, and x(p) = 0 otherwise.

Now that we have all the local L-functions, the global L-function of E is
defined as the Euler product

1
L(E,s) = L,(E,p~%) =
( JS) g P( 7p ) Ip[ 1 _ app_s +X(p)p1_2s 7

which gives of course a Dirichlet series L(E, s) = 3_,~, a,n™* by expanding.
Hasse’s inequality immediately implies that the above Euler product (as well
as the Dirichlet series) is absolutely convergent for ®(s) > 3/2. The third
important result on elliptic curves is the following:

Theorem 8.1.3. Let E and E' be two elliptic curves defined over Q. If E
and E' are isogenous over Q then L(E,s) = L(E',s), and conversely, if
L(E,s) = L(F',s) then E and E' are isogenous over Q.

The first part of this theorem is not too difficult, but the converse (known
previously as the isogeny conjecture) is a deep theorem of Faltings, proved
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in the same paper as the proof of Mordell’s conjecture. Note that this this
theorem is mainly important for theoretical reasons.

The fourth important theorem on elliptic curves over Q is the extremely
difficult and famous result of Wiles et al. (which, by using an older but also
highly nontrivial result of Ribet, implies FLT, see Chapter 15 for details)
proving the Taniyama—Shimura—Weil conjecture, and which states the fol-
lowing.

Theorem 8.1.4 (Wiles et al.). The function L(E,s) has an analytic con-
tinuation to the whole complex plane into a holomorphic function. Further-
more there exists a positive integer N (which has the same prime divisors as
the discriminant disc(E) of a minimal model, and which divides it), called
the conductor of the curve, such that if we set

A(E,s) = N*/2(2r)~°T'(s)L(E, s) ,

then A satisfies the functional equation A(E,2 — s) = ¢(E)A(E,s), where
e(E) = 1.

The number ¢(E) is of course called the sign of the functional equation,
and also the root number. It is to be noted that there exists a tedious but easy
algorithm due to Tate for computing the minimal model and the conductor
(see for example [Coh0]). There exists a more recent and even more tedious
algorithm for computing e(E), due to Mestre-Henniart and Halberstadt.

Another way to state the above theorem which is useful for computation
is the following. For lack of space we cannot give the definition and properties
of modular forms, but we will come back to them in Chapter 15.

Theorem 8.1.5. There ezists a modular cusp form f of weight 2 for To(N)
which is a Hecke eigenform for all Hecke operators (in other words a new-
form), such that the L function L(f,s) is equal to L(E,s).

We will also need the following property of the conductor, which we of
course assume since we have not defined it.

Proposition 8.1.6. Let E be an elliptic curve defined over Q, let N be its
conductor, let p be a prime number, and denote by E the reduction modulo p
of a minimal model of E, considered as a curve over F,. Then p | N if and
only if E is singular, p* | N if and only if the singularity of E is a cusp (i.e.,
additive reduction), hence p||N if and only if the singularity of E is a node
(i.e., multiplicative reduction).

The fifth and last important aspect of the theory of elliptic curves over
Q is unfortunately in a conjectural state: it is the conjecture of Birch and
Swinnerton-Dyer (BSD for short). As mentioned elsewhere, in the author’s
opinion it is the most beautiful and important conjecture in the whole of
number theory (together with analogous or more general conjectures of the
same type), and probably in the whole of mathematics.
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Conjecture 8.1.7. Let E be an elliptic curve defined over Q. The algebraic
rank 1 defined by Mordell’s theorem is equal to the order of vanishing of
L(E,s) at s = 1. More precisely,

oy L) _ LOYE,1) . II(E)|R(E)coo (E) [, n cp(E)
15— |E/(Q ’

where wi (E) is the real period of E, INI(E) is the so-called Tate—Shafarevitch
group of E, R(E) is the requlator of E, and the c,(E) are small integers called
the Tamagawa numbers, where co, (E) is the number of connected components
of E(R), and c,(E) is an analogous quantity corresponding to E(Qp).

The real period wq(E) has been defined in Section 7.3.2, but we will
not give here the definition of III(E) and R(E), which will be (partially)
introduced when necessary. The main point to note is that all the quantities
on the right hand side are in principle computable (although there is no known
algorithm to compute R(E)), except for III(E) which is not even known to
be finite in general, except when r < 1. See Section 8.5.6 for an example.

Because of this conjecture the order of L(E,s) at s = 1 is called the
analytic rank, and the main statement of the conjecture is that it is equal to
the ordinary (or algebraic) rank.

The main results concerning this conjecture are due to Coates—Wiles,
Gross—Zagier, Kolyvagin, Rubin and others. A weak but sufficient form of
the known results is the following:

Theorem 8.1.8 (Kolyvagin et al.). Let E be an elliptic curve defined
over Q. Then

(1) If the analytic rank is equal to 0, in other words if L(E,1) # 0, then
r=20.

(2) If the analytic rank is equal to 1, in other words if L(E,1) = 0 and
L'(E,1) #£0, thenr =1.

(3) In both of these cases, III(E) is finite and the BSD conjecture is valid up
to a controlled rational factor.

Remark. Note that it is easy to check numerically that a given quantity
such as L(E,1) or L'(E,1) is nonzero, but that it is impossible in general to
prove numerically that a certain quantity is equal to 0. Thus, when we say
that L(E,1) = 0, we mean in fact that the sign of the functional equation
¢(E) is equal to —1 (which can be checked algorithmically), so that indeed
L(E,1) = 0. We also have:

Corollary 8.1.9. Let E be an elliptic curve defined over Q, let r be its (al-
gebraic) rank, denote by roy its analytic rank, and let e(E) the sign of the
functional equation. Then

(1) Ifr > 2, then ran > 2.
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(2) Ifr=2,¢e(E) =1, and L"(E,1) # 0, then rq, = 2.
(3) Ifr=3,e(E)=-1, and L"'(E,1) # 0, then r4, = 3.

Proof. Immediate and left to the reader (Exercise 1). O

Notwithstanding this corollary, which is in fact a restatement of the the-
orem, one can reasonably say that nothing is known on the BSD conjecture
when the analytic rank is greater than or equal to 2, even for a single curve.

Let us give two examples. To be able to find explicit lower bounds for
the class number of imaginary quadratic fields, Goldfeld had shown long ago
that it would be sufficient to find an L-function with suitable properties,
and having a zero of order at least 3 at s = 1. The L-functions attached
to modular elliptic curves over Q (at the time it was not known that all
elliptic curves over Q are modular by Wiles et al.) do satisfy the necessary
properties, but there remained to prove that one has a zero of order at least
3. The above corollary tells us that to find such an L-function it is enough
to find an elliptic curve of rank at least 3, which is very easy. For instance
there exists a curve of rank 3 of conductor 5077 (and thanks to the work of
Cremona, it is known that this is the smallest conductor), see Section 8.5.6
for more properties of this curve. To prove that the L function has a zero
of order 3 is immediate since we can compute algorithmically the sign of
the functional equation, which is equal to —1 (it better be, otherwise BSD
is false!), and using the methods of Section 8.5.3 it is also easy to compute
numerically that L'"(E,1) # 0.

As a second example, let E be an elliptic curve of algebraic rank 4 and
e(E) = 1 (infinite families of such curves are known). Then L'(E,1) =
L"(E,1) = 0 because of the functional equation, r,, > 2 hence in particu-
lar L(E,1) = 0 thanks to the corollary, and a numerical computation easily
shows that L""(E,1) # 0. The BSD conjecture implies that L"(E,1) = 0.
This can easily be checked numerically to as many decimals as one likes, but
nobody has any idea how to prove this. In fact if it could be proved in a sin-
gle instance, it would be an exceedingly important advance on the subject,
certainly worth a million dollars from the Clay prize plus a Fields medal.

From now on we assume that the curve E is given by a Weierstrass equa-
tion y?z = x® + prz? + ¢z° with 4p® + 27¢®> # 0, where we may assume
without loss of generality that p and ¢ are in Z. Furthermore we will work in
affine coordinates, simply remembering that the point at infinity is the neu-
tral element for the group law, and is the given rational point, so we write our
equation as y? = x4+ px+q. We would like to determine the group of rational
points on this curve. This is extremely difficult to do in complete generality
(no algorithm is known), but we can obtain quite a lot of information from
different points of view, both rigorous and conjectural. In this section some
proofs will be omitted, and we refer to the numerous books on the subject
such as [Cas2], [Cre2], [Dar], [Sil1], [Sil2], or [Sil-Tat].
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8.1.3 Computing the Torsion Subgroup

There are several algorithms which can be used to compute E;(Q). The most
efficient uses analytic techniques, and will not be described here. We begin
with the Nagell-Lutz theorem which is sufficient for small cases.

Theorem 8.1.10 (Nagell, Lutz). Let E be given by a Weierstrass equa-
tion y> = 23 + ax®? +br +c = f(z) witha, b, and c in Z. If T = (x,y) €
E.(Q)\ {O}, then either T has order 2, in other words y = 0, or z and y are
integers such that y? divides D = —(4a®c—a?b®—18abc+4b>+27¢?) = disc(f).
In particular if the equation is y> = x° + px + q then either y = 0 or
y* | D = —(4p° + 27¢°).

Proof. The statement concerning points of order 2 is clear, so assume that
T is not of order 2. Since the natural map from E(Q) to E(Q,) is injective,
it follows from Corollary 7.3.30 (3) that (z,y) € Z2 for all p including p = 2,
hence that (x,y) € Z2. But 2T is also a torsion point different from O,
so if we write 2T = (x3,y3) we also have (x3,y3) € Z2 By the addition
formula z3 = m? — 2z — a with m = (32% + 2azx + b)/(2y). Since z3 € Z it
follows that m is a rational number which is a root of a monic second degree
equation with integral coefficients, hence that m € Z, so that in particular
y | 3z + 2az + b = f'(z). Now we have the identity (see Exercise 2)

(27f(z) — (4a® — 18ab + 54¢)) f(z) — (f'(x) — a® + 3b) f'(x)* = disc(f) = D,
and since y? = f(z) and y | f'(z) it follows that y* | D. O

Note that the same proof shows that if E is given by a general Weierstrass
equation y% + a1 7y +aszy = 3 + a2 + a4z +ag with a; € Z and if T = (z,y)
is a torsion point of order not dividing 2, then again (z,y) € Z2 but with the
slightly weaker condition (2y + a1z + a3)? | 4disc(E), see Exercise 3.

The following corollary is important.

Corollary 8.1.11. If P = (z,y) is a rational point on an elliptic curve given
as above (i.e., with integral coefficients), then P is a nontorsion point if and
only if there exists k such that k - P has nonintegral coordinates.

Proof. If k - P has nonintegral coordinates, then it cannot be a torsion
point by the above theorem, hence P is also nontorsion. Conversely, if k- P
has integral coordinates for all k, these points cannot be distinct otherwise
we would have an infinity of integral points, which is impossible by Siegel’s
Theorem 8.1.2. Thus two of them coincide for distinct values of k, hence P
is a torsion point. O

Note that a point satisfying the hypothesis of the Nagell-Lutz theorem
is not necessarily a torsion point. For instance the point P = (—1,1) on
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the curve y? = z® — 2z, which satisfies the conditions, is nontorsion since
2. P = (9/4,—-21/8) does not have integral coordinates.

A variant of the Nagell-Lutz theorem which is useful in some cases is the
following.

Proposition 8.1.12. Assume that E is given by an equation of the form
y? = 23 +ax® + bz with a and b integral, in other words that up to translation
of the z-coordinate the curve has a rational 2-torsion point. Then if (z,y) €
E.(Q) withy # 0 then x € Z is such that z | b and © + a+ b/z is a square.

Proof. Assume that T' = (z,y) € E;(Q) with y # 0. Then 2T € E;(Q) and
2T # O. The z-coordinate of 2T is equal to (b—=?)?/(4x (x> +az+b)), and by
the Nagell-Lutz theorem this must be an integer. Let d = ged(b, z), by = b/d,
71 = x/d so that ged(by, 1) = 1 and 4z, (dz? + azy + by) | (by — dz?)2. In
particular z; | b%, and since x; and b; are coprime we have ;1 = %1, in other
words d = +z so z | b. Thus 22 | y?, hence writing y = +zy; we deduce that
y? = x + a + b/z, hence the latter quantity is a square. O

Another consequence of the Nagell-Lutz theorem which is very useful for
computing F;(Q) is the following.

Proposition 8.1.13. Let E be given by y?> = 2° + az® + bz + ¢ = f(x), and
let £ be a prime number such that £t disc(E) = —16D, where D = disc(f)
is as in Theorem 8.1.10. Then E;(Q) is isomorphic to a subgroup of E(F;),
and in particular |E;(Q)| divides |E(Fy)| for all such (.

Proof. Since £ # 2 and £ t disc(f) the reduction E of the curve E modulo
¢ is again an elliptic curve. By the Nagell-Lutz theorem all the points of
E;(Q) different from the point at infinity O have integral coordinates. The
map reduction modulo £ is thus well defined from E;(Q) to E(F;) by sending
the point at infinity of F to that of E, and sending (z,y) € E;(Q) to (z,y) €

E(FFy). By Proposition 7.3.22 this map is clearly a group homomorphism with
trivial kernel, hence is injective, proving the proposition. O

Thus for instance if we find two suitable values of £ for which the cardi-
nalities |E(Fy)| are coprime, we immediately know that E.(Q) is reduced to
the point at infinity. As an application we give the following classical result.

Proposition 8.1.14. Let d be a nonzero integer.

(1) Let E be given by y*> = 2* — dz. Then E;(Q) ~ Z/2Zx Z |2Z if and only
if d has the form d = m?, E,(Q) ~ Z/AZ if and only if d has the form
d = —4m*, and otherwise F;y(Q) ~ Z /27.

(2) Let E be given by y*> = z® —d. We have Ey(Q) ~ Z/2Z if and only
if d is a cube not of the form —m®, E,(Q) ~ Z/3Z if and only if d is
either of the form 432mS or of the form —m? and not of the form —m?,
E{(Q) ~ Z/6Z if and only if d has the form —mS, and otherwise E;(Q)
is trivial.
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Proof. The proof of both statements relies on the essential fact that the
two types of curves under consideration have complex multiplication by Z[i]
and Z[p] respectively, where i> +1 = 0 and p? + p + 1 = 0, but there is no
need to know the theory of CM to understand the very simple proof.

(1). We note that the discriminant of E is equal to —64d3. Let £ be a

prime not dividing d and congruent to 3 modulo 4. Since (') = —1, it
follows that for each 2 € F, either 22 —dx = 0, or exactly one of 23 — dz and
(—z)® —d(—z) = —(2® — dz) is a quadratic residue modulo £. If k denotes

the number of roots of 23 — dx = 0 in Fy, it follows that counting the point
at infinity we have |E(F;)| =1+ k+{¢—k = £+ 1. As mentioned above, this
reflects the fact that a prime congruent to 3 modulo 4 is inert in the complex
multiplication field Q(7).

When £ varies among all primes congruent to 3 modulo 4 and not dividing
d, it is easy to see that the GCD of £ + 1 is equal to 4. Indeed, assume the
contrary, and let p be a common prime divisor of all such (£+1)/4. Assume
first that p # 3. By Dirichlet’s theorem on primes in arithmetic progression
(Theorem 10.5.29), since ged(4p,3) = 1 we can find an infinity of primes ¢
such that £ = 4kp + 3, and in particular one such that ¢ > d, hence which
does not divide d. But then (¢+1)/4 = kp+1 must be divisible by p, which is
absurd. If now p = 3, we consider instead the arithmetic progression 4kp — 5,
and we obtain again a contradiction.

It thus follows from Proposition 8.1.13 that |E;(Q)| | 4. Since (0,0) is
evidently a point of order 2 in E(Q), we have E;(Q) ~ Z/2Z,Z /27 x Z |27,
or Z [4Z. Since points of order 2 other than the point at infinity are those of
the form (z,0), it follows that E;(Q) ~ Z/2Z x Z/2Z if and only if 22 —d = 0
has two rational roots, hence if and only if d is a square. On the other hand
P is a point of order 4 if and only if 2P has zero y-coordinate. If P = (z,y),
a short computation shows that this happens if and only if #2 +d = 0 or
2? — 6dx? + d? = 0. This last case cannot occur since it would imply that the
equation X2 —6X + 1 = 0 has the rational root #?/d. Thus d = —z?, hence
x and y are in Z, and y?> = 2% — dr = 223, so (27)% = (2y)2, hence 2z is a
square, hence z = 2m? for some m, hence d = —4m?* as claimed, and in that
case the point (2m?,4m?) has order 4.

(2). This case is completely similar. The discriminant of E is equal to
—432d2, and we choose primes £ not dividing d and congruent to 5 modulo 6.
Since 3 { (£—1), for such primes the map z — 2 from F, to itself is a bijection,
hence for each y € F, there exists exactly one x € Fy such that z® = y? +d,
and it follows once again that |E(F;)| = £+ 1, and this time it is because
a prime congruent to 5 modulo 6 is inert in the complex multiplication field
Q(p). A reasoning exactly similar to the one made for (1) shows that this
implies that |E;(Q)| divides 6.

Clearly |E;(Q)| is even if and only if there exists a rational point of order
2, hence if and only if d is a cube. On the other hand there exists a point
P = (z,y) which has order 3 if and only if 2P = —P = (z, —y). a point of 3
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torsion. It is immediately checked that this occurs if and only if (23 —4d) = 0,
hence either z = 0, so d = —y? has the form —m?2, or if 23 = 4d. But then
x = 217 hence d = 23 and y? = 2® — d = 623, so (621)% = (6y)?, hence 621
is a square, so £; = 6m? for some m, hence d = 432m®, and in that case the
point (12m?2,36m?) has order 3, proving (2). O

Corollary 8.1.15. Let a, b, ¢ be nonzero rational numbers, and assume that

there exists a (projective) rational point (zo : yo : 20) on the cubic ax® +by> +
3 _

cz® =0.

(1) If there are only a finite number of such points then either b/a, c/a, or
¢/b is the cube of a rational number.

(2) Let T be the group of torsion points of the projective cubic, considered
as an elliptic curve. We have T ~ Z /37 if and only if b/a, ¢/a, and c¢/b
are all cubes, T ~ 7 /27 if and only if up to permutation of a, b, and c
we have that bj/a and c¢/(2a) are cubes, or a/(2b) and a/(2c) are cubes,
otherwise T is trivial.

Proof. By Proposition 7.2.4 we know that the cubic is birationally equiv-

alent to the elliptic curve E whose affine Weierstrass equation is Y? =
X3 — 432(abc)?. Tt follows that if there are k projective points on our cu-
bic, the curve E has rank 0 and |E;(Q)| = k. We consider two cases.
Case 1: abc is not a cube or twice a cube. It follows from the proposition
that E;(Q) is trivial, hence k = 1, so the cubic must have a single projective
rational point. However if we compute the intersection of the tangent to the
cubic at (zo : yo : 2¢) with the cubic we find that

(@1 :y1 2 21) = (zo(byg — cz5) : yolczg — azg) = zo(azg — byg))

is another projective point on the cubic. Note that it is well defined (i.e.,
(z1,y1,21) # (0,0,0)): indeed otherwise, by symmetry assume that zg # 0.
Then bys = 2§, hence yo # 0 (otherwise 29 = 0, so zg = 0 since az3 + by +
czg = 0), hence az} = bys = cz3, which implies that 0 = az} + byg + c2§ =
3azd so xo = 0, again absurd and proving my claim.

Since ¥ = 1 we must have (z1 : y1 : 21) = (%o : Yo : 20)- Since we
cannot have az§ = byi = cz§, once again by symmetry we may assume that
bys # cz3. If we had the equality

byg - czg = czg — az'g = amg - byg ,

then by adding these three quantities we would obtain 0 = 3(bys — cz3)
contradicting our assumption that by # cz3. It follows that for instance
cz§ — axd # byi — cz3, and since (z1 : y1 : 21) = (%o : Yo : 20) this implies
that yo = 0. But then 29 # 0 and az} + cz§ = 0, so ¢/a = (—zo/20)% is a
cube, as claimed.

Case 2: abc is a cube or twice a cube. By elementary manipulations
that we have already explained in Section 6.4.4, without loss of generality
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we may assume that a = 1 and that b and ¢ are cubefree integers, and these
manipulations only modify the ratios b/a, ¢/a, and ¢/b by cubes. Assume first
that abc = be = m?, and let p be a prime divisor of m. We have v, (b) +v,(c) =
0 (mod 3) and v,(b) 4+ vp(c) # 0, hence vy(b) = 1 (mod 3) and vp(c) = 2
(mod 3) or the reverse. But this is absurd since then v,(az®) = v,(2®) = 0
(mod 3), v,(by?) =1 (mod 3) and v,(c2z®) = 2 (mod 3), although these three
quantities sum to zero. Thus p cannot exist, hence m = %1, and since b and
c are integers b = +¢ = +£1, so for instance b is a cube. If abc = bc = 2m?3,
the same reasoning shows that the only possible prime divisor of m is p = 2,
so b = £271 and ¢ = +£272 with j; +j2 = 1 (mod 3). It follows that (j1,j2) =
(0,1), (1,0), or (2,2) modulo 3, hence either b, ¢, or ¢/b is a cube, as claimed.
We leave the proof of (2) to the reader (Exercise 5). |

Although the determination of E;(Q) is very easy, the following deep
theorem of B. Mazur can also be useful.

Theorem 8.1.16 (Mazur). The group E;(Q) is isomorphic either to Z /[NZ
with1 < N <10 or N =12, or to (Z/NZ) x (Z/2Z) with N =2, 4, 6, or 8.

For instance, if we find a point of order 7 in E;(Q), it is not necessary to
go any further (E;(Q) has order 7). If we find a point of order 5, then since it
is trivial to check if there exists a point of order 2 (the points with y = 0), we
can immediately determine that E;(Q) is cyclic of order 5 or 10. Note that it
is easy to show that there are an infinity of nonisomorphic elliptic curves E
such that F;(Q) is isomorphic to one of the 15 groups given above, and they
can also be rationally parametrized.

8.1.4 Computing the Mordell-Weil Group

Now that we have seen that E;(Q) is easily accessible, we consider the nontor-
sion part. There are essentially three different methods to attack the problem.
The first and historically the oldest (initiated by Fermat) is the method of
2-descent. The second method is that of Heegner points, initiated in principle
by Heegner in 1954, but really developed by Stark, Birch and others start-
ing in 1967. The third method is partly conjectural since it is based on the
Birch—Swinnerton-Dyer (BSD) conjecture which is proved (up to constants)
only in rank 0 and 1, but at least says what to expect.

The 2-descent method is most useful when r = 0, i.e., when there are no
points of infinite order. It is then often (but not always) possible to prove
this in an elementary way, as we shall see below. However, even when r > 0 it
gives very useful information, and in many favorable cases allows the rigorous
computation of r and the P;.

The Heegner point method is applicable if and only if » = 1. This may
seem like a severe restriction, but tables and heuristics seem to show that
curves with r > 1 form a small proportion of all elliptic curves and that
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the others are equally divided between r = 0 and r = 1. It is even possible
that the density of curves with » > 1 is equal to 0. Thus the Heegner point
construction should be applicable to almost half of all elliptic curves.

Finally the third method (which appears in several guises, for instance
Manin’s conditional algorithm) is based on the BSD conjecture stating among
other things that the algebraic rank r should be equal to the analytic rank,
which is the order of vanishing at s = 1 of the Dirichlet series L(E, s) attached
to the elliptic curve E. Even that order is not easy to compute rigorously
(in fact nobody has any idea how to prove that L(E,s) vanishes to order
greater or equal to 4 when it should), but at least we can use numerical
approximations to guess its exact value. This then gives strong guidelines on
how to use the rigorous methods.

In the next sections we will describe the three methods described above.
Since the 2-descent method is the closest in spirit to the rest of this book we
will describe it in more detail than the two others.

8.1.5 The Naive and Canonical Heights

Before studying practical methods for computing the rank and if possible,
also generators, an important point must be settled, which in fact is essential
for the completion of the proof of the Mordell-Weil theorem. Consider the
following problem. Let E be an elliptic curve defined over Q. If we are given
a point P € E(Q), it is easy to determine whether P has infinite order,
for instance by using Corollary 8.1.11. But now assume that P and @ are
two points in E(Q), and for instance that there is no torsion. How do we
check that P and @ are independent points in E(Q), in other words that
mP +nQ # O for all (m,n) # (0,0)? The answer is not as simple as one
could think, but luckily there is a very nice answer, given by the notion of
canonical height.

Let us begin by defining the (naive) height of a nonzero rational number z.
Writing « = n/d with ged(n,d) = 1 we define h(z) = max(log(|n|),log(|d|)).
This is also natural if we view x as an element of P(Q) with coordinates
(n : d). Thus more generally if P € P*"(Q) we can write (uniquely up to a
sign change) P = (z¢ : ©1,- - : Tp) where z; € Z and ged(zg, .- .,z,) = 1,
and we define h(P) = max; log(|z;|), where by convention log(0) = —oco.

Now assume for simplicity that the elliptic curve E is given by a single
equation, hence defined as a curve in P2, and let P € E(Q) C P*(Q). We
could define the height of P as a point in P?(Q). However for several reasons
we prefer to define the (naive) height of P as the height of its z-coordinate. In
other words, thanks to Proposition 7.3.1, we can write the affine coordinates
of P as (m/d?* n/d®) with gcd(m,d) = ged(n,d) = 1, and we define the
height as h(P) = max(log(|m|),log(d?)), called again the naive height of the
point P. Note that because of the equation of the curve, when h(P) is large
then log(|n|) is comparable to 3h(P), so h(P) does take into account the
y-coordinate.
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Please note that the function h(P) is only defined on E(Q) (or more
generally on number fields), but not on E(C). Although it has some nice
properties, we also need a more regular function of P, called the canonical
height of P, and defined as follows. First note that when experimentally com-
puting h(kP) for increasing values of k, we find immediately that it has the
appearance of a parabola, which in fact is approximately true. For instance
if E is the curve y? = 2° — 2z and P = (-1, 1), then the first values of the
integers exp(h(kP)) are

1

9

169

12769

2325625

3263037129

5627138321281

68970122119586689

1799664515907016914961

197970893765498628138595401
58648738806449243564537197828441
113430878631471464907295822495116028129
323984609740005211871964051960752674583281921
5716300836998474094483932787938713642068565888848009
204308996346238115515039274058960844791420732521825765430625

which is visually a parabola. We thus define the canonical height by the
formula (kP
h(P) = lim (kP)

k—oo k2 )

Note that we evidently have h(P) > 0, hence E(P) > O for all P. The following
theorem summarizes the main properties of the canonical height.

Theorem 8.1.17. The above limit exists, and defines a nonnegative function
h(P) on E(Q) with the following properties.

(1) (Quadratic form.) The function E(P) is a quadratic form on E(Q), in
other words if we define (P,Q) by the formula

~

(P,Q) = (h(P +Q) — h(P) — h(Q))/2
then (P, Q) is a symmetric bilinear form on E(Q) such that (P,P) =
h(P), hence h(kP) = k*h(P).
(2) (Nondegeneracy.) We have E(P) = 0 if and only if P € E;(Q), hence h

induces a positive definite quadratic form on the finitely generated free
abelian group E(Q)/E;(Q).
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(3) (Independence.) Points (P;)i<ign tn E(Q) are linearly independent in
E(Q)/E:(Q) if and only if the determinant of the so-called height pair-
ing matrix M = (({(P;, Pj))i1<i,j<n) 5 not equal to 0. More precisely
2igj<n b is a torsion point if and only if 301 <, biM; = 0, where
M; 15 the jth column of M.

(4) (Bound.) There exists an explicitly computable constant C(E) depending
only on E such that for all P € E(Q) we have |71(P) — WP)| < C(E)
(see below for a more precise estimate).

(5) (Finiteness.) For any B > 0 there exist only a finite number of points

P € E(Q) such that /H(P) < B (or, equivalently, h(P) < B).

We refer to [Sil-Tat] for proofs of the above properties, which are not
difficult.

Note that in practice, to check that points are independent (or dependent,)
modulo the torsion subgroup one must use some care, since the determinant
of the matrix M is an inexact real number. If this determinant seems to
be nonzero, then one should give an error bound on the computation of
the determinant so as to prove rigorously that the determinant is nonzero.
On the other hand if the determinant seems to be equal to 0, one must
then find a nonzero element of the kernel of the matrix M, which must
exist and have entries very close to an integer after multiplying by a suitable
denominator. Although it is usually impossible to prove rigorously that a real
number is exactly equal to 0, here it is possible because one simply checks
that the (integral) entries of the given element of the kernel produce a linear
combination of the generators which is in the torsion subgroup. If this is the
case all is well, we have shown that the points are dependent modulo torsion,
otherwise it shows that the determinant computation has not been accurate
enough, and it should be redone with a higher accuracy.

Because of the above theorem and remarks, it is thus essential to be able
to compute heights numerically. The definition can be used, but is not very
well suited to accurate computation. A much better algorithm is given for
instance in Chapter 7 of [Coh0]. This is implemented in GP as the function
2xellheight (P). Note that in versions up to 2.3 it is important to multiply
by 2 the result given by ellheight (P), since it corresponds to a different
normalization (this may change in future releases of the package).

If we had taken a slightly different definition of the naive height, such as
for instance max(log(|md|),log(|n|),log(d?)), which is the naive height on the
projective plane, using the same definition it can be shown that we would
obtain a canonical height equal to (up to a constant multiple) the canonical
height defined above.

For practical applications, it is essential to give explicit bounds for the

difference between the naive and canonical heights. Such a bound is the fol-
lowing (see [Sil3], and see [Cre-Pri-Sik] for much better bounds).
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Theorem 8.1.18. Let E be an elliptic curve defined over Q by a generalized
Weierstrass equation. With the usual notation, set

log(] disc(E)|) +log™ ((E))
6

WE) = +log™ (b2/12) +log(2")
where logt (z) = max(1,log(|z|)) and 2* =2 if by # 0 and 2* = 1 otherwise.
Then for P € E(Q) we have

_Ljsz)) — u(E) —1.946 < h(P) — h(P) < p(E) + 2.14

(recall that if gcd(n,d) =1 then h(n/d) = max(log(|n|),log(|d|))).

As a direct application, we see that in the computation of the torsion
subgroup for instance using Theorem 8.1.10, then if P = (z,y) € E;(Q) we
have E(P) = 0 hence h(P) = h(z) < h(j(E))/12 + u(E) + 1.946, and since
we know that z € Z, this gives a (usually small) upper bound for |z|.

8.2 Description of 2-Descent with Rational 2-Torsion

I emphasize from the start that my purpose is not to give the most efficient
algorithms, which are in fact in constant progress, but to describe a simple
version of the method which is already useful to treat many small cases. We
closely follow [Sil-Tat).

8.2.1 The Fundamental 2-Isogeny

As above, in this section we fix an elliptic curve E given by a not necessarily
reduced Weierstrass equation y?> = 2% + ax? + bz + ¢ with integers a, b and
¢ and nonzero discriminant. We denote by O its point at infinity, which is
the neutral element for the group law. In this section we make the crucial
simplifying assumption that there exists a rational point of order 2 different
from O, i.e., that there exists zo € Q (hence in Z) such that 23 +az3+bzo+c =
0. We will explain in Section 8.3 what must be done if this assumption is not
satisfied.

By setting £ = X + zo, we can send the point (zg,0) to the origin T =
(0,0) which is therefore a point of order 2, and our equation will now have
the form y2 = 23 + ax? + bz for some other integers a and b. We will work
with equations of this form. It is easy to see that the discriminant of the
third degree polynomial is given by the formula D = b?(a® — 4b), hence
disc(E) = 16b*(a® — 4b).

In this section we will work with a pair of elliptic curves, one being E and
the other which we will denote by E. Al quantities and varlables relative to E
will be denoted with a™, and this will not cause any confusion with a reduction
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homomorphism, which will not be used in this section. The curve E is defined
by the equation y? = 23 +@z? + bz with @ = —2a and b = a® — 4b. Note that
@ = 4a and b = 16b, hence the curve E is the curve y? = 2° + 4az? + 16bz,
which is trivially isomorphic to E by replacing « by 4z and y by 8y.

Proposition 8.2.1. For any P = (z,y) € E set

for P not equal to T or O, and set §(T) = §(O) = O. Then ¢ is a group
homomorphism from E to E, whose kernel is equal to {O,T}. Applying the
same process to E gives a map a from E to E, and E is isomorphic to E
via the map (x,y) — (x/4,y/8). Thus there is a homomorphism ¢ from E to
E defined for P = (z,y) different from T and O by

3P = (e,y) = (17 M)

4727 832

and by a(f) = ;ﬁ\(@) = O. Furthermore for all P € E we have o ¢(P) =2P,
and for all P € E we have ¢ o ¢(P) = 2P.

Proof. The proof consists in a series of explicit verifications, where in each
case we must separate the points O and T from the other points. It is done
with utmost detail in [Sil-Tat] to which we refer. We will simply show that ¢
maps F toAE’, and that it maps three collinear points of E to three collinear
points of E. This is the essential part of the proof. Also, to simplify we will
assume that all the points that occur are distinct and different from O, T', O
and T.

Let (x,y) be a point on E, and (Z,y) = ¢(z,y). We compute that

4

2 22— b))\’ o
= L@ + be)? — 4bat) = (%) y

3 2 7 v’ (v y? 2 T 2\2 4
z° +ax +bx:x—2(——2aﬁ+a —4b)=5((y —az)® — 4bz")

proving that (Z,7) is on the curve E.

Now for i = 1, 2 and 3 let P; = (x;,y;) be three collinear points on E (so
that P + P, + P3 = O by definition of the group law). We will show that the
points ¢(P;) = (£, ;) are collinear. Let y = mx + n be the equation of the
line through the points P;. We have n # 0 since otherwise one of the points
would be equal to T' = (0,0), which we have excluded. I claim that the points
¢(P;) are on the line y = Mz + 7, with
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nm—>b n? — anm + bm?

n

and n=

m =

Using the equation of the curve and the relations y; = ma; + n we compute
that

o~ (nm=b)y?+ (n® — anm + bm?)z?

mz; +n = 3
n?
_ nm(y} — axf) — blyi — mai)(yi + ma;) +n’a}
_ m(x} + bx;) — b(y; + ma;) + na?
- i~
i
_zi(mzi4+n) —by;  yi(zi —b) 7
- - - 2
.’L‘? ,7;12 ’

proving my claim. The rest of the verifications are simpler and left to the
reader. R R L R

The proofs of the formulas for ¢ and that ¢go¢(P) = 2P and ¢o¢(P) = 2P
are also verifications left to the reader. O

It follows from Definition 7.1.6 that ¢ is an isogeny from E to E, and
that ¢ is its dual isogeny. Furthermore since we are in characteristic zero and
the kernels (over Q) have two elements, these maps are 2-isogenies. This is
why this method is called 2-descent via 2-isogenies (we will study general

2-descent in Section 8.3 below).

8.2.2 Description of the Image of ¢

Although we know by Theorem 7.1.7 that ¢ is surjective over Q, we now
restrict to rational points, and we want to determine the image of ¢ on
rational points (since T' is assumed to be a rational point, here in fact (0,0),
the kernel of ¢ is of course still equal to {O, T'}). This is given by the following
result.

Proposition 8.2.2. Denote by I = ¢(E(Q)) the image of the rational points
of E in E(Q). Then

(1) O €I, andT € I if and only if disc(E) is a square in Q* or, equivalently,
if b= a® — 4b is a square in Q. R

(2) Otherwise, a general point P = (Z,y) € E(Q) with T # 0 belongs to I if
and only if T is a square in Q.

~

O the first statement is trivial. Since z = 0 implies
so ¢((z,y)) = O, for the other statements we may
€ I if and only if there exists x # 0 such that

Proof. Since ¢(O
y = 0, hence (z,y) =

T
assume £ # 0. Then T
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y?/x? = 0, hence y? = z(2? + ax + b) = 0, hence z is a root of z? + ax + b.
Thus z exists if and only if the discriminant a®? — 4b of this quadratic is a
square, proving (1).

For (2), the definition of ¢ shows that Z is a square. Conversely, assume
that (Z,7) € E(Q) with Z # 0 and Z = «2, and for € = +1 set

u? —a+ej/u
LTe = —————, Yz =ETU .
2
I claim that both points (z., y.) are in E(Q) and that ¢(z-,y-) = (Z,7y) (since
the kernel of ¢ has order 2, we must indeed have two preimages). To prove
that they are in E(Q), using the equation of E we compute that
(T —a)?—-79%/7 7°—2a3° +a’7T -7

T1x-1 = 4 = 1% =b.

Thus

2
Tet+a+—=x+T_+a=u",
Ze
hence

22 +az? + bx. = (uz.)? = o2,
proving that both points are on E, and of course with rational coordinates.
Furthermore we have ¢(z.,y:) = (2',y') with

2
r_ Ye
r =3

Te

and using once again the equality b = x.2_.

o ys(xg — b)
y - mg

=cu(ze —x_c) = cu(ey/u) =y
as claimed. O

8.2.3 The Fundamental 2-Descent Map

The fact that the image of ¢ consists essentially of points (Z,7) for which Z
is a square is quite remarkable and will now be exploited in full.

Definition 8.2.3. We define the 2-descent map « from the group E(Q) to
the multiplicative group Q*/ Q*? as follows.

(1) a(0) =1, a(T) =b.

(2) When z #0 and (z,y) € E(Q) then o((z,y)) = .

In the above, all the values are of course understood modulo the multiplicative
action of Q*2.
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The main result is the following.

Proposition 8.2.4. (1) The 2-descent map « is a group homomorphism.

(2) The kernel of « is equal to 55(@(@)), hence a induces an injective group
homomorphism from E((@)/(Z(E(Q)) to Q* Q2.

(3) Let p; for 1 < i <t be the distinct primes dividing b. The image of a
is contained in the subgroup of Q* /(@*2 generated by the classes modulo
squares of —1 and the p;.

(4) The indezx [E(Q) : ¢(E(Q))] divides 2t+1.

Proof. (1) Clearly if P = (z,y) # T then a(—P) = a((z, —y)) = z, hence
a(P)a(—P) = 22 € Q*, and a(T)a(-T) = a(T)? = b*> € Q*?, so a sends
inverses to inverses. Thus to prove (1) we must prove that if P, + P+ P; = O
then a(P)a(P:)a(Ps) € Q*2. If one of the P; is equal to O, we are in the
case we have just treated. Let us first assume that none of the P; is equal
to T. As usual, let y = mz + n be the equation of the line passing through
the three points (the only other possible lines = n are excluded since none
of the P; is equal to O). Writing the intersection of the line with the cubic
equation, we see that the three abscissas x; of the points P; are the three
roots of the equation

* + (a—m?)z? + (b—2mn)z —n’> =0

(this is of course how the algebraic formula for the group law is obtained in the
first place). In particular ;2223 = n? € Q*2, proving (1) when none of the
P; is equal to T'. If one of the P; is equal to T (and only one since otherwise
the third point is equal to O), we may assume for instance that P, = T.
The three abscissas are now z; = 0, z2, and z3, and a line going through
P, =T = (0,0) has equation y = mz, hence n = 0. It follows that the z; are
the roots of 3 + (a — m2)x? + bx = 0, hence z» and z3 are the two roots of
2% + (@ — m?)z + b= 0. Thus zsz3 = b hence a(P;)a(P:)a(Ps) = b? € Q*2,
finishing the proof of (1) and explaining why we must choose a(T") = b.

(2) Applying Proposition 8.2.2 with E instead of E and ¢ instead of ¢,
we see that a has in fact been constructed so that its kernel is exactly equal
to ¢(E)(Q) (note that a2 — 4b = 16b = b (mod Q*?)).

(3) Let P = (z,y) € E(Q). We want to find conditions on z = «a(P)
modulo squares. By Proposition 7.3.1 we know that there exist integers m,
n and d such that z = m/d?, y = n/d® and ged(m,d) = ged(n,d) = 1.
Replacing in the equation of F and clearing denominators gives

n? = m? + am?d® 4+ bind* = m(m? + amd® + bd*) .

This is the key to the proposition: we have a product of two integers equal
to a square, so that as we have so often done in the study of Diophantine
equations, both are close to squares. To see how close, we must compute
the GCD of both factors. Assume first that = # 0. Since ged(m,d) = 1, we
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see that the GCD of the factors is equal to ged(m, b), and in particular is a
divisor of b. Thus if p ¢ b, vy(m) is even. This means that m, hence z, is up to
a multiplicative square in the group generated by £1 and the p;, as claimed.
If x =0, then P = T and a(P) = b, which of course belongs to the group
generated by its prime divisors and by —1.

(4) The subgroup described in (3) is the group of classes of the distinct

representatives [[;c,pi’ with pp = —1 and ¢; = 0 or 1, which has 2'+!
elements. Thus (4) follows from (2) and (3). O

Although the aim of the above results is to describe an explicit method
for computing the Mordell-Weil group in practice, it is to be noted that they
comprise a large part of the Mordell-Weil theorem itself, at least for the type
of curve that we are considering (having a rational torsion point of order 2).

Now note the following purely abelian group-theoretic lemma.

Lemma 8.2.5. Let A and B be abelian groups written additively, and let ¢
from A to B and q§ from B to A be two group homomorphisms. Assume that
the indezes [B : ¢(A)] and [A : #(B )] are finite. Then the index [A : bop(A )]
is also finite, and more precisely we have

[A: ¢og(A)]|[A: (BB : $(A)] -
Proof. We have

[A:do¢(A)] = [A: (B)|[$(B) : p($(A))] -

On the other hand it is clear that the map q) induces a surjective map from
B/¢(A) to ¢( )/ ¢( (A)), hence the cardinality of the latter quotient divides
that of the former, proving the lemma. O

We now immediately deduce what is commonly called the weak Mordell-
Weil theorem, since it easily implies the full theorem.

Corollary 8.2.6. The group E(Q)/2E(Q) is finite. More precisely, its car-
dinality divides 2°T2 where t is the number of distinct prime divisors of b
and s is the number of distinct prime divisors of a® — 4b.

Proof. By Proposition 8.2.4, we have [E(Q) : #(E(Q))] | 2¢+1. Applying
the proposition to E and ¢, we have [E(Q) : ¢(E(Q))] | 25*1. The result thus
follows from the lemma, since ¢ ¢ is the multiplication by 2 map. O

We can now prove the strong form of Mordell’s theorem.

Theorem 8.2.7 (Mordell). Let E be an elliptic curve defined over Q, and
assume known that for some m > 2 we know that E(Q)/mE(Q) is finite (by
the above corollary this is true for m = 2 when E has a rational 2-torsion
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point). Then E(Q) is a finitely generated abelian group. More precisely if B
is the largest canonical height of a system of representatives of E(Q) modulo
mE(Q), then the (finite) set S of rational points P € E(Q) such that ?L(P) <
B generates E(Q).

Proof. Assume by contradiction that the subgroup H of E(Q) generated
by S is not equal to E(Q), and let Q1 € E(Q)\H. The set of points in E(Q)\H
of height less than or equal to that of @ is finite, hence let Q € E(Q) \ H
be of minimal height. By assumption there exists P € S (in fact in our
chosen system of representatives modulo mE(Q)) and R € E(Q) such that
Q@ = P+mR. Since P € S C H and Q ¢ H we have R ¢ H, hence
h(R) > h(Q) by our minimality assumption. Thus, since h is a nonnegative
quadratic form we obtain

R(P) = 5(R(Q + P) + (@ ~ P)) ~ (@) > 3h(mR) ~ h(Q)
2/\ ~ ~ ~ ~
> T-h(R) — h(Q) > 2h(R) - h(Q) > h(Q) > B
since @ ¢ H, and a fortiori @ ¢ S. This is a contradiction since P € S hence
h(P) < B. O

An important consequence of the proof of this theorem is that once
E(Q)/mE(Q) is known for some m (for instance for m = 2), obtaining a
system of generators for E(Q) is completely algorithmic. Thus the only ob-
struction to the existence of an algorithm to compute E(Q) lies in the com-
putation of the finite group E(Q)/mE(Q) for some m. In practice however,
better algorithms are used than the one implicit in the proof of the theorem.

8.2.4 Practical Use of 2-Descent with 2-Isogenies

Now that we have seen how to use 2-descent for theoretical purposes, we
will show how it can be used in practice to bound the rank of an elliptic
curve, and sometimes to compute it exactly. For this, we must analyze more
precisely the images of the 2-descent maps. R

We will denote by r the algebraic rank of the group E(Q). Since E and E

are isogenous through the maps ¢ and ¢, it is clear that r is also the rank of
E. We naturally denote by & the 2-descent map from E( Q) to Q*/Q*%. We
begin by the following proposition.

Proposition 8.2.8. We have the equality
le(E(Q)lla(E(Q)] =272
Proof. As an abstract abelian group, we have E(Q) ~ E;(Q) @© Z", hence

E(Q/2E(Q) ~ E(Q)/2E,(Q) ® (Z/22)" .
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Furthermore, for any finite abelian group A, the exact sequence
0 — A2l - A—A— AJ24 — 1,

where the middle map is multiplication by 2 and A[2] is the kernel of that
map, shows that |A/2A| = |A[2]| (in fact A/2A is noncanonically isomorphic
to A[2]). In our case with A = E;(Q) the points of order 2 are exactly O and
those with y = 0, hence = 0 plus the two points corresponding to the roots
of z2 + ax + b = 0 if a® — 4b is a square. Thus

|E(Q)/2E(Q)| = 27!+,

where § = 1 or 0 according to whether a? — 4b is a square or not.
On the other hand, let us consider our 2-isogenies ¢ and ¢. Since ¢ o ¢ is
the multiplication by 2 map, we evidently have

|E(Q)/2E(Q)| = [EQ : $(EQ)][¢(EQ) : d($(EQ))] -

Now for any group homomorphism $ and subgroup B of finite index in an
abelian group A we evidently have

NS

(4) A A/B A/B

~

~ —~ . .

4(B) B+Ke(d) (B+ Ker(¢))/B : Ker(¢)/(Ker(¢) N B)

Thus
_ [A: B]
[Ker(¢) : Ker(¢) N B]

We are going to use this formula with 4 = E(Q) and B = ¢(E(Q)). We know
that Ker(¢) has two elements O and T', and we have shown in Proposition

8.2.2 that T € ¢(E(Q)) if and only if a® — 4b is a square. Using the 6-notation
above, it follows that

[3(A) : $(B)]

EQ : ¢(B@)]

PEWQ) : JHEQ))] =

Putting everything together we obtain

272 = [E(Q) : (E(Q)][E(Q) : (EQ)] ,

proving the proposition thanks to Proposition 8.2.4 (2). O

It remains to give a reasonably practical method to compute |a(E(Q))]

(which we will of course also use for @(E(Q))). We have seen in Proposition
8.2.4 (3) and (4) how a(F(Q)) can be determined in principle by looking at

the factorization of b. We make this more precise in the following theorem.
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Theorem 8.2.9. The group a(E(Q)) is equal to the classes modulo squares
of 1, b and of the positive and negative divisors by of b such that the quartic
equation

Y2=b,X*+0aX?Z% + (b/b)) Z*

has a solution with X, Y, Z pairwise coprime integers such that X Z # 0. If
(X,Y, Z) is such a solution we will have ged(b/by, X) = ged(by,Z) = 1 and
the point P = (11 X?2/Z% b XY/Z3) is in E(Q) and such that a(P) = b;.

Proof. Clearly 1 € a(E(Q)) hence we can forget the point at infinity. Let
(z,y) € E(Q), and assume for the moment that y # 0, hence x # 0. We have
seen in the proof of Proposition 8.2.4 that we can write x = m/d?, y = n/d®
with d # 0, ged(m, d) = ged(n,d) = 1 and the equation n? = m(m? +amd? +
bd*). Let us now go further. Set b; = sign(m) ged(m,b). We can thus write
m = bymy, b = biby with my > 0 and ged(mq,bs) = 1. Substituting, we
obtain n? = b3m1(bim? + am1d? + bad?). Tt follows that by | n, so we write
n = biny, hence n} = my(bym? + am1d? + b2d*). Since gcd(my,b2) = 1 and
ged(my, d) | ged(m,d) = 1 it follows that both factors are relatively prime so
each of them is a square (since m; > 0). Thus there exist coprime integers
X and Y such that m; = X2, bym? + am1d? + bad* = Y? and ny = XY.
Setting Z = d this gives the desired quartic Y? = b X* + aX?%Z? + b Z4,
and coming back to the initial point we have z = m/Z? = b;X?/Z? and
y =n/Z3% = b XY/Z3. Thus given a point on the quartic we can come back
to a point on E(Q), proving that we have exactly described a(E(Q)) outside
of the image of the points for which y = 0. Since ged(m,d) = ged(n,d) =
1 we deduce that ged(X,Z) = ged(Y,Z) = 1, so that X, Y and Z are
pairwise coprime. Finally the points with y = 0 are either the point T =
(0,0), which is such that a(T") = b which is taken into account, or when
a’? — 4b = €? is a square the points with = (—a + €)/2. But in that case
((ma—e)/2)((—a+e)/2) = (a® —e?)/4 = b, so we can choose by = (—a=+e)/2,
and clearly the point (X,Y,Z) = (1,0,1) is on the corresponding quartic
Y? = 0y X* + aX?Z2 + (b/b1)Z*, so these points will be included in the
count. Note that Z = d # 0, and that in every case X # 0. Finally a simple
inspection of the quartic equation shows that if X, Y and Z are pairwise
coprime then ged(b/by, X) = ged(by,Z) = 1. O

To use this theorem in practice it is useful to have some additional results.

Definition 8.2.10. For any nonzero integer N € Z, denote by s(N) the
squarefree part of N, i.e., the unique squarefree integer such that there exists
an integer f with N = s(N) f2.

Proposition 8.2.11. A divisor by of b is such that the quartic Y? = b; X* +
aZ?X?+(b/b1)Z* is solvable with pairwise coprime X,Y and Z with XZ # 0
if and only if the quartic Y? = s(b))X* + aZ2X? + (b/s(b1))Z* is solvable
with ged(X,Z) =1 and XZ # 0.



8.2 Description of 2-Descent with Rational 2-Torsion 519

Proof. Assume that by is such that the quartic Y2 = b X* + aZ2X? +
(b/b1)Z* is solvable with pairwise coprime X, Y and Z with XZ # 0 and
write b1 = s(b1) f2. Then

(V)? = s(b1)(X)* +aZ*(Xf)* + (b/s(0r)) Z*

so that if we set Y1 = Y f, X1 = X f, the coprimality conditions of the
theorem imply that X and f | b; are coprime to Z, hence X; also.

Conversely, assume that Y2 = s(by) X* +aZ2X?%+ (b/s(b1))Z* is solvable
with XZ # 0 and ged(X, Z) = 1, and set f = ged(X,Y), which is coprime
to Z since it divides X. Thus f? divides (b/s(b1))Z*, hence b/s(b;) so we can
write

(Y/£)? = s0) (X )" +aZ>(X/ ) + b/ (s(01) ) Z* .

It follows that (X/f,Y/f,Z) is a solution to the quartic with s(by)f? (still
dividing b) instead of by, but now with ged(X/f,Y/f) = 1. Next we have
evidently ged(X/f,Z) = 1, and if p is a prime dividing ged(Y, Z), then p? |
s(b1)X*, hence since s(b;) is squarefree p | X, a contradiction since p | Z
and ged(X, Z) = 1. Thus ged(Y, Z) = ged(Y/f,Z) = 1. By Theorem 8.2.9,
the pairwise coprimality of X/f, Y/ f and Z imply the two other coprimality
conditions. O

Corollary 8.2.12. Let by be a divisor of b such that both by and b/by are
squarefree (which is in particular the case if b is squarefree). If (X,Y,Z)
satisfies Y2 = by X* + aZ2X? + (b/b1)Z* with XZ # 0 and ged(X, Z) =1,
then X,Y and Z are pairwise coprime.

Proof. Note that by = s(by1). Thus from the proof of the above proposition
we see that if we set f = ged(X,Y) then f? | b/b1, hence f = 1 since we
assume b/b; squarefree. As in the above proof we also deduce that gcd(Y, Z) =
1. O

Corollary 8.2.13. The group a(E(Q)) is equal to the set of classes modulo
squares of 1, of s(b), and of by and b/b; for all positive and negative divisors
by of b such that by is squarefree, |by| < |b|'/2, such that the quartic equation

Y2 =0 X*+aZ?X*+ (b/b1) Z*
has a solution with X, Y, Z integral, XZ # 0 and gcd(X, Z) = 1.

Proof. Denote by G the set of classes modulo squares of the elements
described in this corollary. Clearly the classes of 1 and the squarefree part
of b belong to a(E(Q)). If b is squarefree we have s(b;) = by, hence the
proposition and the theorem imply that the class of by is in «(E(Q)), hence
the class of b/b; also since a(E(Q)) is a group. We have thus shown that
G C a(E(Q)). Conversely, let b be an arbitrary divisor of b such that there
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exist pairwise coprime integers X, Y and Z with XZ # 0 such that Y2 =
b1 X* 4+ aZ?X? + (b/b1)Z*. By the proposition, the class of s(b1), which is
equal to that of by, is such that the corresponding quartic is solvable with
XZ # 0 and ged(X,Z) = 1. If |by| < [b]'/2, hence |s(b1)| < [b|*/2, this
implies that the class of by is in G. If |by| > [b]'/2 then |b/by| < |b]'/2, we
have Y2 = (b/b1)Z* + aZ?X? + (b/(b/b1))X* so the quartic is solvable with
X and Z interchanged, XZ # 0, and X, Y, Z pairwise coprime. By the
proposition we deduce that the class of s(b/b;), hence of b/b; is in G, hence
that of by = b/(b/b1) also by definition of G. It follows that G = a(E(Q)), as
claimed. O

Remark. In the above results we have used in part the fact that a(E(Q)) is
a group. In practice, this fact must be used to its maximum extent.

8.2.5 Examples of 2-Descent with 2-Isogenies

Let us consider several simple examples of 2-descent when the curve has a
rational 2-torsion point.

Proposition 8.2.14. (1) The curve y> = x®> — 1 has rank 0 and torsion
group of order 2.
(2) The curve y?> = 2® + 1 has rank 0 and torsion group of order 6.

Note that we have already proved this result in Corollary 6.5.8, also using
2-descent.

Proof. We treat both curves simultaneously. The point O together with
(1,0) for the first curve and (—1,0) for the second clearly are the only points
of order dividing 2. By the Nagell-Lutz Theorem 8.1.10 any other torsion
point is such that y is integral and y? | 27, hence y? = 1 or 9. For the first
curve this does not correspond to rational values of z, and for the second
curve it gives the points (0, £1) and (2, £3), which one can check are torsion
points, the torsion group being of order 6 generated by the point (2, 3).

Let us now compute the rank using 2-descent. Let y2 = 2® — ¢ be the
equation of our curve, with ¢ = £1. We first set £ = x; + € to put the curve
in the form that we have treated y? = z$ +3ez?+3z;. Thus a = 3¢ and b = 3.
The group a(E(Q)) contains 1 and 3. The divisors of b are +1 and +3, hence
it is sufficient to check whether by = —1 gives a solvable quartic with X # 0.
The quartic equation is Y2 = —X* 4+ 36 X222 — 3Z%. Since the discriminant
of the quadratic —u? 4+ 3eu — 3 is negative, the quadratic is always negative,
hence our quartic does not even have real solutions. Thus |a(E(Q))| = 2.

We must now compute |a(E(Q))|. The equation of E is y? = 23 — 6ex2 —
3z1. Thus b = —3, and the group @&(E(Q)) contains 1 and —3. Once again it is
sufficient to check whether by = —1 gives a solvable quartic with X # 0. The
quartic equation is Y2 = —X* — 6 X222 + 3Z*. There exist real solutions to
this quartic, so we cannot get away with that. On the other hand there are
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no solutions modulo 3 since Y2 = —(X?)? (mod 3) implies that 3 | X and
3|Y hence 9 | 3Z* hence 3 | gcd(X, Z), a contradiction since ged(X, Z) = 1.
Thus once again |6(E(Q))| = 2, and we deduce from Proposition 8.2.8 that
r=0. O

Proposition 8.2.15. Let p be a positive or negative prime number, and let
E, be the elliptic curve with equation y* = z* — pzx. The torsion group of E,
has order 2, and if v, is the rank of E,(Q) we have the following results:

(1) Whenp >0 and p =3, 11 or 13 modulo 16 or if p < 0 and p = —2 or
p =5 or9 modulo 16 we have r, = 0.

(2) Whenp>0andp=2o0rp=5,7,9 or 15 modulo 16, or if p < 0 and
p=1, 3, 11 or 13 modulo 16 we have r, =0 or 1 (and ro =1).

(3) When p>0 andp=1 (mod 16) or p < 0 and p = —1 (mod 8) we have
rp, =0,1 or2.

Proof. The points O and (0, 0) are clearly the only points of order dividing
2. By the Nagell-Lutz Theorem 8.1.10 and its refinement Proposition 8.1.12,
any other torsion point has integral z and y with z | p and y? | 4p®, in other
words y? | 4p?. This clearly implies that * = — sign(p) with |p — 1| a square
dividing 4p?, hence dividing 4 since it is coprime to p, or z = sign(p)p = |p|
with p?|p — 1| a square dividing 4p?, hence |p — 1| a square dividing 4, as
before. However Proposition 8.1.12 also implies that = + p/z is a square, so
here that |p + 1| is a square. Since two squares cannot differ by 2, this is
impossible, proving the statement concerning the torsion subgroup (we could
also look at the finite number of remaining possibilities).

Let us now apply 2-descent. With the notation used in that context we
have a = 0 and b = —p. Thus a(E(Q)) contains the classes of 1 and of
—p. The only other divisors of b are —1 and p, and they will both be in
a(E(Q)) if and only if by = —1 is, hence if the quartic Y2 = —X* + pZ*
has a solution with XZ # 0. If p < 0 this quartic has no real solution,
hence in that case |a(E(Q))| = 2. On the other hand if p > 0 there are
cases when there exist solutions, and others where there are none. For p = 2
we have the trivial solution (X,Y,Z) = (1,1,1) so |a(E(Q))| = 4, hence
we exclude that case, so p is odd. Recall that by Theorem 8.2.9 we have
ged(X, Z) = ged(Y, Z) = ged(p, X) = ged(X,Y) = 1. Since p t X, Y/X?
is a square root of —1 modulo p, hence when p = 3 (mod 4) once again we
obtain that |a(E(Q))| = 2. We may thus assume that p > 0 with p = 1
(mod 4). If Z is even then X must be odd, hence Y also, which is impossible
if Y2 = —X* (mod 16). Thus Z is odd hence Z* =1 (mod 16). If X is even,
we have 1 = Y2 = p (mod 8). If X is odd we have X* =1 (mod 16) and Y is
even, hence we have Y2 = 0 or 4 modulo 16, so p = 1 or 5 modulo 16. Thus
if p =13 (mod 16) we see once again that |a(E(Q))| = 2. On the other hand
for p = 1, 5 and 9 modulo 13 there are no 2-adic conditions, and a short
computer search shows that the quartic is often (but not always) solvable
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(the only exceptions for p < 500 and a search up to d = 1000 are p = 113,
193 and 353, out of 33 possible primes; of course this does not imply that the
quartic has no solutions for these values of p).

To summarize, if p < 0 or p = 3 (mod 4) or p = 13 (mod 16) we have
|a(E(Q))| = 2, if p = 2 we have |a(E(Q))| = 4, and otherwise (i.e., if p > 0
and p =1, 5 or 9 modulo 16) we have |a(E(Q))| = 2 or 4.

Let us now consider a(E)(Q). The equation of E is y> = 23 + 4pz, hence
a = 0and b = 4p, and we will apply Corollary 8.2.13 since b is not squarefree.
The classes of 1 and p belong to a(£)(Q), and otherwise the quartic to be
considered is Y2 = b X* + (4p/ b1)Z*. The possible squarefree values of by
less than |b|*/? in absolute value are +1 and +2, except if p = £3 for which
we also have £3. When b; = —1 the quartic is Y? = —X* — 4pZ*, hence
has no real solutions when p > 0. When p < 0 we cannot have X odd,
otherwise Y is also odd, which is impossible modulo 4. Thus X and Y are
both even, and writing ¥ = 2Y;, X = 2X; we obtain Y? = —4X} — pZ*.
Since ged(X, Z) = 1, Z is odd, and p # —2 otherwise Y; is even hence 4 | pZ*,
so p is also odd. Thus Y; is odd, so 1 + p = 0 (mod 4) hence p = 3 (mod 4).
To summarize, if either p > 0 or p < 0 and p Z 3 mod 4 then we cannot
take by = —1 in Corollary 8.2.13.

When b; = 42 the quartic is Y? = +£(2X* + 2pZ*). If by = -2 we
must have p < 0 otherwise there are no real solutions. Writing ¥ = 2Y7,
we have 2Y? = £(X* + pZ*). If p is odd, X must be odd otherwise Z is
even and 2 | ged(X, Z). Thus Z is also odd so we deduce that p+1 = 0,
+2 or 8 modulo 16, hence p =1, 7, 13, or 15 modulo 16. When p = 2¢ with
€ = £1, X must be even, hence Z must be odd, and writing X = 2X; we
have Y2 = £(8X} + £Z*). It follows that we must have ¢ = + = sign(b,),
otherwise we have a contradiction modulo 4, and for ¢ = + we have the
solution (X1,Y1,2) = (1,3,1) when b; = p =2 and (X1,Y7,2) = (1,1,3)
when by = p = —2. To summarize, if p Zb; orpodd and pZ +2—1,7 or 15
modulo 16 we cannot take by = £2, while for p = b; we can, but we already
have p in our list.

Assume now that p = 3¢ with ¢ = +£1, so that we must also consider
by = 3. Since the class of p already belongs to a(E)(Q), it is thus sufficient
to consider b, = —p, hence the quartic is Y2 = —3eX* — 4Z*. This has no
real solution ife = 1. Ife = —1, i.e., p = —3, it has no solution modulo 4 with
X odd. Thus X, hence Y is even, hence Z is odd since ged(X, Z) = 1, and
writing X = 2X; and Y = 2Y; we obtain Y? = 12X} — Z* which has also
no solution modulo 4. Thus in all cases we do not obtain any extra element
of our group when b; = £3.

Using Corollary 8.2.13, we finally have the following cases.

o If p = £2, a(E)(Q) is equal to the classes of 1 and p, hence has 2
elements. ~

elfp>0and p=3,5,9, 11 or 13 modulo 16, then a(E)(Q) is equal to
the classes of 1 and p, hence has 2 elements.
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elfp>0and p=2or p=1,7or 15 modulo 16, then &(E’)((@) may
have 2 or 4 elements (when the class of b; = 2 belongs to it). Both cases can
occur. R

o If p<0and p=>5or 9 modulo 16 then &(E)(Q) is equal to the classes
of 1 and p, hence has 2 elements. R

e If p<0and p=1 (mod 16), then a(E)(Q) may have 2 or 4 elements
(when the class of b; = 2 belongs to it). Both cases can occur.

e If p < 0 and p =13 (mod 16), then a(E) (Q) may have 2 or 4 elements

(when the class of by = —2 belongs to it). Both cases can occur.
e If p < 0and p =3 or 11 modulo 16, then a(E)(Q) may have 2 or 4
elements (when the class of b = —1 belongs to it). Both cases can occur.

~

e If p<0and p=7or 15 modulo 16, then &(£)(Q) may have 2, 4 or 8
elements (depending on the classes of b = —1 and by = +2).

Putting together the results on both groups, we obtain the results of the
proposition. O

Remark. Assuming a very weak form of the Birch-Swinnerton-Dyer conjec-
ture, in case (2) of the proposition we always have r = 1 and in case (3) we
always have »r = 0 or 2, and both cases can occur. We give here an example
where r = 2, and will give an example where » = 0 in the next section.

Proposition 8.2.16. For p = —73 we have r, = 2, generators of E(Q)
modulo torsion being (9/16,411/64) and (4/9,154/27).

Proof. Since p < 0 we already know that |a(E(Q))| = 2, so we consider
only E whose equation is y?> = 2% — 2922. The squarefree divisors by of
b= —292 = —22-73 less than |b|'/? are b; = 41 and +2. The corresponding
quartics are Y2 = by X* — (292/b,)Z*, and for by = —1, 2 and —2 we find
(X,Y,Z) = (4,6,1), (3,4,1) and (1,12, 1) respectively as solutions. It follows
that |@(E(Q))| = 8, hence r, = 2 as claimed. To find the corresponding points
on E, we proceed as follows. By Theorem 8.2.9, we find the points (—16, —24),
(18,24) on the curve E. We do not need the third point corresponding to
by = —2 = —1- 2 since it will be the sum or difference of the first two (in
fact it is the difference), and we do not need the points corresponding to
b/b; which will be the opposites. We now apply the map a from E to E, thus
obtaining the two points (9/16,—411/64) and (4/9,154/27). These points are
necessarily independent, and one can prove that they generate E(Q) modulo
torsion. O

8.2.6 An Example of Second Descent

We now give an example showing how descent can be pushed one step further,
and also showing that the case r, = 0 can also occur in case (3) of Proposition
8.2.15.
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Proposition 8.2.17. For p = —17, we have r, = 0.

Proof. As above, we note that since p < 0 we already know that
|a(E(Q))| = 2, so we consider only E whose equation is y?> = z3 — 68x.
The squarefree divisors b; of b = —68 = —22 .17 less than |b|'/? are
by = +1 and +2, so we must consider the quartics Y2 = —X* + 68Z* and
Y2 = g(2X* — 34Z%) for ¢ = +1. It is not difficult to see that these quar-
tics are everywhere locally soluble. On the other hand a quick search does
not produce any solutions. We thus must work some more to show that they
indeed have no solutions.

Consider the first quartic. Dividing through by Z* gives the conic y? =
—z% + 68 with y = Y/Z? and z = X2/Z2. Conversely, if we have a rational
point (x,y) on that conic with z € Q*2, we can write z = X?2/Z? with
ged(X,Z) = 1 and set Y = yZ2, hence we will have a suitable integer point
on our quartic. Now (z,y) = (2,8) is an evident point on our conic, so to
parametrize it we set y — 8 = t(xz — 2) and intersect with the conic. An
easy computation gives the parametrization z = 2(t> — 8 — 1)/(t*> + 1),
y = —4(2t%2 +t—2)/(t> + 1). Thus, writing t = u/v with ged(u,v) = 1 we are
looking for such pairs (u,v) with 2(u? — 8uv — v?)/(u? + v?) € Q**.

This is equivalent to the equation 2? = 2(u? — 8uv — v?)(u? + v?), which
is a new quartic, and we could hope to show that this quartic is not locally
soluble. However it is simpler to proceed as follows. Writing 2(u? — Suv —
v?)/(u? + v?) = a?/b? with ged(a,b) = 1, we see that there exists A\ € Z
(which we may assume squarefree if we forget the condition ged(a,b) = 1)
such that 2(u? — 8uv — v?) = Xa? and u? + v? = A\b?. Now note that

(—=8u + 66v)(u® + v?) + (4u — v)(2(u? — 8uv — v?)) = 683
hence (exchanging v and v and v into —v)
(8v + 66u) (u? + v?) + (4v + u)(2(u® — 8uv — v?)) = 68u>

so that A | 68 since ged(u, v) = 1. Since A = (u?+v?)/b? > 0 and is squarefree,
it follows that A = 1, 2, 17 or 34.

Assume first that X is odd. Then u? +v? = Ab?, so u and v have opposite
parities otherwise they are both odd, hence Ab?> = 2 (mod 8), so 2 | b which
is absurd. But then u? — 8uv —v? is odd, hence Aa? = 2 (mod 4) which again
is impossible since it implies 2 | a. Thus A must be even, i.e., A = 2 or 34,
so that A = 2 (mod 32). Then u? + v2? = Ab? and ged(u,v) = 1 imply that u
and v are both odd. We thus have

a® = (V/2)a? = u? — 8uv —v? = 2((A/2)b* — v? — duw) = 2(b* + 3) (mod 16) ,

hence a? = 6, 8 or 14 modulo 16, which is impossible. Thus all four values of
X are excluded, showing that our quartic Y2 = —X* +68Z* has no solutions.

We proceed similarly for the quartics Y2 = ¢(2X* — 342%) with ¢ = £1.
We want to look for rational points on the conic y? = ¢(2x2 — 34) for which
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x is a rational square. Clearly (z,y) = (4 + £,4) is on the conic, so we set
y —4 =t(x — 4 — €). An easy computation gives the parametrization
t2(44+¢)—8t+8+2 —4t? +4t(4e + 1) — 8¢
€T = =
2 — 2 oY 12 — 2¢

As above, we write t = u/v with ged(u,v) = 1 and = a?/b® hence we
deduce as above that there exists a squarefree integer A such that

u?(4+¢) — 8uv + (8s + 2)v? = Aa® and u® — 2e0v® = \b?,
and since

(—10u — 9v)(u? — 2v%) + (2u + 5v)(5u® — 8uv + 10v?) = 68v°
and

(—6u + 250) (u? + 2v?) + (2u — 3v)(3u® — Suv — 6v?) = 68v°

and similar identities with 68u® on the right hand side, we deduce as above
that A | 68 hence that A = £1, +2, +17, or +34.

When € = 1, the quadratic 5u? — 8uv + 10v? has negative discriminant
hence is always positive, so we must have A > 0. When ¢ = —1, u? 4+ 202 > 0
so once again A > 0. Thus in both cases we must have A\ =1, 2, 17 or 34.

Assume first that ) is odd, hence A = 1 (mod 8). From u? —2ev? = \b? we
deduce that b is odd, otherwise 4 | Ab? hence 4 | u? hence 2 | v? contradicting
ged(u,v) = 1. Thus u is odd. Tt follows that

u?(4 +¢€) — 8uv + 8cv® + 20® =4 + 26 — e (mod 8)

is odd, hence a is odd so that 3 + & = 0 (mod 8), which is absurd.
Assume now that X is even, hence A\/2 = 1 (mod 8). Then u is even, hence
v is odd. We thus have

2(u/2)%(4 +¢€) — 8(u/2)v + (4 + 1)v? = (\/2)a? ,

hence a is odd so
2e(u/2)® +4e+1=1 (mod 8) ,

hence (u/2)? = 2 (mod 4), a contradiction.

To conclude, we see that all values of A\ are excluded, showing that our
quartics Y2 = g(2X* —342Z*) have no solutions. Putting everything together,
we obtain that |a(E(Q))| = 2 hence that r, = r(E) = 0. O

Remark. For all three quartics we have been able to show local insolubility
at 2 directly. In general however, it will be necessary to parametrize one of
the conics using the general theory of Diophantine equations of degree 2, and
replace in the other.



526 8. Diophantine Aspects of Elliptic Curves

8.3 Description of General 2-Descent

From now on, we do not assume that our elliptic curve y?> = z® + ax + b has
a rational 2-torsion point, and in fact we explicitly assume that it does not,
in other words that the polynomial x® + ax + b is irreducible. As usual we
may always assume that a and b are rational integers.

There are essentially two methods to deal with this case. The first method
is algebraic, and consists in imitating the above method by placing ourselves
in a larger number field containing a 2-torsion point. This has the advantage
of being easy to explain since it is a simple generalization, and also of being
useful also for the computation of the group of points of an elliptic curve over
an arbitrary number field instead of Q. It has the disadvantage of not being
very efficient for small examples, although for large ones it is competitive.
The second method consists in using invariant theory. It is often more efficient
than the first, but has the disadvantage of being applicable only over Q. We
will only describe the first method, and refer to [Cre2] for complete details
on the second method.

8.3.1 The Fundamental 2-Descent Map

Let K = Q(f) be the number field generated over Q by a root 6 of the
equation z° +ax + b = 0. Consider the map « from E(Q) to K*/K** defined
by a(O) =1 (mod K*?) and

a(P) =z —0 (mod K**)if P = (z,y) # O,

where of course modulo is taken in the multiplicative sense. As in the rational
2-torsion case, the main usefulness of this map comes from the following
result.

Proposition 8.3.1. (1) The map « is a group homomorphism from E(Q)
to K* | K*2.
(2) The kernel of a is equal to 2E(Q).

Proof. (1). We treat the generic case, leaving the (easy) special cases to
the reader. Clearly if P = (z,y) then

a(=P)a(P) = a((z,—y))a((z,y)) = (z = §)* = 1 (mod K*?)

hence a sends inverses to inverses. Thus we must prove that if Py +P,+P; = O
then a(P;)a(Py)a(P3) = 1 (mod K*?). Let y = mx + n be the equation of
the line passing through the three points. Writing the intersection of the line
with the cubic equation, we see that the three abscissas x; of the points P;
are the three roots of the equation A(z) = 0 with

A(X) = (X?+aX +b) — (mX +n)?,
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hence by definition of 8 we have
(z1 — 0)(z2 — 0) (x5 — 0) = —A(6) = (MmO +n)? =1 (mod K*?),

proving (1).
(2). It follows from (1) that

a(2P) = a(P)? =1 (mod K*?),

so that 2E(Q) C Ker(a). Conversely, assume that Q = (z,y) € Ker(a) with
Q # O, in other words that z — 8 = u? for some u = ug6? + 1,0 +up € K
with u; € Q for all 4. Expanding u? and using 2 = —afl — b, we obtain the
three equations

au? — u? — 2ugus =0

bu3 + 2auius — 2uou; = 1

—2bugus +uf =1 .

Clearly ugs # 0, otherwise u; = 0 by the first equation, hence 0 = 1 by the
second. I claim that the point P = (u;/u2,1/u2) is in E(Q) and is such that
() = £2P for a suitable sign +. As in the rational 2-torsion case this a simple
but tedious verification. Indeed, first note that using the above equations we
have

e 3 - 3

u \? uy ui +augul +bud  up(aud — 2uous) + auiui + bud
ta{—)+b= =
U2 Uy Uus

U2
_ 2auyug — 2upur + bu% 1

2 2
) U3

Y

hence P € E(Q). Furthermore, multiplying the first of the above equations
by 2u¢ and subtracting u; times the second, we obtain the identity

uy = uz(bugus + 2au? — 2auqus + 4ug) .
Thus if we set 2P = (x3,y3) we have z3 = m? — 2(u; /uz) with

. 3(u1/u2)® +a _ 3u? + au? _ 3(au3 — 2uous) + aul = 2aus — 3ug .
2/us 2us 2us

Using the above identity, it follows that
z3 = 4a’ul — 12augus + 9ud — 2(bugus + 2au? — 2augus + 4ul)
= ug — 8auguy — 4au% + 4a2u§ — 2bujus

= ug — 2bugus + 4a(aus — 2ugus —ul) = x

by the first and third of the basic relations above. Since P € E(Q), it follows
that y3 = £y hence that (Q = £2P as claimed, proving the proposition. O
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Corollary 8.3.2. The map « induces an injective group homomorphism
from E(Q)/2E(Q) to K*/K** (which by abuse of notation we will still denote
by a). In addition, if the image of « is finite then E(Q) is finitely generated
of rank r equal to the dimension of the image of o as an By -vector space.

Proof. The first statement is clear. For the second we note that by as-
sumption E has no rational 2-torsion, hence if d = dimg, (Im(c)) we have
|E(Q)/2E(Q)| = [Im(a)| = 2¢, so Theorem 8.2.7 implies that E(Q) is finitely
generated of some rank r such that 2" = |E(Q)/2E(Q)|, hence that r = d as
claimed. O

To have precise information on E(Q) we must therefore determine the
image of a. For this we need the notion of T-Selmer group of a number field
(not to be confused with the Selmer group of the elliptic curve, although the
notions are related).

8.3.2 The T-Selmer Group of a Number Field

For the reader’s convenience in the following definitions we have included the
classical definitions of T-unit group and T'-class group.

Definition 8.3.3. Let T be a finite set of finite places of K. 1

(1) We say that an element u € K* is a T-unit if vy(u) = 0 for every prime
ideal p such that p ¢ T. The group of T-units is denoted Ur(K).

(2) We define the T-class group Clr(K) as the quotient group of the ordinary
class group Cl(K) by the subgroup generated by the classes of the elements
of T.

(3) We say that an element u € K* is a T-virtual square if vy(u) = 0 (mod 2)
for every prime ideal p such that p ¢ T.

(4) We define the T-Selmer group St(K) as the set of classes of virtual
squares modulo K*2.

Remark. Most authors use the notation K (7', 2) instead of St(K).

Denote by A the group of fractional ideals generated by the elements of
T. The reader can easily check that v is a T-unit if and only if uZ x € A and
that u is a T-virtual square if and only if uZx = g?a for some ideal q and
some a € A.

The main properties of these notions are summarized in the following
proposition.

Proposition 8.3.4. Let K be a number field of signature (r1,72), let T be a
finite set of finite places of K, and denote by t its cardinality.

! We use T instead of the more standard S to avoid notation such as Ss(K)
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(1) The group Ur(K) is a finitely generated abelian group of rank v +
r9 +t — 1, whose torsion subgroup is independent of T and equal to the
(cyclic) group of roots of unity of K. In particular

— 27‘1+7‘2+t

‘ Ur(K)
Ur(K)?

(2) We have a natural split exact sequence

Ur(K)
Ur(K)?

— ST(K) — ClT(K)[Q] —1 ,

where as usual for an abelian group G, G[2] denotes the subgroup of
G killed by 2. In particular ST(K) is finite and its cardinality is equal
to 2mtr2tts yhere s' denotes the 2-rank of Cly(K), hence |Sp(K)|
divides 277215 yhere s denotes the 2-rank of CI(K).

Proof. (1). Although the proof is well-known and easy we repeat it here.
We have a natural exact sequence

1—UK) = Ur(K) — A— Cl(K) — Clpr(K) — 1,

where the map starting from Ur(K) sends u to the ideal uZ g, and the map
starting from A sends an ideal to its ideal class. It is immediately checked
that the sequence is indeed exact. Since CI(K) and a fortiori Clp(K) are
finite groups, it follows that Ur(K) is finitely generated and its rank is equal
to that of U(K) (r; + ro — 1) plus that of A, equal to ¢t. The statement
concerning the torsion subgroup is clear.

(2). Let u € Up(K), so that uZx = q*a for some a € A. We send u to
the class of q in Clr(K). Clearly this does not depend on the decomposition
g%a or on the chosen representative u of u in K*. Since q> = ua™! it is clear
that the class of q belongs in fact to Cly(K)[2]. With this map defined, it is
then easily checked that the given sequence is exact and split. The statements
concerning the cardinality of St (K) follow. O

It is clear that Sp(K) is an Fa-vector space, and from the existence of
these two exact sequences it is not difficult to give an Fy-basis for St (K). As
always in this course we assume that we have at our disposal a CAS such as
Pari/GP which can efficiently compute class and unit groups of number fields.
We first compute explicitly Ur(K') using the algorithm given in [Cohl] Propo-
sition 7.4.7, whence an F,-basis of Ur(K)/Ur(K)?. We compute Clr(K) as a
quotient of CI(K) by using the general quotient algorithm for abelian groups
([Coh1] Algorithm 4.1.7), and we can then easily compute Clr(K)[2] and use
the splitting of the exact sequence to obtain an Fy-basis of Sp(K). In the
frequent special case where the class number h(K) = |CI(K)| of K is odd (in
particular when it is equal to 1), then S7(K) = Ur(K)/Ur(K)? and as an
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I, basis of S7(K) we can take the disjoint union of generators of the h(K)th
power of each prime ideal of T' (which are principal ideals) together with a
system of fundamental units and a generator of the group of roots of unity
of K. We will see several explicit examples below.

8.3.3 Description of the Image of o

With these definitions and properties, it is now easy to determine the image
of a. We keep all the above assumptions and notation, in other words E is an
elliptic curve defined over Q by a Weierstrass equation y? = 2® + ax + b with
a and b in Z, we let 6 be a root of z3 +az + b = 0, assumed to be irreducible,
and we set K = (X0). Finally, we set I(0) = [Zk : Z[6]], the index of Z[f] in
the full ring of integers Z k. Thus, if d(K) is the discriminant of the number
field K we have —(4a® + 27b%) = d(K)I(0)2.

Proposition 8.3.5. Let P = (z,y) € E(Q) \ {O}, assume that q is a prime
ideal of K such that vq(x—6) is odd, and denote by q the prime number below
q. Then vg(z —0) > 1, q| (36? +a), v4(y) = 1, v,(32*> +a) > 1, and q | I(6)
(hence in particular ¢* | (4a® + 27b?)).

Proof. Set v = 2 — 0 € K. We can write y2 = vC with C = 72 + 36y +
30% + a. If vq(y) was negative we would have vq(y) = vq(y?) — vq(C) =
2(vq(y) — vq(7)) = 0 (mod 2), since a and # are integral. Thus when vq(7)
is odd we have vq(y) > 1, and we deduce from the expression for C that
vg(C) > 0. Since vq(C) = 2v4(y) — vq(y) = 1 (mod 2), we have vq(C) > 1,
hence v4(36% + a) = vq(C — v(y + 30)) > 1, proving the first two results.
Since y?> = yC and q | v (or C), we have v,(y) > 1. Furthermore 3z + a =
3(y+ 6)? = 372 + 670 + 362 + a, and since q | v and q | (302 + a) it follows
that v,(32% + a) > 1.

The result g | I(f) and its proof was communicated to me by D. Simon.
We prove the following:

Lemma 8.3.6. If g1 I(0) then q is the only ideal q; above q such that x—0 €
qi, and it has residual degree 1.

Proof. By Proposition 3.3.18, since ¢  I(6) the decomposition of ¢Z g into
prime ideals copies the decomposition of the polynomial R(X) = X3 +aX +b
modulo g. Thus, write R(X) =[], Ri(X)® (mod g), where R;(X) are monic
polynomials in Z[X]. We then have qZ x = [], q;*, where q; = ¢Zx+R;(0)Zk,
and f(q;/q) = deg(R;), and we reorder the q; so that q; = q. If we write z =
n/d with coprime n and d in Z, we see that vy(d) = 0, otherwise vg(z —0) =
vq(n/d — 6) < 0 since vg(f) > 0. Thus if we set 1 = nd~! mod ¢ we have
vg(z — 1) 2 1, hence z; — 0 € q. Since (R;(X) — Ri(z1))/(X — z1) € Z[X],
it follows that R;(0) — R1(z1) € q, hence that Ry(z1) € g, in other words
Ri(z1) = 0 (mod q). Since R, is irreducible in (Z/qZ)[X], this means that
Ri(X) = X — 1, and in particular that deg(R1) = 1, so that f(q/q) = 1.
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Furthermore, since the R; are pairwise coprime modulo ¢, 1 cannot be a
root of R; for ¢ # 1, hence x — 6 cannot belong to q; for i # 1. O

Resuming the proof of the proposition, if we assume by contradiction that
g1 f(6) we thus have (z —0)Z k = q”a where v = vq(z —6) and a is an ideal
coprime to all ideals above q. Since f(q/¢q) =1 we thus have

y? = |2° +az +b| = | Nkso(@ — 0)| = Nk/o(a)’ Nxjo(a) = ¢° Nkjo(a)

hence v = vq(z — 0) = 2v,4(y) is even, in contradiction with the assumption
of the proposition, and finishing the proof. O

Corollary 8.3.7. Denote by T the set of prime ideals q of K such that q |
(362 + a) and q | 1(8), where q is the prime number below q. The image of a
is equal to the group of u € St(K) such that Nk jo(u) is a square in Q for
some (or any) lift of u to K*, and for which there exists a lift u of the form
z—0.

Proof. Let P = (z,y) € E(Q) \ {0}, so that a(P) = z — 6. By the
proposition, if vy (z — ) is odd we have q | (36> +a) and q | I(f), hence q € T,
in other words the class u of a(P) belongs to St (K). It is evidently the class
of an element of the form z — 6, and since N g/g(u) = 23 + az + b it follows
that (z,y) € E(Q) if and only if Nk g(u) = y* is a square in Q. ]

Remarks.

(1) If E is given by an equation 4% = R(z) with R(z) = 2® +az® +bz+c, it is
clear that the above corollary is still valid if we replace the first condition
defining T by q | R'(9).

(2) It can be shown (see [Sch-Sto]) that an additional condition on g¢ is that
the Tamagawa number ¢, be even. Even though we have not defined this
notion, note that these numbers can easily be computed.

Corollary 8.3.8 (Mordell). The group E(Q)/2E(Q) is finite and the group
E(Q) is finitely generated. More precisely |E(Q)/2E(Q)| divides 2m1+r2tt+s
using the above notation.

Proof. The finiteness and the bound for E(Q)/2E(Q) follow from the
above proposition and Proposition 8.3.4. The statement for E(Q) follows
from Theorem 8.2.7. o

Although our aim is practical, note that we have finished the proof of the
Mordell-Weil theorem over Q.
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8.3.4 Practical Use of 2-Descent in the General Case

We now explain how to use the above results in practice, keeping in mind
that, as in the rational 2-torsion case, there does not exist any unconditional
algorithm for computing the rank.

We begin by computing disc(R), the number field K = Q(0), its discrim-
inant d(K) as well as the index I(#) = /disc(R)/d(K), and finally the set
T of prime ideals q of K such that q | (36? + a) and ¢ | I(6). Using the algo-
rithms explained at the end of Section 8.3.2 we then compute an Fs-basis of
St(K). Using [Cohl], Algorithm 4.1.11 we then compute the kernel Sy (K, 1)
of the norm map from St (K) to @*/Q*. By Corollary 8.3.7 the image of a
is exactly the group of elements u € St(K,1) which have a lift v € K* of
the form z — 6. Up to this point the computation is completely algorithmic.
However the determination of such elements u is the nonalgorithmic part of
the method since we are going to see that, as in the rational 2-torsion case,
it leads to the determination of rational points on hyperelliptic quartics.

Let v = u20? 4+ u10 + ug be any lift of u. We must determine whether
there exists 7 = ¢20% + 10 + ¢o € K* such that uy? = 2 — 4. Expanding, we
have

U’YQ = QQ(CO, C1, 02)02 —qQ (607 C1, 62)0 + qO(COJ C1, C2) )

where the g; are explicit integral quadratic forms in the ¢;. Thus we must solve
the equations g2(co,c1,¢2) = 0, q1(co,c1,¢2) = 1, and then z is determined
thanks to go(co,c1,¢2) = x. The solubility of the first equation can easily
be determined thanks to the Hasse-Minkowski theorem, an explicit solution
can then be found using the algorithm explained in Section 6.3.3, and the
general solution is given by Proposition 6.3.4 and its corollary. Thus there
exist quadratic polynomials P;(X,Y") such that g2(co,c1,¢2) = 0 if and only
if there exist coprime integers s and ¢t and d € Q such that ¢; = dP;(s,t) for
0 <4 < 2. The equation ¢ (cp,c1,c2) = 1 can thus be written

ql(P()(S,t),Pl(S,t),PQ(S,t)) = ]./d2 ,

which is a hyperelliptic quartic equation. The rest of the process is similar to
the case of rational 2-torsion: we must determine if this quartic equation is
everywhere locally soluble. If it is not, we exclude v from the consideration
of the points in the image of a. If it is, we look as intelligently as possible
for rational points on the quartic. If we find one, we include u in the image
of a (and = = d?qo(Po(s,t), Pi(s,t), Pa(s,t)) is the explicit abscissa of the
corresponding point in E(Q)). If we cannot find one, we are stuck and cannot
determine E(Q) without further work such as a second descent.

Remark. The group of u € Sr(K,1) such that the corresponding quartic
is everywhere locally soluble is the smallest group containing E(Q)/2E(Q)
which can be determined algorithmically using only a 2-descent. It is called
the 2-Selmer group of the elliptic curve E and denoted S(E). The quotient
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of S2(E) by its subgroup E(Q)/2E(Q) is the part of the so-called Tate—
Shafarevitch group III(E) of E killed by 2, so that we have an exact sequence
(analogous to the one for St (K), whence the name and the notation)

EQ
2E(Q)

The group ITI(E)[2] is the the obstruction to performing a 2-descent. In the
rational 2-torsion case, the groups III(E)[2] and I_T_I(E‘) [2] are both obstruc-
tions to performing a 2-descent, although if either of them is trivial there is
no obstruction to performing a second descent (I owe this remark to J. Cre-
mona).

l——

— S2(E) — II(E)[2] — 1.

8.3.5 Examples of General 2-Descent

As examples of general 2-descent we consider two curves which we will need
for the proof of Corollary 14.6.9 in Chapter 14.

Proposition 8.3.9. (1) The curve E defined by y?> = x* — 16 has rank 0
over Q and trivial torsion group, in other words E(Q) = {O}.
(2) The curve E defined by y> = z° + 16 has rank 0 over Q and torsion

group of order 3 generated by (z,y) = (0,4), in other words E(Q) =
{0,(0,£4)}.

Proof. The statements concerning the torsion subgroups easily follow from
the results of Section 8.1.3, so we only compute the ranks. In both cases
we have K = Q(3) with 8% = 2, and @ = 2¢3 where € = 1 for the first
equation and ¢ = —1 for the second. We compute that disc(R) = —2% - 33,
and disc(K) = —223%, hence I(§) = 2%, so T only contains prime ideals
above 2. Since 2 is totally ramified as 2Zk = p3 with p» = fZkand ps | 0,
we take T' = {p2}. Since the class number of K is equal to 1, it follows that
an Fy-basis of St(K) is given by the classes modulo squares of the union of a
generator of po with the fundamental units and generator of torsion units, so
here by the classes modulo squares of 3, 8 —1, and —1 of respective absolute
norms 2, 1, and —1. Thus if u = 8%(8 — 1)°(—1)¢ the norm of u is a square
in Q if and only if a and ¢ are even. We deduce that the group St(K,1) of
elements of St (K) whose norm is a square is an Fa-vector space of dimension
1 generated by 5 — 1.

It follows that for both curves the only quartics to consider are those
corresponding to 8 — 1. Let us compute explicitly the quadratic forms qq, ¢1
and ¢, as above, in other words such that

(B—1)(4c28% 4+ 2e¢1 8+ c0)? = ga(co, c1,¢2)02 — qi(co, 1, ¢2)0 + qo(co, c1, ¢2)

where we recall that 8 = 2¢3. We find
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g2 (co,c1,c2) = 803 — 2coco — cf + ecocy
qi(co,c1,c0) = 16eci — 16¢1¢o + 2coc1 — 60(2)/2
go(co,c1,c2) = —32ecico + 16¢oce + 8cf — cg
The equation g2(cg,c1,¢2) = 0 has the evident solution (co,c1,c2) =

(e,1,0). Thus by Proposition 6.3.4 we can easily parametrize the general
solution: we may choose

M =

OO =
- O O
O = M

hence R = (s,0,t)! so (after replacing d by ed in the formula of the proposi-
tion) the general solution is given by

co = d(8t* —s%), ¢ =de(8t% —2st), co =d(2t* —st) .
The condition ¢; =1 gives the hyperelliptic quartic equations
e(—96t" + 96st® — 245%t> + 45°t — 5" /2) = 1/d* ,

and since s and t are (coprime) integers we have 1/d =Y with Y € Z (we
cannot have 1/d = Y/2 with Y odd otherwise the left hand side would have
a denominator 4), hence s is even hence t is odd, and writing s = 2s; we see
that 8 | Y2 hence 4 | Y, so writing Y = 4Y; implies that s; = 2s5 is even,
giving the equation

2e(=3t* + 12s5t> — 1255t% + 8s5t — 4s3) = Y2,

implying that Y; is even, hence that ¢ is also even, a contradiction since s
and t are assumed coprime. It follows that the quartic associated to g — 1
is not 2-adically soluble, hence the image of the 2-descent map « is trivial,
proving that the rank of the two curves is equal to 0 by Corollary 8.3.2. O

8.4 Description of 3-Descent with Rational 3-Torsion
Subgroup

Although 2-descent (possibly followed by a second descent) often works, there
are many cases where it does not. The obstruction to this is the fact that the
Tate—Shafarevitch group IIT of the curve has a nontrivial 2-part, analogous
to the fact that the obstruction to nonunique factorization in number fields
is a nontrivial class group. It is not necessary to understand precisely the
definition of IIT to grasp the underlying philosophy.

When 2-descent does not work, we can try p-descent for a larger prime p
(I will not give the precise definition), hoping that the p-part of I is trivial.
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In the present section I will give the example of 3-descent when there exists a
rational 3-torsion subgroup, and I thank T. Fisher and J. Cremona for many
explanations. It is very analogous to 2-descent when there exists a rational
2-torsion point (Section 8.2.3).

8.4.1 Rational 3-Torsion Subgroups

We first have to emphasize that there is a difference between having a rational
3-torsion point, and having a rational 3-torsion subgroup, the latter meaning
that there exists a subgroup of order 3 of E(Q) which is stable under the
action of Galois conjugation, but not necessarily composed of three rational
points. More precisely, we set the following definition.

Definition 8.4.1. Let E be an elliptic curve defined over a perfect com-
mutative field K, and let T be a finite subgroup of E. We say that T is a
K -rational subgroup of E if it is globally stable by any K -automorphism o of
any extension of K, in other words if T € T implies that o(T) € T .

A more elegant (but strictly equivalent way) of expressing this definition
is simply to say that 7 is stable under Gal(K/K), without introducing the
field L.

Proposition 8.4.2. Let E be an elliptic curve defined over a perfect com-
mutative field K of characteristic different from 2 and having o K -rational
subgroup of order 3, necessarily of the form T = {O,T,-T}.

(1) The abscissa z(T) of T is in K.

(2) Up to a change of x into x — xo for some xo € K the equation of E is
y? = 23 +d(ax +1)? for somed € K* and a € K, and then T = (0,/d).

(3) If in addition E has o K-rational point T of order 3, up to the same
change the equation of E is y*> = z3 + (ax + b)? for some a € K and
be K*, and then T = (0,b).

Proof. We have necessarily T = {O, (z,y), (z,—y)} with z = z(T) and
y = y(T). Let L and G be as in the definition of a K-rational subgroup. If
o € G we must have (o(z),0(y)) € T, hence since it is an affine point we
have (o(z),0(y)) = (z,+y) for a suitable sign +. In particular o(x) = z for
all 0 € G = Gal(L/K), so by Galois theory z € K, proving (1). For (2), we
note that thanks to (1), changing z into z — o we may assume that z(7') = 0,
so that T = (0,0) with 8 not necessarily in K. If the equation of E in the
new coordinates is y?> = 2% + Az? + Bz + C then C = 6%, and C # 0 since
otherwise T is also of order 2, which is impossible since T # . We thus have
z(2T) = (B/(2y(T)))? — A = (B? — 4AC)/(4C), and T has order 3 if and
only if 2(2T) = z(—T) = z(T) = 0, hence if and only if B2 —4AC = 0. Since
C # 0 we thus have Az?> + Bz + C = d(az + 1)? for d = C and a = B/(2C),
proving (2), and (3) is an immediate consequence. O
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When E has a K-rational subgroup of order 3 it will be more convenient
to work with a more general equation of the form

y? = 2° + d(azx + b)*

instead of y? = 2® +d(az +1)?, which is of course equivalent to the preceding
form since d(az + b)? = db*((a/b)z + 1)? and b # 0, keeping in mind that we
can change (d, a,b) into (df?,a/f,b/f). We note for future reference that the
discriminant of the elliptic curve E is given by

disc(E) = 16d*b*(27b — 4a%d) ,

so that in particular d # 0, b # 0, and 27b — 4a®d # 0.

8.4.2 The Fundamental 3-Isogeny

From now on we follow what we have done for 2-descent in Section 8.2. The
proofs are very similar, the main difference being that we will have to deal
with elements of Q(v/d) and not only of Q.

Thus from now on let E be an elliptic curve defined over Q having a ratio-
nal subgroup of order 3, so that by the above proposition, up to translation
of the z-coordinate we may assume that E is given by an equation of the
form y? = z° + d(az + b)2. We fix the 3-torsion point T = (0,bv/d), which
may not be in Q, but the group of order 3 {O,T,—T} is a rational subgroup.

As in Section 8.2 we will work with a pair of elliptic curves E and E,

-~

defined by a similar equation y? = 2 + d(az + b)?, where

27b — 4ad

’ a a, 9

Note that b = — disc(E)/(144d?b%) # 0, and since
disc(E) = 164203 (27b — 4a3d) = 1296d°6°b,

the curve F is indeed nonsingular, hence is an elliptic curve.
This curve has the same form as F, and it thus has a rational subgroup
of order 3 generated by

N _ 3
T = (0’ 2’71)9%40/(1‘/_3d> .

Note that d = 9d, a=aand b= 9b, hence the curve E is the curve y? =
22 + 9d(ax + 9b)? which is trivially isomorphic to E by replacing 2 by 9z and
y by 27y.
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Proposition 8.4.8. For any P = (z,y) € E set
23 4+ 4d((a®/3)2® + abz + b?)  y(z3 — 4db(az + 2b)))

o) = @) = ( ) , “
for P not equal to £T or O, and set ¢( )=¢(=T) = ¢(0) = O. Then ¢ is
a group homomorphism from E to E whose kernel is equal to {(’) T,-T}.
Dually, there emsts a homomorphzsm qb from EtE defined for P= (z,9)
different from +T and O by

~ 73 +4d((@%/3)3% + abz + b2)  §(7% — 4db(@z + 2b
¢(P)=(w,y)=< ( /9)352 ), ( 275(53 )

and by $(T) = 6(-T) = 5( 0) = 0. Furthermore for all P € E we have
¢°¢(P) = 3P, and for all P € E we have ¢ o ¢( )—3P_

Proof. As in the 2-descent case, it is enough to check the given formulas.
However this is not satisfactory and does not explain how they have been

obtained. I give here a partial justification. For P = (z,y) € E we will set

- S N d .
with evident notation Z = z(P) +«(P+T)+x(P—-T) —z(T) and y = Y ®
(in the case of a p-isogeny with a point T of order p we would set T =
> o<icp_1 T(P +iT) up to some constant translation). A small computation

gives the formula of the proposition. In any case, we check that ¢(P) € E
and that its kernel (more precisely the inverse image of @) is our given group
of order 3. We must now show that ¢ is a group homomorphism. In fact,
since ¢ is a morphism of algebraic curves and sends O to O this follows from
Theorem 7.1.5, but let us show this directly, as usual putting ourselves in
the generic situation. Thus let P, P>, P; be three points on E such that
P, + P> + P; =0, and let y = max + n be the line through those three points
(which has this form since we are in the generic case). Once again I could
give directly the equation of the line passing through the ﬁi, but instead let
us find this equation. We thus want to find m and 7 such that § = mz +7n
for (z,y) = (xi,v:), 1 <1 < 3. Since y; = max; + n this implies that the x;
are three roots of the equation

(mz +n)(2® — 4db(az + 2b))/2® = M (2> + 4d((a®/3)z* + abx + b*))/2*> + 7,
in other words
(m —m)z* + (n — 1 — (4/3)a*dm)z®
— 4abd(m + m)x? — 4bd(b(2m + M) + an) — 8b*dn =0 .

Since we are in a generic situation this means that this polynomial must
be divisible by the third degree polynomial of which the z; are roots, in
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other words by z2 + d(az + b)? — (mzx + n)%. Computing the remainder, we
obtain three linear equations in the two unknowns m and 71, and after some
computation we find that they are compatible and that

_ (n® + 3db*)m — 4adbn

= " g an

_ n® —(4/3)a*dmn® + (4dabm? + (4/3)a’bd — 9b%)dn — 4db*m?®

B — db?

3

3)

As in the 2-descent case, we could now start from these values and check that
they satisfy ¢; = ma; + n for 1 < i < 3, but here 1t is not necessary.
Applymg the first part of the proposition to E gives a map ¢1 from E

to E, and composing with the isomorphism (z,y) — (2/9,y/27) between E
and E gives the map ¢ of in the proposition. O

8.4.3 Description of the Image of ¢

Although we want to copy almost verbatim what we have done in the 2-
descent case, a difficulty arises from the fact that the 3-torsion point 7' =
(0,bv/d) does not necessarily have rational coordinates, although the group
it generates is rational. It will thus be necessary to work in the field Ky =
Q(\/ d), which is equal to Q if d is a square, and is a quadratic field otherwise.
Note however that this field is only a necessary tool, but that we will not need
to consider the whole group E(Kg).

Proposition 8.4.4. Denote by I = ¢(E(Q)) the image of the rational points
of E in E(Q).

(1) O e T, and £T € T if and only ifc?— —3d is a square and disc(E) =
144d263b is a cube in Q* (or, equivalently, d/(2b) is a cube).

(2) Otherwise, a general point P= (z,9) € E(Q) different from +T belongs
toT if and only if there exists v € K3 = Q(v/=3d) such that

P =G (@@+nVa.

Proof. (1). Since IcC E’(Q), it is clear that a necessary condition for T
to be in I is that its ordinate be in Q, in other words that d = §2 for some
d € Q. Thus assume that this is the case. Since the only affine points with
zero z-coordinates on E are £7', the definition of ¢ shows that T € I if
and only if there exists z € Q* such that z° + 4d((a?/3)z? + abz + b?) = 0,
and this last equation implies  # 0 since bd # 0. We compute that the
discriminant of this polynomial is equal to —(16/27)b%d?(4a®d — 27b)?, which
is always strictly negative, so that our cubic equation has only one real root.
An application of Cardano’s formula or a direct check shows that this root
is given by the simple formula
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3bd
ad — (a38® + (81/4)b4)1/3

T =—

It follows that there exists a rational root if and only if a38% + (81/4)bd is a
cube in Q*, hence if and only if its square d(a®d + (81/4)b)? = (27/4)2db? is
a cube in Q*, hence if and only if E/ (23) is a cube, if and only if disc(E) =
(d/(2b))?(4bb)? is a cube, proving (1).

(2). Since z = 0 implies (z,y) = +T hence ¢((z,y)) = O, we may assume
x # 0. Thus let (z,y) € E(Q) with z # 0. A short computation shows that

P Y (y ~ ((a/3)z + b)\/c_7>3

x

showing that this expression is a cube in K 3, more precisely that it is equal to
72, where v = (y — ((a/3)x + b) \/_)/a: Conversely, assume that P = (z,7) €

E(Q) is such that there exists v such that v = 7 — (az + b Vd. Note that
~v = 0 implies that R R
0=7%—d@z+b)?=2°,

hence that z = 0, i.e., P= j:f, and conversely. Therefore in the present case
we have v # 0. We have the following lemma.

Lemma 8.4.5. Setu = (y+Z/7)/2 and v = (v —Z/7)/( 2\/_
(1) u and v are in Q.
(2) We have
@/7) =7 + (a5 + D) V.
(3) We have b= —(v + a/3)(u® — d(v — 2a/3)?).

Proof. (1). This is trivial if Vi e Q, so assume that this is not the case.
Then denoting by o(7) the conjugate of v in the quadratic field K; we have

(yo(7))? = §* — d@z +b)* =7

Since yo(y) and Z are in Q this implies that yo(y) = Z, so that Z/y = o(v),
proving (1).
(2). This is clear since

~

g y—(amb)\/(}

(3). We may thus write v = u + vVd and Tly=u-— v\/(?, hence T =
u? — dv? = u? + 3dv®. We compute 72 — (Z/7)? in two different ways. On the
one hand we have
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v —(Z]7)® = 2\/_ d(3u?v + v3d) = —2\/_ d(3dv® — 3u®v)
while by (2) we have

V= (Z/y) = —2f d(az +b) = —2f a(u? + 3dv®) + (27b — 4a3d)/9) .
Identifying both expressions gives
b= —u?(v+a/3) + d(v® — av? + 4a*/27) = (v + a/3)(d(v — 2a/3)? — u?) ,
proving the lemma. o

It is now easy to finish the proof of the proposition. Since b # 0, the
lemma implies that v 4+ a/3 # 0. Thus we can set

z=-b/(v+a/3) =u®—dv—2a/3)® and y=uzr=u>—du(v—2a/3)*.
We thus have y? = u22? = u2b?/(v + a/3)?, while by the lemma we have
(v+a/3)*(z® + d(axz + b)?) = —b% + db*(v + a/3)(—a + v + a/3)*
=b*(=b+d(v+a/3)(v—2a/3)?)
=b* (v + a/3)u?

so that we indeed have y2 = 23 +d(az+b)?2, hence (z,y) € E(Q). Furthermore
we have (ﬁ((iﬂ,:l/)) = (/'Z'\lag//\l)7 with

#1 =z +4d(a*/3 + a(b/z) + (b/2)?)
=u? —d(v —2a/3)% + d(4a*/3 — 4a(v + a/3) + 4(v + a/3)?)
=u?+3dv’ =7
and
91 = u(z — 4d(a(b/z) + 2(b/z)*))
= u(u? —d(v —2a/3)? + d(4a(v + a/3) — 8(v + a/3)?)) = u(u® — 9?d) .
On the other hand by the above lemma we have
7= 0"+ &/7)°)/2 = v’ +3u’d = u(u® — 9’d) = G ,
finishing the proof. O

The following corollary is immediate by considering the dual isogeny.
Corollary 8.4.6. Set I = $(E(Q)).

(1) O €I, and £T € I if and only if d is a square and d/(2b) is a cube in
Q*.

(2) Otherwise, a general point P = (z,y) € E(Q) different from £T belongs
to I if and only if there exists v € Ky = Q(v/'d) such that v* =y — (azx +

W)
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8.4.4 The Fundamental 3-Descent Map

We continue to imitate what we have done for 2-descent. We keep the as-
sumptions and notation of the preceding sections. In particular, recall that
we have set K; = Q(v/d), which is equal to Q when d is a square.

Definition 8.4.7. We define the 3-descent map a from the group E(Q) to
the multiplicative group K;/K;3 as follows.

(1) a(0) =1, and if T € E(Q) (in other words if Vd € Q) then a(T) =
4db?.
(2) When P = (z,y) € E(Q) with P # T then o((z,y)) =y — (az + b)V/d.

In the above, all the values are of course understood modulo the multiplicative
action of K.

The main result is the following.

Proposition 8.4.8. (1) The 3-descent map « is a group homomorphism.

(2) The kernel of a is equal to 5(@((@))

(3) The map a induces an injective group homomorphism from E(@)/(E(E(Q))
to the subgroup of K;;‘/K;3 of elements whose norm is trivial in Q*/(@*3
when Vd ¢ Q, and to Q* /Q** otherwise.

Proof. If P = (z,y) # T, then a(—P) = a((z, —y)) = —y — (az +b)Vd, so
a(P)a(=P) = —(y*> — d(az + b)?) = (-z)% € Q**, and if P = T = (0,bV/d)
then by definition

a(T)e(=T) = 4db?*a((0, —bVd)) = (=2bVd)* € K3* ,

so « sends inverses to inverses. Thus we must show that if P, + P, + P3 = O
then a(Py)a(P)a(P3) € K;3. If one of the P; is equal to O we are in the
case that we have just treated, so we exclude that case. If one of the P; is
equal to T then either all three P; are equal to 7', and the result is clear, or
only one, say P, is equal to T. In that case none of the P; is equal to 2T,
otherwise the third one would be equal to O. Thus by what we have proved
about inverses we have

a(P)a(P)a(Ps) = (a(—Pi)a(—P)a(—Ps))

(as usual modulo the multiplicative action of K7?), and now none of the —P;
is equal to O or to T, so we are in the generic case which we now treat.

Let y = mz + n be the equation of the line going through the points
P; = (z;,y;). Note that we can indeed choose the equation to be of this form
since the excluded equations are x = k, which intersect the curve F in two
affine points together with O, a case which we have excluded. The z; are thus
the three roots of the polynomial f(z) = z3 + d(ax + b)? — (mz + n)?. An
easy computation shows that
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H(yi — (az; + b)Vd) = H(ma:,- +n — (az; + b)Vd) = (n — bV/d)® € K3,
i i
finishing the proof of (1).

(2). This follows immediately from Corollary 8.4.6: O is evidently in the
kernel of a, and by definition 7' € Ker(a) if and only if 4db? is a cube, if and
only if (d/2b) = 4db®/(2b)? is a cube, hence by the corollary if and only if
T € I. Finally a point P = (z,y) different from O and T is in the kernel of

a if and only if there exists v € K7 such that v = y — (az + b)V/d, hence by
the corollary if and only if P € I, proving (2).

(3). From (1) and (2) we deduce that a induces an injection a from
E(Q)/$(E@) to K3/K2*. If v/d € @ the image of a is in Q*/Q*® and
there is nothing else to say. Otherwise T' ¢ E(Q) and for P = (z,y) # O we
have that Nk, g(a((z,y))) = 2* is a cube in Q*, proving the proposition.

O

We leave to the reader to state and prove an analogue of Proposition 8.2.4
(3) and (4), see Exercise 15, and we will not study 3-descent any further, but
apply it to the Diophantine equations ax® +by>+cz> considered in Chapter 6.

8.4.5 Application to az® + by +c23 =0

The relation between the Diophantine equation of the title and 3-descent is
the following. Let a, b, and ¢ be three nonzero rational numbers, let F,;. be
the elliptic curve with affine equation y? = 2 + (4abc)?. This is an equation
of the form considered above with d = 1, hence K4 = Q and T = (0, 4abc) is
a rational point of order 3. We have a(T) = 4(4abc)? = (abc)? up to cubes,
and for P = (z,y) # T we have a(P) = y — 4abc. Finally, by Proposition
8.4.8 we know that « is a group homomorphism.

Proposition 8.4.9. Let C be the cubic curve with projective equation ax® +
by? + cz® = 0, and define

é(z,y,2) = (—4abcxyz, —4abe(by® — c2®), ax®) .

(1) The map ¢ sends C(Q) into E(Q) (of course in projective coordinates).

(2) Let G be the set of (X,Y,Z) € E(Q) such that there exists A € Q* such
that c(Y — 4abcZ) = bZX3. The image ¢(C(Q)) is equal to G, together
with O if c/b € Q*3, and together with T if b/a € Q*>. More precisely, if
(X,Y, Z) is such a point different from O and T then

(z,y,2) = (2bcAZ, —cX, bA*Z) € C(Q)

is a preimage of (X,Y,Z), if ¢/b = v* € Q** a preimage of O is
(0,—v,1), and if bja = 3 € Q** a preimage of T is (—f,1,0).
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(3) C(Q) is nonempty if and only if the class of b/c modulo cubes lies in the
image of the 3-descent map o from Eap.(Q) to QF /Q*3.

Proof. (1). Once again the proof is a series of simple verifications: set
é(z,y,2) = (X,Y, Z). Then when az® + by® + cz® = 0 we have

Y2Z — (4abc)?Z3 = (4abc)?ax® ((by® — c2®)? — (az®)?)
= (4ab0) 2®((by® = ¢2®)? — (by® + c2°)?)
—(4abc)?ax® (4bcy®2®) = (—4daberyz)® = X3 .

Furthermore we cannot have X =Y = Z = 0 since otherwise x = 0, hence
by + cz® = 0, and by® — c2® =0, hence x = y = z = 0, which is excluded.
Thus ¢(z,y,z) € E(Q), proving (1).

(2). Note that

c(Y — 4abcZ) = —4abc® (by® — c2® + az®) = 8abc®2® = bZ N3

with A = 2cz/z € Q* when z and z are nonzero, so ¢(z,y, z) € G in that case.
It is immediate to check that O and T are not in G. Now x can be equal to 0
if and only if ¢/b = (—y/z)® € Q*3, and in that case we have ¢(0,y,z) = O.
Similarly z can be equal to 0 if and only if b/a = (—z/y)® € Q**, and in that
case it is clear that ¢(x,y,0) =T, proving (2).

(3). Evidently C(Q) is nonempty if and only if ¢(C(Q)) is nonempty, hence
thanks to (2) if and only if either there exists (X,Y, Z) € E(Q) different from
O and T, and A € Q*, such that ¢(Y — 4abcZ) = bZ)3, or if ¢/b € Q*3, or
if b/a € Q*3. In projective coordinates the 3-descent map « is defined for
(X,Y, Z) different from O and T by a((X,Y,Z)) = (Y — 4abcZ)/Z, hence
the first case implies that b/c is in the image of o in Q*/Q*>. In the second
case, b/c € Q*? which is the image of O. Finally in the third case we have

a(T) = (abe)® = (b/c)(b/a)(ac)® = b/c (mod Q%)
proving (3). O

Once again I thank T. Fisher for explaining this proposition to me.

Thus to check whether an equation az® + by® + c2® = 0 has a nontrivial
solution we proceed as follows. Using either mwrank or the 2-descent methods,
we compute if possible the complete Mordell-Weil group E(Q) of the curve
with affine equation y?> = z* + (4abc)?, and we also compute the torsion
subgroup (which we know will contain the subgroup of order 3 generated by
T).If P, ..., P. form a basis of the free part of E(Q) then P, =T, P, ...,
P, form an F3-basis of E(Q)/3E(Q). We then check whether the class of b/c
modulo cubes belong to the group generated by the a(P;) € Q*/Q*3, which
is done using simple linear algebra over Fs.
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Example. To illustrate, consider the equation x>+ 55y +662°. Using Propo-
sition 6.4.2 we check that it is everywhere locally soluble, but none of the re-
sults given in Section 6.4.4 allow us to determine whether or not the equation
is globally soluble.

Thus we consider the curve E with affine equation y? = 2 + (4-55 - 66)2.
We find that the torsion subgroup has order 3 and generated by Py =T =
(0,14520). In less than a second the mwrank program tells us that the curve
has rank 1, a generator being P; = (504,18408). We have (modulo cubes)
a(Py) = 2%2-32-5%-11 and a(P;) = 2-3?%, while b/c = 22-3%-5. Here the linear
algebra can be done naively: if b/c = a(uPy +vP;) = a(Py)“a(P1)?, where u
and v are defined modulo 3 we see that u = 0 because of the 11 factor, which
is impossible since there is a factor of 5 in b/c and none in a(Py). This shows
that our equation has no nontrivial solutions in Q.

8.5 The Use of L(E, s)

8.5.1 Introduction

We have seen in Section 8.1.2 the definition and main properties of the L-
function L(E, s) attached to an elliptic curve E defined over Q. Thanks to the
work of Wiles et al. (see Theorem 8.1.4), we know that L(E, s) extends to an
entire function with a functional equation of the form A(E,2—s) = e(E)A(s),
where A(E,s) = N*/?(2n)~*T'(s)L(E, s) and £(E) = +1. Finally the Birch-
Swinnerton-Dyer Conjecture 8.1.7 predicts that the rank r(E) should be equal
to the order of vanishing of L(E,s) at s = 1. This conjecture is a theorem
when the order of vanishing is equal to 0 or 1.

Even though BSD is a conjecture, it suggests many useful approaches.
First, it implies the parity conjecture, saying that (—1)"¥) = ¢(E). Since
there exists an algorithm to compute e(E), this gives a conjectural parity
for r(E). For instance, this explains the remark made after the proof of
Proposition 8.2.15.

When the parity does not suffice to determine the rank, we proceed as
follows. We search more or less intelligently for rational points on the curve.
There are many methods to do this, but we simply mention that even if a
2-descent has not succeeded in giving the rank, it still may help in the search
for points.

If after a sufficiently long search we find sufficiently many independent
points compared to the upper bound on the rank given by descent arguments,
we are happy and can conclude. Unfortunately in many cases this does not
happen, either because the points we are looking for have a very large height,
or more simply because the rank is simply not equal to the upper bound
given by descent. It is in this case that we must appeal to the computation
of L(E, s), hence rely on the BSD conjecture.
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The numerical computation of L(E, s) (and of its derivatives) involves two
completely different tasks: first the evaluation of some transcendental func-
tions (the exponential function in the simplest case), which will be studied
in great detail below, and second the arithmetic computation of the coef-
ficients a,(E). In the case of a general elliptic curve these coefficients are
computed either using Legendre symbol sums (Lemma 7.3.9) for small p, by
the Shanks—Mestre baby step giant step method (see Algorithm 7.4.12 of
[Coh0]) for moderate p, which should be sufficient for the computation of
L(E,s), or even by the Schoof-Elkies—Atkin algorithm for very large p (see
for instance [Coh-Fre]).

However, in the special case of an elliptic curve E with complexr multi-
plication the computation of a,(E) can be done quite simply. In the next
subsection we explain how this is done in the important special cases of com-
plex multiplication by Z[i] and Z[p] = Z[(3).

8.5.2 The Case of Complex Multiplication

We begin by the following.

Proposition 8.5.1. Let E be the elliptic curve with affine equation y> =
x® — z, and as usual for a prime p set a,(E) = p+ 1 — |E(F,)|. Then when
p=2 orp=3 (mod 4) we have a,(E) = 0, and when p = 1 (mod 4) we have

ap(E) = —(%)2(1 = (=1)(P*+3)/42q, where p = a® + b*> with a = —1 (mod 4).

Proof. Assume that p = 3 (mod 4). Since (_71) = —1 it follows that for

each z not equal to 0 or +1 there is exactly one value in {z,—z} such that
z3 — z is a square. It follows that a,(E) = 0 in that case, and it is also
immediate that a2(E) = 0 (more generally, if E has complex multiplication
by an imaginary quadratic order of discriminant D then a,(E) = 0 when

(%) = —1, exactly for the same reason). Assume now that p = 1 (mod 4).

By Proposition 2.5.20 we know that there exists a character x of order 4 and
that J(x,x) = a+bi with a®+b?> = p, 2 | b,and a = —1 (mod 4). It is slightly
more natural to reason backward and start from the result. Since x has exact
order 4, When n is not a square we have x(n) = =i, hence R(x(n)) = 0.
Since x2 is equal to the Legendre symbol we have
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since by Lemma 7.3.9 we have a,(E) = — EYGFP (Yi%y) , proving the propo-

sition. O

Corollary 8.5.2. For n # 0 let E,, be the elliptic curve with affine equation
y? =2® —n’z. Whenp| 2n or p =3 (mod 4) we have a,(E,) =0, and when
p12n and p=1 (mod 4) we have

ay(Ey) = — (%”) %,

where p = a® + b?> with a = —1 mod 4.

Proof. Immediate from Proposition 7.3.14 and the above proposition. O

It follows from this corollary that, even without using Tunnell’s Theorem
6.12.4, but still assuming BSD, it is very easy to make large tables of con-
gruent numbers: using Cornacchia’s algorithm as explained in the remarks
following Proposition 2.5.20 we compute decompositions p = a? + b? with
a = —1 (mod 4) for a large number of primes p = 1 (mod 4). Thanks to
the above corollary it is then immediate to compute an approximate value of
L(E,,1), and we conclude thanks to BSD and Proposition 6.12.1.

We perform a similar task for cubic twists of the elliptic curve y? = 3 +1,
having complex multiplication by Z[p], where we recall that p denotes a
primitive cube root of unity. The handling of cubic twists being slightly more
delicate, we consider directly the curve with equation y? = 2® + n, which is
in fact a sextic twist.

Proposition 8.5.3. Let E,, be the elliptic curve with affine equation y> =
z3 +n. When p | 3n or p =2 (mod 3) we have a,(E,) =0, and when p{3n
and p =1 (mod 3) we have



8.5 The Use of L(E, s) 547

b—2a if (4n)P~Y/3 =1 (mod p)
ay(Ey,) = (ﬁ) a+b if (4n)P"V/3 = —aq/b (mod p)
Pl la=2p if (4n)®D/3 = (a = b)/b (mod p),

where p = a® —ab+ b* with 3| b and a = —1 mod 3.

Proof. The case p | 3n being immediate we assume p t 3n. When p = 2
(mod 3) the map = +— z* is a bijection of F, onto itself, since 3  [F3| = p— 1.
It follows that for every value of y there is exactly one value of xz, hence that
|E,(Fp)| = p+ 1 so that a,(E,) = 0. Assume now that p = 1 (mod 3), fix
a primitive root ¢ modulo p, and let x be a character of order 3. Changing
if necessary x into x = x? we may assume that x(g) = p. By Proposition
2.5.20, we know that J(x,x) = a+bp with a®> —ab+b? =p, 3 |band a = —1
(mod 3). On the other hand, since 1+ p+p? = 0 it is clear that the expression
1+ x(z) + x(2?) is equal to 1 if z = 0, to 3 if z is a cube in F,, and to 0
otherwise. Since x(z2) = x(z) it follows that for a given y the number of z
such that 2% = 2 — 1 is equal to 1+ x(y? — 1) + x(y2 — 1), hence

|En(Fp)| =p+1+ 23%(2 x(y® = n)) :

yEF,

in other words

ap(Ey,) = —2§R<Z x(y® = n)) :

yEFy

Assume first that (%) =1, and let k¥ € Z be such that k> = n (mod p).
Setting y = k(2t — 1) (which is a bijection since p | 2n) and using x(—1) =1,
we thus have

ap(En) = —2R <x(—4k2) > x(t - t2)> = —2R(x(4n)J (x, X)) -

teF,

Now by Exercise 30 of Chapter 2 we know that the integers a and b such that
J(x,Xx) = a+bp are completely determined by the congruence a+bg?~1/3 =
0 (mod p), since we have chosen x such that x(g) = p, so that g»~1/3 = —a/b
(mod p). Since g is a primitive root modulo p there exists k such that 4n = gk
(mod p), hence x(4n) = x(g)* = p* = p* ™43, On the other hand

(4n)P=D/3 = K=/ = (—a/b)* (mod p)

and k£ mod 3 is determined by this congruence. The proposition follows when
n is a quadratic residue modulo p by distinguishing the three possible values
of k mod 3 and noting that (—a/b)? = (a — b)/b (mod p).

If n is a quadratic nonresidue modulo p, we note that the twist E, ,, of E,
by n itself has equation ny? = 23 4+ n, which is isomorphic to Y2 = X3 + n*
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by setting Y = ny and X = ny. Since n* is trivially a quadratic residue, on
the one hand by what we have just proved we have

ap(En,n) = —2R (x(4n")(a + bp)) = —2R (x(4n)(a + bp)) ,

and on the other hand by Proposition 7.3.14 we have a,(Ep,,) = (%) ap(En),
so the result follows in general. O

In the special case n = 1, since by Proposition 2.5.20 we know the cubic
character of 2, hence of 4, we obtain:

Corollary 8.5.4. When p = 3 or p = 2 (mod 3) we have a,(E1) = 0, and
when p =1 (mod 3) we have

b—2a if biseven
ap(Er1) =<qa+b if a and b are odd

a—2b if a is even and b is odd,

where p = a® —ab+ b*> with 3| b and a = —1 mod 3.
Proof. See Exercise 17. O

As in the preceding example it follows from the proposition that assuming
BSD it is very easy to make large tables of L(E,, 1), since once again using
Cornacchia’s algorithm it is immediate to compute the decompositions p =
a®? —ab+b? with 3 | b and a = —1 (mod 3). Thanks to Proposition 7.2.3 and
the remarks following it, this enables us for instance to compute tables of
integers ¢ which are sums of two rational cubes, by computing L(E_435.2,1)
or L(FEg.2,1) (which are equal since the two curves are isogenous).

8.5.3 Numerical Computation of L(")(E,1)

In this section we will explain how to compute numerically the derivatives of
L(E,s). Once again we emphasize that using a suitable error analysis it is
always easy to prove that a given real number (here L(")(E, 1)) is not equal
to 0 (of course when it is not), while it is impossible to prove that it is equal
to 0. The only thing we can do is have a reasonable certainty if the value we
obtain is less in absolute value than 10~2°, say.

We refer to [Dok] for a detailed analysis and implementation of the general
problem of computing special values of L-functions and their derivatives,
using a slightly different approach than that given here.

By Wiles et al., we know that L(E,s) satisfies a functional equation of
standard form. It is not sufficiently well-known that this automatically implies
that there exists an exponentially convergent series for computing L(E, s) and
its derivatives numerically. The result is as follows (see for instance [Cohl]
Section 10.3 for a proof). Recall first the following definition:
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Definition 8.5.5. The incomplete gamma function is defined for R(z) > 0

and all s € C by
s oo —xtys dt
D(s,z) == e " —
1 t

so that in particular if x € Rsg
° dt
[(s,z) = / te”t — .
z t

Proposition 8.5.6. Write L(E,s) =}, 5, an(E)n"%, and let N and e(E)
be as above. Then for all tg we have

1en = 5 P 28 () X e 0).

n>1

If e(E) = —1 we clearly have L(E,1) = 0. If ¢(E) = 1 we obtain:

Corollary 8.5.7. Assume that e(E) = 1. Then

L(5,1) =2y B oy

n>1

Proof. We simply choose to = 1 in the proposition, and note that

I'(1,z) =/ etdt=e"".
O

We see that we obtain an exceedingly simple fast formula for L(E,1).
Note however that it is useful only when N is not too large, say N < 10'°. If
N is much larger, it is difficult to estimate L(E,1) by this method.
Remark. Most number-theory oriented packages such as Pari/GP or magma
provide built-in functions for computing the conductor N and the sign of
the functional equation ¢(E), which are necessary to use the above formulas.
However, if these are not available we can easily compute them indirectly by
using the free parameter to occurring in the formula for L(E, s). Since the
result must be independent of tg, it is not difficult to compute N and e(E),
aided by the fact that the prime divisors of N are the same as those of disc(E).
In practice it is reasonably easy to compute N using Tate’s algorithm, and
so the only quantity that we really need to compute if one does not have a
suitable CAS available is £(E), and this requires only two distinct values of
to.

We now need to compute derivatives. For this we set the following defini-
tion.
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Definition 8.5.8. We define by induction the functions T'.(s,x) by

* Fr—l(sv t)

P_i(s,z) =e 2° and T.(s,x) :/ .

T

dt for r>0.

For instance, ['g(s,z) = ['(s,z), the incomplete gamma function, hence
for example T'o(1,2) = e ¥ and

oo —t
(1, 2) :/ Cdt=Ei),

the exponential integral.
The functions I';. should not be confused with the higher gamma functions
of Barnes.

Proposition 8.5.9. Set

o ( 2 )
w= — ] .
S\ VN

We have the formula

L)(E,s) _ Z an(E) Fr( 27 )

S’
r! = ns tovV'N
27 \25—2 an(E) 2mntg
+ (=D)"e(E){ —= I (2-—s,
- ()(\/N) Tgln“ ( m)
. Lr=k)(E, 5) wk
_1 k—1 ) z .
+ ;( L oy S TR

Proof. It immediately follows from the first formula of Proposition 8.5.11
below that

O r2(5,2) = T (5,2) og(a) + ( + )l (5,2)

Using Proposition 8.5.6, the above proposition easily follows by induction on

T. O
Generalizing Corollary 8.5.7, we have the following.

Corollary 8.5.10. Assume thate(E) = (—1)" and in addition that L\®) (E, 1) =

0 when0< k<r—1,k=r (mod 2). Then

L(E,1) an(E) 2mn
- =2 T, (1, =) .
r g e ()

In particular, if e(E) = —1 then
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, n(E) 2mn
ey =2y " pg (1)

where as above ]

is the exponential integral function.

Proof. Since (E) = (—1)", the functional equation implies that L*)(E, 1) =
0 for all k¥ #Z r (mod 2). Thus the hypotheses of the corollary and the above
proposition applied with tg = 1 give the first formula. For r = 1, we note

that —_— s 4
Ty(1,7) = / Mdt _ / o dt=Ei),
proving the corollary. O
There remains the problem of numerically computing the functions T'.(1, z)

for positive z. This is done in two completely different ways depending on
whether x is small or large, and we will treat these cases separately.

8.5.4 Computation of I',.(1,z) for Small z

We begin by the following essential integral representation, useful whether z
is small or large.

Proposition 8.5.11. For r > 0 we have

o0 1 T oo 1 T
Lp(s,z) = SES/ og('t) e otts i _ / log(t/)" e~ tt’ dt i
1 r! t z r! t

Proof. We prove this by induction on r, calling g,(z) the first integral on
the right hand side. It is clear that it is true for » = 0. It is also clear that
gr(z) tends exponentially fast to 0 when x tends to infinity, so by definition
of I',.(s,2) we must show that g.(z) = —g,_1(z) /2. We have

g/ (:L‘) — gps! /Oo Meﬂctts ﬂ — /Oo log(t)r e—Ttystl ﬂ ]
" 1 7'! t 1 7'! t

Now integration by parts shows that

> log(t)" 1 [ log(t)™Y  log(t)"
/ 08(t)" —atsrr dt _ 1 / ooty ( og(t)" 7 log(t) ) dt
1 1

ol (r—1) r! t

r! t =z t’

so that

(r=1) ¢ x

oo log(t)(r—1) —
g;(l’) — —.’I?s_l/ e—:ctts Og(t) dt — _g 1(.’L‘)
1
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as claimed. O

Recall that ((s) = 3,5, n~* for ®(s) > 1 (we will study this function in
much more detail in later chapters) and that Euler’s constant v is defined by

X1 1
v= lim — —log(N) = lim ((s) —

NS00 n 51+ s—1"

Proposition 8.5.12. Set

Gr(x) = Z(_l)

n>1

n—1 z"

nrn!’

and define constants ay, by the formal equality

op [ 20 Wat ) = Yoyt

k>1 k>0

where by convention we set ((1) = . Then

r k

log(z)™~
(-1)'Ty(1,z) = I;}ak% - G.(z) .

Proof. When r = 0 we have I'g(1,z) = e™® and Go(z) = 1 — e~ 7, hence
the formula is true in that case, so we may assume that r > 1. Integrating
by parts we have

(o] r (o] r—1
T, (1,2) = / log(t/2)" ¢ gy — / log(t/x)" " ¢ dt

r! (r—1)! t
[ log(t/z)rt _, dt Yog(t/z)r1, dt
= e e g
Yog(t/x)r—" dt ? log(t/x)"~t, _ dt
A=

First, let I, (z) be the sum of the first two integrals from 1 to co and from 0
to 1. Expanding by the binomial theorem, it is clear that

r—1

@) = Y (-1 ik )

—~ (r—=1-kK)!

(X)l k 11 k
Cum [ e[ BO
1 0

r—1—k

where

k! t k!
Thus
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o dt ! dt
Z Crs* = / e tt* 7 +/ (et = 1)t <
1 0

k>0

which is clearly valid for ®(s) > —1. Thus, for ®(s) > 0 we have

1 *° dt 1
ZCksk = —;—}—/0 e — =T(s) — =,

t s
k>0

and by analytic continuation this last equality is also valid for R(s) > —1. It
follows that

1+ 2 Cps**' =T(s+1) =exp (Z(—l)k%s’v = Z(—l)kaksk

k>0 k>1 k>0

by the well-known power series expansion of log(I'(s + 1)) (see Proposition
9.7.15 for a proof). It follows that Cj = (—1)¥*1az, for k > 0, hence

r k

k=1

giving the first term in the formula, apart from the £ = 0 summand.
Furthermore we have

"log(t/z)" "t dt _ log(t/z)"
/z (r—=1" t r!

" (Lyylos@)

rl

T

giving the k = 0 summand since ag = 1.

Finally
®log(t/z)r=t, _, . dt /1 log(t)~=t, _, dt "
e - L e N o ) Ly A
/0 Sy Al My s ;1( ) S -1
e L log(0)} (0* (=D}
B Rlog®)®dt [ (—t (=1
Tk _/0 T _/0 € k! dt = )

by definition of the gamma function, hence
Tlog(t/a) L, dt ot @ ,
/ ﬁ( o (c Sy = (-6 (@)

proving the proposition. O

Example: We have ag = 1, a1 = v, a2 = (72 +((2))/2, az = (v* + 3v¢(2) +
2¢(3))/6.
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The above proposition reduces the computation of T',.(1,z) to that of
G,(z). When z is small (say z < 10) this is perfectly fine. When z is larger
there are two closely related pitfalls which plague the computation, coming
from numerical cancellation. First, since G, (z) is an alternating series, when
z is large we will lose a lot of accuracy in the computation. By comparison
with the series for exp(—x), it can be shown that to obtain D decimals digits
of relative accuracy we need to perform the computations to D + 2z /log(10)
decimal digits in all the intermediate computations. This becomes prohibitive
for  large. The second closely related pitfall is that since I'.(1, ) is expo-
nentially small, the additional polynomial in log(z) that must be subtracted
from G,(z) will be of comparable size, so we will have an expression of the
form a—b with a and b possibly very accurate real numbers, but almost equal,
the nightmare of the numerical analyst. Note that no naive rearrangement of
the alternating series can help with this.

The following proposition shows that we can at least dispense with the
problem of alternating series, although it does not remove the second pitfall
(cancellation with the logarithmic terms), which can be avoided only by the
use of methods specific to the case where x is large, which we shall study in
the next section.

Proposition 8.5.13. Recall that

n

Gr(@) =Y (-1t

nrn!’
n>1

Set Hy,(n) = Yigi<n 1/5*, and define arithmetic functions Ay (n) by a formal
expansion similar to that giving the constants ay,:

exp HkT(n)a:k = Z Ap(n)zk .

k>1 k>0

Then

n>1

Proof. We prove the proposition by induction on r, the case r = 0 being

clear since "
x
Go(z)=1—€e"=¢" Z

n>1

n!

Define by induction on 7 Ag(n) =1forn >0forr > 1

Ay = 3o 2=

Jj=1
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(we will see below that this is the same definition as in the proposition).
Assume the proposition true for 7 — 1, in other words that

Gos(m) =Y Z—?Ar_l(n) .

n>1

By our induction hypothesis we have

z e tnfl
Golo) = [ S0

n>1

_ (TGt Ar—l(k)/’” —t k1
_/0 - dt—z o Oet dt .

E>1

Now by induction we have

T k=1 . n
—t4k—1 _ —z T _ —z T
/Oe : —(k—1)1<1—€ T;)H)—(k—l)!e n>kH7
so that
w A._1(k ™ e z" A, _1(k
Grla) = e A Y T ey 5 At
k1 n>k n>1  1<k<n

proving the result by induction on 7.
It remains to see that the Ag(n) defined above are given as in the propo-
sition. Set f(z,n) = 3450 Ax(n)z*. Then by definition

(1-2) e =3 (4rtm - 2220 = plam - 1),

n
r>0

and since f(z,0) =1 we obtain

fan)= ] v -=2/j),

1<j<n

so the result follows by taking logarithms and expanding formally. O

Note that all the series and integral manipulations are justified by absolute
convergence, all the series having infinite radius of convergence. For the same
reason, this enables us to compute G,.(z) even for large x without loss of
accuracy. However we still need z™/n! to be small, hence n at least of the
order of z (plus a small amount to account for the desired accuracy), and
also we must keep in mind the cancellation phenomenon with the logarithmic
terms in the formula of Proposition 8.5.12. In practice we do not advise to
use the above formulas for x larger than 50, say, and even for x > 10.
Examples. We have Ag(n) = 1, A1(n) = Hy(n), A2(n) = (Hi(n)? +
Hy(n))/2, etc. .., the formulas being formally identical to those for the coef-
ficients ay, (note that {(k) = lim, o Hg(n) for k& > 2).
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Corollary 8.5.14. With the notation of Proposition 8.5.12 and the above
proposition we have

(-D)'T.(1,2) = Zak% —e7 7 Z xn—T;AT(n) .
k=0

n>1

8.5.5 Computation of I',.(1,z) for Large x

For large x we can use the following proposition.

Proposition 8.5.15. Define arithmetic functions Ci(n) by the formal ex-

pansion
exp <Z(—1)lekT(n)a:k> = ZC’k(n)xk .

k>1 k>0

Then for r > 1 we have

s 1)t plC._1(n
Fr,-(].,.’L') —e Z ( ) — 1( ) ,

n>0

where the divergent series is to be interpreted as meaning that €*T.(1,x) is
always between two successive partial sums of the series.

Proof. Set

Integrating by parts gives E,(z) = e */2" — rE.;1(z). It follows that

e T (—)rm4r— 1) m(m+r—1)!

Since En4r(z) > 0 for all z, with the interpretation of the divergent series
given in the proposition we can write

e ? (-D)"*(n+r—1)!
E:@) = 7, 2 ot '

n=0

Thus since T'y (1,z2) = E; (z) the proposition is proved for r = 1.
Define Cy(n) = 1 for n > 0 and by induction on r > 1

Oy =y, Gl =l)
k=1

(once again we will see below that these are the same as those defined in the
proposition). Let r» > 2 and assume by induction that for £ < r — 1 we have
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m—1

—1)" - IpICL 1 (n

[rp(lz)=e" Z S 1 k() + (_1)m+k71[m,k($)
n=0

with I, (z) > 0 for all z. We now use the induction formula

= [" IR0

the expression obtained for E,.(z) applied to a suitable m, and denoting by
the generic letter P a nonnegative quantity, we obtain

T
Fr(l,:L') = (_1)n+7‘n!07.,2(n)En+2($) + (_1)m+r/ m,;‘(t) dt
n=0 z
m—1 m—n—1
(=1)"*tn!C,_a(n) ( —z Z (-1)*(k +n+1)! .
- € k+n + (_1) P
n=0 (n + 1)‘ F—0 €T +n+2
+ (-n)™*'p
m—1
L YT D) - Cra(n) .
=e ") > + (=1t p
N=0 e niken T 1
Y m -1 n+7‘+1n! Cr— k -1 e
—e Z( ):I:n+1 Z Q(k )+(_1) +P,
n=1 1<k<n

proving the formula of the proposition.
As before, it remains to see that the Cy(n) defined above are given as in
the proposition. Set g(z,n) = 3 4~ Ck (n)z*. Then by definition

x Cro1(n—1)
1 _) _1) = _ Croaln— 1\, _
( +n g(z,n—1) Z(Cr(n 1) + . )x g(z,n),
r>0
and since g(z,0) = 1 we obtain
g(z,n) = [[ t+e/),
NV
so the result follows once again by taking logarithms and expanding formally.

O

Examples. We have Ci(n) = 1, Ca(n) = Hi(n), C3(n) = (Hi(n)? -
Hy(n))/2, etc. .., the formulas being formally the same as for Aj(n), changing
Hy,(n) into —Hyg(n) for even values of k.

Remarks.
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(1) To compute I'.(1,2), say to approximately 18 decimal digits, which is
almost always sufficient for practical uses, we thus suggest the following
method. If z < 50, we use directly the power series expansion given
by Corollary 8.5.14, remembering to take into account the cancellation
which occurs between the logarithmic terms and the power series. Note
that 50 is not any number but chosen so that exp(—50) < 10720, If z > 50
we use the asymptotic expansion given by Proposition 8.5.15. This gives
good results. If it is really necessary to compute to more than 18 decimal
digits, simply increase 50 to a larger value.

(2) Note that in Corollary 8.5.10 we need the values of I'.(1,z) to a given
absolute accuracy. Since it is exponentially decreasing with z, when z is
large it is not necessary to compute it to a large relative accuracy. We
leave the details to the reader.

(3) In the special case where r = 1 we can do better. It can be shown that
the asymptotic expansion can be expanded into the following continued
fraction which should of course be used instead:

—

€

F]_(].,CL') = E]_(CL') = 12
z+1-—

22
z+3—

32
z+5—

T+T7—"".

This continued fraction converges for all x > 0, and rapidly for large z,
see Exercise 20.

(4) A continued fraction corresponds to linear recurring sequences of order 2.
It can be shown that there exist similar recurring sequences but of order
r + 1 for T',.(1, ), also leading to faster methods to compute them, but
this is beyond the scope of this book (and not really essential in practice).

8.5.6 The Famous Curve y2 +y =22 — Tz 4+ 6

The above curve (written in minimal form) is famous because it was used to
give an explicit solution to an old problem of Gauss on lower bounds for class
numbers of imaginary quadratic fields. It is the curve with smallest conductor
of rank 3 over Q. Let us prove that it has rank 3. After completing the square
and changing z into £/4 we obtain the equation y?> = z® — 112z + 400. This
curve has no torsion, so we will compute its rank using the method explained
in Section 8.3.4. We let § be a root of P(z) = 2® — 112z + 400 = 0 and
K = Q(6). The number field K has class number 2, and fundamental units
6%/4 + 26 — 13 and 6% — 1260 + 33. The discriminant of the polynomial P(x)
is equal to 28 - 5077 with 5077 prime, so the only primes of K to consider
are those above 2 (because of the condition p? | disc(P) seen in Corollary
8.3.7). In fact 2 ramifies completely as 2Zy = p°, so T is reduced to the
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single prime ideal p, which of course automatically divides 36 + a. To find
Ur(K) we should use Proposition 7.4.7 of [Cohl], but here we are lucky
since we find that p is a principal ideal generated by &1 = —0/2 + 4. We
compute that a generator of the square of a generator of the class group of K
is equal to e2 = 6#%/2+ 46 — 25. Finally the fundamental and torsion units are
g3 =0%/4+20 — 13,4 = 0> — 120 + 33 and g5 = —1. It follows that Sr(K)
is generated over Fy by the classes modulo squares of the 5 elements that we
have just listed. The respective norms of these elements being 2, —25, —1, 1
and —1 it follows that the kernel S7(K,1) of the norm map modulo squares
is generated by —ea, —e3 and 4. We could now proceed with the algorithm,
and for each of these generators compute the quadratic forms g;(cg,c1, c2),
find a particular solution to g = 0, then the general solution, and replace in
g1 = 1 to obtain the quartic, one for each generator. We then have to search
for a point on these three quartics. This can be done. However we will cheat
to avoid such tedious computations. Since the dimension of St (K, 1) is equal
to 3 we know that the rank 7(E) of our curve is at most equal to 3. On the
other hand on the initial equation y? +y = 2® — 7z + 6 we readily discover
the points P, = (2,0), P = (—1,3) and P; = (4,6). To show that they
are independent we use Theorem 8.1.17. Using for instance the algorithms of
[Coh0] we compute that the determinant of the height pairing matrix of the
P; is equal to 0.41714355875838397. .., hence is definitely different from 0,
so that the points are independent. It follows that r(E) is at least equal to
3, and we have shown that r(E) < 3, so that r(E) = 3 as claimed. We have
not shown that the P; are generators, only that they generate a subgroup of
E(Q) of finite index, but this is indeed the case.

We now use the method of the preceding sections to compute L(E, s) and
its derivatives. A computation shows that the sign of the functional equation
is —1. It follows that L(")(E,1) = 0 for all even r > 1, and in particular
L(E,1) = L"(E,1) = 0. On the other hand we compute numerically that
L'(E,1) is almost equal to 0 (equal within the limits of accuracy of our
computation). Note that however precisely we perform our computation we
will never be able to prove that L'(E,1) = 0. Here we must apply a difficult
theorem of Gross—Zagier which implies in particular that if L'(E, 1) # 0 then
the curve has rank 1. Since we know that it has three independent points this
is not possible, proving that L'(E,1) = 0. Finally using the formulas given
above we compute that

LIII(E7 1)

3!
On the other hand the quantity w; (E) which enters in the BSD conjecture is
easily computed to be 2.07584399154346652494 . ... Since there is no torsion,

the Tamagawa numbers ¢, (E) for finite p can be shown to be equal to 1, and
co(E) = 2, we deduce the equality

= 1.73184990011930068979 . ..

IIII(E)|R(E) = 0.41714355875838397 . . .
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This is exactly the determinant of the height pairing matrix that we have
found above by completely different methods. Thus the BSD conjecture tells
us both that the points P; given form a basis of E(Q) (this is easy to show
directly) and that III(E) is the trivial group, which at present nobody knows
how to prove, even on this specific curve.

8.6 The Heegner Point Method

I would like to thank C. Delaunay for writing a large part of this section.

8.6.1 Introduction and the Modular Parametrization

The Heegner point method is applicable if and only if the elliptic curve E
has analytic rank exactly equal to 1. We therefore assume that we know this
for a fact by having computed that e(E) = —1 and that L'(E,1) # 0, which
can be done rigorously as already explained. We then know that E(Q) has
a point of infinite order on it, and the purpose of the method is to find it
explicitly, and even to find a generator of the torsionfree part of E(Q).

Remarks.

(1) If we have done a 2-descent showing that the rank is equal to 1, it is
not necessary to use this method since a nontorsion point can easily be
computed explicitly from the 2-descent method.

(2) Once a point of infinite order has been found, finding a generator is
straightforward, see Exercise 22. It follows that we only want to find a
point of infinite order.

Recall that the BSD conjecture involves quantities that we know how to
compute, and others that we do not know directly. More precisely, given an
elliptic curve E defined over Q, we can algorithmically compute its conductor
N, which enters in the functional equation and which is divisible exactly by
the primes where E has bad reduction, we can compute the (finite number of)
Euler factors corresponding to these bad primes, and the so-called Tamagawa,
numbers ¢, for p | N. All these steps are done simultaneously using variants
of an algorithm due to Tate. In addition we can compute the real period
w1(E) as an elliptic integral using the arithmetic-geometric mean, and the
torsion subgroup E;(Q) using one of the methods explained above. Next, for
any given p{ N we can compute a, = p+1—|E(F,)| hence the corresponding
Euler factor, and so as many terms as we want of the Dirichlet series for the
global L function L(E, s). Finally, using the method of Section 8.5.3, we can
compute L{")(E, 1) to any desired accuracy, and in particular use Corollaries
8.5.7 and 8.5.10.

In addition, we can also compute the volume Vol(E) of E, in other words
the volume (or determinant) of the lattice A such that E(C) = C/A. Although
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this is not necessary for the BSD formula, it will be needed in the Gross—
Zagier formula below.

All the algorithms (and many more) for doing these computations are
explained in great detail in [Cre2], see also [Coh0].

The quantities which we do not know how to compute at first are the reg-
ulator R(E), which is known only once a generating set for the Mordell-Weil
group has been computed, and the Tate-Shafarevitch group order |III(E)],
of which we know little apart from the fact that, if finite, it will be the square
of an integer. Note that since our goal is to find a point of infinite order on
E(Q), we can assume any conjecture for doing so.

The Heegner point method which we consider in this section is based on a
number of facts which are outside the scope of this book, but which lead to
an algorithm which is sufficiently simple and important to be explained here.
Thus several of the terms used below will not be defined, and we ask the
reader to be patient until we come to the actual description of the algorithm.
Note however that the theory that we sketch in a few lines is very beautiful
and described in many papers and textbooks, see for example [Crel], [Dar],
and [Zag].

First, if L(E,s) = 2"21 a,n~* then the Taniyama—Weil conjecture as-
serts that fr(7) = 3,5, ang™ (as usual with ¢ = e?™™ and T € H, the upper
half plane) is a modular form of weight 2 on T'¢(N). Thanks to Wiles and
successors this conjecture is now a theorem, but as already explained, for the
work that we are doing we may assume any conjecture that we like.

Since fg(7)dr is a holomorphic differential the integral

qE(T) = 2im /T fe(2)dz

(where oo is the point at infinity in the upper half plane) is independent of
the chosen path hence defines a map from H to C. Explicitly, for 7 € H we

clearly have
~ an ,
d)(T) - Z gq )

n>1

where as usual ¢ = €2 The modularity property of fz is equivalent to the
fact that ¢ induces an analytic map ¢ from Xo(N) to C/A, where Xo(N) =
(HUP1(Q))/To(N) is the modular curve associated to I'o(IN), and A is the
lattice formed by the periods of fg, corresponding to the values of ¢ for
7 = y(00) and v € Ty(N) (which cannot be directly computed from the
infinite series but only from the integral definition).

The lattice A is very often a sublattice of the lattice Ag associated to the
minimal model of the elliptic curve E, hence in this case ¢ induces an analytic
map ¢ from Xo(N) to C/Ag. To come back to points (z,y) € E(C) we use
the classical isomorphism from C/Ag to E(C) given by the Weierstrass p
function and its derivative.
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However in principle it might happen that A is not a sublattice of Ag,
due to the fact that the so-called “Manin constant” of E may not be equal
to 1 (even assuming Manin’s conjecture saying that this should be the case
for the strong Weil curve in the isogeny class of f). In practice it does not
happen, but if it did it would be easy to deal with.

Putting everything together, we see that for any 7 € H (and even 7 €
H U P1(Q), but we do not need this extra generality) we can associate a
point (1) € E(C), where ¢ = p o ¢. The map ¢ from Xo(N) to E is called
the modular parametrization of E, and Wiles’s theorem states that such a
parametrization exists (and is unique up to sign).

8.6.2 Heegner Points and Complex Multiplication

We begin by defining Heegner points.

Definition 8.6.1. (1) Let T € H. We say that T is a complex multiplication
point (or simply a CM point) if it is a root of a quadratic equation At*+
Bt 4+ C =0 with A, B, C integral and B2 — 4AC < 0.

(2) If in addition we choose A, B, C such that gcd(A,B,C) =1 and A >
0 (which makes them unique), then (A,B,C) = Ax? + Bxy + Cy? is
called the (positive definite binary) quadratic form associated to 7, and
its discriminant A(1) = B? — 4AC is called the discriminant of T.

(3) For a given integer N > 1, we will say that 7 is a Heegner point of level
N if A(NT) = A(7).

The above definition of a Heegner point is due to B. Birch. The following
proposition shows that this notion depends only on the class of 7 in Xy (V).

Proposition 8.6.2. Ifvy € SLy(Z) (in particular if v € To(N)) then A(y(1)) =
A(7), and if v € To(N) and 7 is a Heegner point of level N, so is (7).

Proof. This comes from the fundamental group equality

-1
N 0 N 0
r=ra (¥ 0 e (Y )
with T' = SLy(Z), and is left to the reader. O

Proposition 8.6.3. Let 7 € H be a quadratic irrationality and let (A, B,C)
be the quadratic form with discriminant D associated to 7. Then 7 is a Heeg-
ner point of level N if and only if N | A and one of the following equivalent
conditions is satisfied:

(1) ged(A/N,B,CN) = 1
(2) ged(N, B, AC/N) = 1
(3) There exists F' € Z such that B> —4NF = D with gcd(N, B, F) = 1.
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Proof. We have 7 = (—B++/D)/(24), hence N7 = (—~NB+N+/D)/(24).
For this to have the same discriminant, it must be of the form (—B' +
v'D)/(24") hence by identification of imaginary parts A = NA' hence B' =
B, sothat N | A. Tt follows that N is aroot of (A/N)(N7)>+B(N1)+CN =
0, and since this equation has discriminant D = B? —4AC, this must be the
smallest equation satisfied by N7, hence 7 is a Heegner point of level N if
and only if N | A and gcd(A/N, B,CN) = 1. The equivalence with the other
two properties is a straightforward exercise left to the reader. O

Corollary 8.6.4. If 7 is a Heegner point of level N and discriminant D,
then so is W(r) = —1/(NT).

Proof. Indeed if (A, B, C) is the quadratic form associated to 7 then clearly
(CN,—B, A/N) is the quadratic form associated to —1/(IN7), so the result
follows from the proposition. Equivalently, since A(—=1/7) = A(7) it is im-
mediate to check from the definition that A(NW (1)) = AW (7)). O

From now on we assume that D is a fundamental discriminant, in other
words the discriminant of the quadratic field K = Q(v/D). Recall that the
class group CI(K) of K is in one-to-one correspondence with classes of pos-
itive definite primitive quadratic forms (A, B,C) of discriminant D modulo
the action of SLy(Z). More precisely to the class of such a form (A, B,C) we
associate the class of the ideal Z + (=B 4+ v/D)/(2A)7Z.

Proposition 8.6.5. Let 7 be a Heegner point of discriminant D and level
N. If D is a fundamental discriminant the condition gcd(N, B, F) =1 of the
above proposition is automatically satisfied and for all p | gcd(D, N) we have
pl|N, in other words vp(N) = 1.

Proof. Let p be a prime dividing gcd(N, B, F). Since B2 —4NF = D we
deduce that p?> | D which implies that p = 2 and D/4 = 2 or 3 modulo 4
since D is fundamental. But then (B/2)? = (D/4) + NF = (D/4) =2 or 3
modulo 4 since 2 | N and 2 | F, which is absurd, proving the first statement.
Now let p | gcd(D, N) and assume that p? | N. Since B2 — 4NF = D we
deduce that p | B, hence p? | D hence p = 2. But once again since 4 | N this
gives (B/2)? = (D/4) + NF = 2 or 3 modulo 4, which is absurd. O

We have the following.

Proposition 8.6.6. There is a one-to-one correspondence between on the
one hand classes modulo To(N) of Heegner points of discriminant D and
level N, and on the other hand pairs (8, [a]) where 8 € Z/2NZ is such that
b*> = D (mod 4N) for any lift b of B to Z, and [a] € CI(K) is an ideal
class. The correspondence is as follows: if (B,[a]) is as above, there exists
a primitive quadratic form (A, B,C) whose class is equal to [a] and such
that N | A and B = B (mod 2N), and the corresponding Heegner point
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is T = (=B 4+ v/D)/(24). Conversely, if (A,B,C) is the quadratic form
associated to a Heegner point T we take 8 = B mod 2N and a =Z + 77Z.

Proof. This consists in a series of easy verifications, which are essentially
identical to those made when checking that the ideal class group of K is
isomorphic to the group of classes of positive definite primitive quadratic
forms of discriminant D, and the details are left to the reader. Note that if b
is defined modulo 2N then b? is indeed defined modulo 4N. O

Thanks to this proposition, it is often more natural to consider a (class
of) Heegner point as a pair (5, [a]) rather than as a complex number.

We need one last ingredient from algebraic number theory. Let K be a
number field (in our case K = Q(v/D) will be an imaginary quadratic field).
There exists a finite extension H of K, called the Hilbert class field, which
has many remarkable properties. The most important one for us is that it is
an Abelian extension of K whose Galois group is canonically isomorphic to
the class group CI(K) through a completely explicit map Art from CI(K) to
Gal(H/K). In other words any element of Gal(H/K) has the form Art([a])
for a unique ideal class [a]. The action of an element o € Gal(H/K) on h € H
will be written h°.

The theorem which makes the whole method work is the main theorem
of complex multiplication which we will not prove. The results are due to
Deuring and Shimura, but in the present context I refer to the paper of
Gross [Gro].

Theorem 8.6.7. Let 7 = (3, [a]) be a Heegner point of level N and discrim-
inant D, let K = Q(v/D), and denote by H the Hilbert class field of K. Then

o(1) € E(H), and we have the following properties:
(1) For any [b] € CI(K) then

(8, [a1) 2D = ((8,[ab~1)) -

(2)
(W (B, [a])) = p((=B,[an71]) ,
B D
wheren = NZ + +T\/_
is equal to j3.
(3) If denotes complexr conjugation then

o((8,1a)) = o((=B,[a™"]) -

Thus we see that using the analytic function ¢, we can obtain a point with
coordinates in H, hence with algebraic coordinates. This is the “miracle”
of complex multiplication, which generalizes the fact that the exponential
function evaluated at rational multiples of 2im gives algebraic numbers.

Z and B is any integer whose class modulo 2N
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The first formula gives all the conjugates over K of ¢(7), and is called
Shimura’s reciprocity law. In particular, we can compute the trace P of ¢(7)
as a point in E(H) as

P= > o@l) = D, B )= Y o8],
oc€Gal(H/K) [b]eCUK) [b]ECI(K)

the sum being computed with the group law of E. By Galois theory we will
have P € E(K), so we have considerably reduced the field of definition of the
algebraic point found on E. Finally, we have the following easy result:

Lemma 8.6.8. Ife = —1, then in fact P € E(Q).

Proof. Indeed, it is easy to see that € = —1 is equivalent to saying that
poW =y, so that

((8,[0])) = (W (B, [0])) = (=B, [bn=1])) = »((8,[6~ ")),

hence .
P= Y (Bl = > (b)) =P,
[b]€CI(K) [b]ECI(K)
so by Galois theory once again we deduce that P € E(Q). O

We thus see that the Heegner point method does give us a point in E(Q)
(which of course may be a torsion point). It immediately follows from the
Gross—Zagier Theorem 8.6.9 and the work of Kolyvagin that if the rank (an-
alytic or algebraic) is strictly greater than 1, this point will always be a
torsion point, so the method is useless. Furthermore a similar proof to that
of the above lemma shows that if ¢ = 1 then P + P is a torsion point, so
once again the method is useless. Hence, as claimed from the beginning, the
Heegner point method is applicable only in the rank 1 case. Without any
exaggeration it can be said that this is the only reason for which nothing is
known on the BSD conjecture when the rank is strictly greater than 1.

8.6.3 Use of the Theorem of Gross—Zagier

Although it would already be possible to use the method as explained above,
an important additional result due to Gross—Zagier usually simplifies the
computations. Recall from Definition 7.3.13 that the quadratic twist of an
elliptic curve E given by a Weierstrass equation y? = % + az? + bz + ¢
by a fundamental discriminant D is the curve Ep with equation y2D =
2® 4+ az? + bx + c. If desired this can be put in ordinary Weierstrass form,
and extended to curves in generalized Weierstrass form. The important (and
easy) point is that the L-function of Ep can easily be obtained from that
of E: in our case, since D is a fundamental discriminant which is a square
modulo 4N, Proposition 8.6.5 tells us that if p | gcd(D, N) then p? { N. This
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implies that the conductor Np of Ep is equal to ND?/ged(D, N) and that
if L(E,s) = 3,51 ann”?, then

D\ a,
L(Ep,s) = el O
(.0 = Y (2)%
n>1

Furthermore, it is not difficult to show that the sign of the functional equation
for L(Ep,s) is equal to (%) times that of L(E,s). In particular, in our
context that of E is equal to —1, (£) = 1, and D < 0, hence the sign of the
functional equation for L(Ep,s) is equal to +1. Finally recall that we have

defined a canonical height function % on E(Q), see Theorem 8.1.17.

Theorem 8.6.9 (Gross—Zagier). Ifgcd(D,2N) =1 and D # —3 the point
P computed above satisfies

h(P) = #@L’(E, 1)L(Ep,1)

(for D = —3 the right hand side should be multiplied by 9, see below).

Since L(Ep, 1) can easily be computed using the exponentially convergent
series given above, this allows us to check whether or not E(P) is close to
0, hence whether we will obtain a torsion point or not. But it is especially
interesting to combine it with the BSD formula: indeed, in the rank 1 case
we have R(E) = h(G), where G is a generator of the Mordell-Weil group of
E. Since P € E(Q) it has the form ¢G + @ for some torsion point @, hence
7(P) = £2h(G). The combination of the two formulas thus reads:

e (B) c(E)\/|D] L(Ep.1) .

[IL(E)| 4Vol(E)|E,(Q)|?

where ¢(E) is the product of the Tamagawa numbers ¢,(E) including c.
Although |III(E)| is unknown, it is usually small and very often equal
to 1 (and in our case is known to be finite hence equal to the square of an
integer), so this very often gives the value of £.
It is useful to be able to generalize this formula to the case ged(D,2N) > 1
and also to D = —3 and D = —4. This leads to formulate the following
reasonable conjecture.

Conjecture 8.6.10. Let E be an elliptic curve of analytic rank 1 (in other
words e(E) = =1 and L'(E,1) # 0), and let D be a negative fundamental
discriminant which is a square modulo 4N. Assume that L(Ep,1) # 0 and
that for any p | ged(D, N) we have a, = —1. Then

S c(B)V/[DI(w(D)/2)* . (ged(p,N
mE) =P vapEQr o E

(ED; 1) ’
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where w(D) is the number of roots of unity in Q(v/ D) (w(—3) = 6, w(—4) = 4
and w(D) = 2 for D < —4), and as usual w(ged(D, N)) is the number of
distinct prime factors of ged(D, N).

The condition a, = —1 for p | ged(D, N) is necessary to obtain a non-
torsion Heegner point, and for the validity of the formula. Furthermore, the
conditions on D in the conjecture imply that e(Ep) = 1, hence L(Ep, 1) can
also be computed by the exponentially convergent series given above. The
truth of this conjecture is of course mainly supported by the work of Gross—
Zagier, but the additional terms are due to work of Y. Hayashi (see [Gro],
[Hay]). In addition it has also been verified in numerous cases. As already
mentioned, to compute a rational point we can always assume any reasonable
conjecture.

8.6.4 Practical Use of the Heegner Point Method

The most lengthy computations will be the evaluations of ¢((—B++v/D)/(24))
for the |CI(K)| classes of quadratic forms (A, B,C). Two remarks must be
made.

Remarks.

(1) Since the convergence of the series for ¢(7) is essentially that of a geo-
metric series with ratio exp(—273(7)) = exp(—2m+/|D|/(24)), and since
N | A, it will be particularly slow when N is large. The method will thus
be inapplicable for large conductors, say N > 108.

(2) Thanks to the relation ¢((8,[a])) = ©((8,[a"'n])) which we have used
above we only need to compute approximately half of the necessary values
of ¢: indeed, if [a] corresponds to the class of the form (4, B, (), then
[a~!n] corresponds to the class of the form (CN, B, A/N), hence the value
of g on (CN, B, A/N) is simply the conjugate of ¢((4, B, C')) modulo the
lattice A.

We give the method as an algorithm, and then apply it to a large example.

Algorithm 8.6.11 (Heegner Point Method) Let E be an elliptic curve
defined over Q with conductor N, and assume that E has analytic rank 1, in
other words that £(E) = —1 and L'(E, 1) # 0. We assume that E is given by
a minimal Weierstrass equation y2 + a1zy + asy = =3 + az2? + a4z + ag with
integer coefficients. This algorithm outputs a nontorsion rational point in E(Q).
We assume computed the standard values associated to E, and in particular we
denote by w; (E) and w2 (FE) standard Z-generators of the period lattice A of E
with wy (E) € R, and by Vol(E) the area of the fundamental parallelogram.

1. [Compute necessary accuracy] Compute the product |III(E)|R(E) thanks to
the BSD formula
_ |EB(QPL'(E,1)

M(E)R(E) = =
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where L'(E, 1) is computed thanks to Corollary 8.5.10. Compute the height
difference bound HB given by Theorem 8.1.18, in other words compute

= |j(E)|/12+u(E)+1.946, where u(E) is given by the above-mentioned
theorem, and finally set d = 2(|III(E)|R(E) + HB). All computations will
now be done with a default accuracy of [d/log(10)] + 10 decimal digits, and
in particular recompute all the floating point quantities such as w;(E) and
Vol(E) to that accuracy.

2. [Loop on fundamental discriminants] For each successive negative fundamental
discriminant D = —3, —4, etc...execute the rest of the algorithm until a
nontorsion point of E(Q) is found. Check that D is a square modulo 4N, that
ap = —1 for each p | gcd(D, N), and by computing

an D —27n
L(Ep,1) = 2; " (ﬁ) P <\/ND2/gcd(D,N))

check that L(Ep,1) is numerically not equal to 0. If any of these conditions
is not satisfied, choose the next fundamental discriminant. Otherwise fix 8 €
Z/(2N)Z such that D = 32 (mod 4N) and compute m > 0 such that

c(B)V/ID[(w(D)/2)* g
4 Vol(E)|Ey(Q)|? 2dPML(Ep,1) .

m? = w,(E)

This m should be very close to an integer, or at least to a rational number
with small denominator.

3. [Find List of Forms] Using Subalgorithm 8.6.12 below, compute a list £ of
|CI(K)| representatives (A, B,C) of classes of positive definite quadratic
forms of discriminant D, where A must be chosen divisible by N and minimal,
and B = 8 (mod 2N) (this is always possible). Whenever possible pair ele-
ments (A4, B, C) and (4’, B',C") of this list such that (A’, B, C") is equivalent
to (CN, B, A/N) by computing the unique canonical reduced form equivalent
to each.

4. [Main Computation] Compute the complex number

-y ¢<B+\/_> cc,

(A,B,C)eL

using the formula ¢(7) = >°, 5 (an/n)¢" (with ¢ = e?™™) given above

and the fact that ¢((—B' + vD)/(24")) = ¢((—B + v/D)/(24)), where
(A", B',C") is paired with (A, B,C) as in Step 3. The number z should be
computed to at least d/log(10) decimal digits of accuracy. This means that
the number of terms to be taken in the series for ¢((—B ++/D)/(2A)) should
be a little more than Ad/(7/|D]).

5. [Find Rational Point] Let e be the exponent of the group E.(Q), ¢ =
ged(e,m™®) = ged(e,m?), and m' = mL. For each pair (u,v) € [0,m' —1]?,
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set zy,p = (€2 +uw1 (E) + vwa(E))/m'. Compute z = p(2,,), where (p, p')
is the isomorphism from C/A to E(C). For each (u,v) such that the cor-
responding point (z,y) € E(C) has real coordinates (in fact, we can know
in advance which of these m or 2m points are real, see the remarks below),
test whether z is close to a rational number with a square denominator f2.
If the computation has been performed with sufficient accuracy, at least one
of these points  must be a rational number. Otherwise, we must slightly in-
crease the accuracy used in the computations. Once z is found corresponding
to a nontorsion point, compute y using the equation of the curve (which must
be a rational number whose denominator is equal to f2) and terminate the
algorithm.

To compute the list of forms necessary in Step 3, we could use a sophis-
ticated method. However, since the time spent on doing this is completely
negligible compared to the time spent in the main computation of Step 4,
the following naive algorithm is sufficient.

Subalgorithm 8.6.12 (Compute list of forms) Given a fundamental negative
discriminant D and f3 such that 32 = D (mod 4N), this subalgorithm computes
a list £ of forms as in Step 3 above.

1. [Initialize] Using any method (since D is small), compute the number h(D)
of classes of forms of discriminant D, set £ < 0, £, < 0, and let b be such
that b = 8 (mod 2N).

2. [Fill lists] Set R < (b? — D)/(4N), and for all positive divisors d of R do as
follows: set f < (dN, b, R/d) and let f, be the unique reduced quadratic form
(A, B,C) equivalent to f (in other words |B| < A < C and B > 0 if either
|Bl =Aor A=0C). If f, ¢ L,, set L, + L, U{fr}, using Subalgorithm
8.6.13 below, find a form f' = (A', B',C") equivalent to f still with N | A’
and B' = 3 (mod 2N), but with A" minimal, and set £ «+ LU {f'}.

3. [Finished?] If |£| < h(D) set b < b+2N and go to Step 2, otherwise terminate
the subalgorithm.

In Step 2 the reduction from f to f, is done using a standard algorithm
such as Algorithm 5.4.2 of [Coh0]. The reduction of f to f'is done as follows.

Subalgorithm 8.6.13 (Compute minimal A) Given a positive definite form
f = (A,B,C) of discriminant D < 0 with N | A, this algorithm finds a form
f'= (A", B',C") equivalent to f with N | A’ and B’ = B (mod 2N) with A’
minimal.

1. [Initialize] Set u + —B/(2A/N), vy + |D|/(2A/N)2. By any reasonable
method (see below) find some (cg,dg) with ged(coN,dg) = 1 and such that
(cou + do)? + c2 = myg is as small as possible by the chosen method. Note
that we can always set ¢p < 0, dp + 1, and mg « 1. Set L « /mg/vs. If
L < 1, output (A4, B,C) and terminate the algorithm, otherwise set ¢ « 0.
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2. [Loop on ¢] Set ¢ + ¢+ 1, and if ¢ > L go to Step 3. Otherwise, set d «+
| —cu]* (the nearest integer to —cu prime to ¢N) and set r + (cu+d)%+c?v,.
If r < mg, set mg <7, cg < ¢, dog « d, and L « /mg/vy. Go to Step 2.

3. [Find form] If mg = 1, output (4, B,C). Otherwise, using the extended
Euclidean algorithm, compute ag and by such that agdy — bgNcy = 1, let
= (A", B',C") be the form f(agx + boy, cox + doy) and output f’'. Termi-
nate the subalgorithm.

Proof. If we write 7 = (=B + v/D)/(2A4) = z + iy, then z = R(r) =
—~B/(24) and y = S(7) = /|D|/(24). It follows that finding a minimal A’ is
equivalent to finding the corresponding 7' with the largest imaginary part. It
is immediately checked that the relations N | A’ and B' = B (mod 2N) are

preserved by v = (i Z) € SL2(Z) (for all forms f) if and only if v € To(N),

so we write Nc instead of c. Finally, it is clear that

o __S(n)
S(v(m) = m )

so we must make |Ncr + d|? minimal, where
|Ner +d|* = (Nex + d)? + N2c*y? = (cu + d)? + o,

using the notation of the algorithm. This quantity can trivially be made equal
to mo by choosing (¢, d) = (co, dy) of Step 1. Hence if we want it to be strictly
less than my we must have ¢ < \/mgo/v2 = L, and ¢ being fixed the optimal
value of d is the one making |cu + d| minimal, in other words the nearest
integer to —cu coprime to ¢N, since we must apply the extended Euclidean
algorithm in Step 3. O

To find a good (cg,dg) in Step 1 of the above subalgorithm, we can, for
example, either use a continued fraction approximation to —Nz & dy/cg, or
use Gaussian reduction of the quadratic form (c,d) — (cu + d)? + c?vy in
order to find small vectors. Having a small mg in Step 1 is important for the
efficiency of Step 3.

Remarks.

(1) As already mentioned, the above two subalgorithms are not at all opti-
mal. However since the time spent in computing the necessary forms is
negligible compared to the time spent in computing the values of ¢, it
does not matter at all. What is essential is that we choose a representa-
tive (A’, B',C") with a minimal A’, otherwise the computation of ¢ will
be much longer.

(2) Since by Proposition 7.3.1 we have z = n/f2 and y = n'/ f?, the detection
of y as a rational number is much more costly than that of x, so it is
preferable to compute z first, then g. This proposition also explains the
choice of the accuracy d made in Step 1 of the main algorithm.



(3)
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The default accuracy d should depend not only on E, but also very
slightly on the chosen discriminant D. If the choice of D is reasonable
(say |D| < 10°), the added constant 10 more than compensates for this
dependence.

We could directly compute (p(z), g'(z)), which will be a nontorsion point
of E(Q), and identify its coordinates as rational numbers. However in
general we need very high accuracy for doing this computation, hence this
can be done only on small examples (see below). The use of the integer
m in the above algorithm considerably reduces the necessary accuracy.
If P denotes the point of E(Q) corresponding to z € C/A, we have P =
mG+T where G is a nontorsion point and T' € E;(Q). If the order of T is
prime to m we can also write P = mG + mT" for a suitable 7" € E;(Q),
so the point G + T" will correspond to z/m + w for some w € A/m.
Unfortunately, the order of 7' may not be prime to m. Nevertheless, we
have P = m'G + ¢T and the order of ¢T is prime to m’ so that we can
apply the previous case with £z instead of z. Note that Mazur’s Theorem
8.1.16 implies that ged(e,m™) = ged(e, m?) (see Definition 9.5.7).

A point z = Aw1(E) + Aaws(E) will correspond to a real point if and

1
onlyif \o e Zif A <0,0r \y € §Z if A > 0. It is therefore easy to find

for which (u,v) € [0,m’ — 1]? the point z,,, corresponds to a real point.
Even after dividing by m' as in z,,, above, the point that we will obtain
may be a large multiple of the Mordell-Weil generator. This will occur
when ITI(E) is nontrivial. In this case we can either increase the accuracy
of the computations, or choose small multiples of m instead of m itself.
The number of coefficients a,, which must be used in the series for ¢
can well exceed the capacity of a computer. In this case they must be
computed inductively, see [GBZ] for details.

As noted above, it may happen that the so-called Manin constant of the
curve is not equal to 1. In that case we must on the contrary multiply
the values z,,, by a small constant, which technically is the degree of the
isogeny between E and the strong Weil curve in its isogeny class.
Although the main algorithm suggests choosing discriminants D in in-
creasing absolute value, it is clear that the best choice is to choose D for
which the smallest value of \/W /A in Step 4 is as large as possible. The
smallest |D| is not always the best for this.

We can also use the so-called Atkin—Lehner operators in order to in-
crease the imaginary parts of the points 7 € H corresponding to the
forms (A, B, C), see Exercises 25 and 26. For this we must slightly adapt
Subalgorithm 8.6.13 and use the fact that if W is such an operator then
poW =ewp+T where T € E;(Q) and ey = £1 can easily be computed.
Note also that we do not need to compute 7.

For many practical improvements on this method, we refer to ongoing

work of Delaunay, Watkins, and Cremona—Silverman.
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8.6.5 A Complete Example

We consider the following problem. By Tunnell’s theorem or by the BSD
conjecture, we know that 157 is a congruent number, in other words there
exists a rational nontorsion point on the elliptic curve 3> = 2® — 157%z. We
want to compute such a point (from which it is easy to compute explicitly a
Pythagorean triangle with area 157). We give explicitly the GP commands
so that the reader can reproduce the computations himself. We should first
choose a sufficiently large stack (200 MB is sufficient). We begin by the com-
mand e = ellinit([0, 0, 0, -157"2, 0]) which computes a number of
needed constants. In particular, the period lattice is generated by oml =
e.omegal[1] and om2 = e.omegal[2], and since the discriminant is positive
the real period is om = 2*oml. The command et = elltors(e) shows that
|E:(Q)| = 4, which we knew already in the congruent number problem, vole
= e.area gives the volume, ered = ellglobalred(e) gives the conductor
N = ered[1], the Tamagawa product ¢ = ered[3], and the fact that the
equation for E is in fact a minimal model. We now compute the necessary
accuracy: we find that [III(E)|R(E) =~ 54.6 and HB =~ 10.6, hence d ~ 130.4,
so we will perform our computations with a default accuracy of 67 decimal
digits.

Since we performed the ellinit command with the default accuracy of
28, we must now change the default accuracy with the command \p 67, and
then recompute ellinit and the values of the corresponding floating point
numbers given above.

We now search for suitable fundamental discriminants. We find that up to
D = —40, only D = —31 and D = —39 are squares modulo 4N. The quantity
m? = m?(D) of the algorithm can be computed by defining the function
m2(D) = v = ellan(e, 1000000); q = exp(-2*Pi/sqrt(N*D"2)); \
ql = 1.; s = 0.; for (n = 1, 1000000, q1 *= q; \

s += v[n]/n*kronecker(D,n)*ql); \

sqrt (-D) xc*xom/ (4xvolexet [1] "2) *x2xs.
In the above, 1000000 is overkill, but we are lazy since the computation is
very fast. We find that m2(-31) is very close to 0, so —31 is not suitable, but
m2(-39) is very close to 16, so we choose D = —39 and m = 4. We easily
find that b = 1275547 satisfies > = D (mod 4N), so we write D = -39 and
b = 1275547.

There are four classes of quadratic forms of discriminant —39, and with the
notation of the algorithm, it is easy to see that we have z = 2R(p(x1) +¢(x2))
with z; = (=b++/—39)/(2jN). The largest value of A in the quadratic forms
(A,B,C) is thus A = 2N. It follows that to compute z we will need more
than Ad/(w+/|D|) terms, giving here approximately 10.5 million. We thus
write v=ellan(e, 10500000). This only requires 84 seconds on a 3.06 Ghz
PC. Being lazy, we then write the function
ph(tau) = s = 0.; q = exp(2*I*Pi*tau); ql = 1.; \

for (n = 1, 10500000, q1 *= q; s += v[n]/n*ql); s
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(we do not need 10.5 million terms for the computation of ¢(z1), but we
are not optimizing here), and we compute z (in 78 seconds) thanks to the
commands
z1 = ph((-b + I*sqrt(39))/(2*N)); \

z2 = ph((-b + Ixsqrt(39))/(4xN)); z = 2*real(zl + z2);
and we find

z = —5.63911127500831766007696166307316036323562406574706 - - -

We write z += 27*om1 to make it as small as possible. Among the possible
points to be studied in the algorithm, we see that 2z 4+ 2w; already does the
trick. Since the nontrivial torsion points are wy/2, w2/2, and (w1 + w2)/2,
it follows that 2z + 6wi, 2z + 2wy + 4wy, and 2z + 6wy + 4ws would also
work. Thus we compute p((2z + 2w;)/8) thanks to the command x1 =
ellwp(e, (2*z + 2xom1)/8). To have x as a rational number we write rx
= contfrac(real(x1)) (the imaginary part of x1 is zero to the accuracy of
our computations). This gives a continued fraction for the approximation z,
which has a large partial quotient toward the end, precisely after index 39.
We thus write
mx = contfracpngn(vector(39, i, rx[i])); x = mx[1,1]/mx[2,1].

We check that the denominator of x is a perfect square, which is a good
sign. To obtain the value of y, we can be lazy and use the built-in function
y=ellordinate(e,x) [1], or else write x = n,/f?2, compute n3 — 157%n,, f*
and check that it is the square of some integer n,, so that y = n, /f3. In any
case we finally find the rational point

[ 95732359354501581258364453 834062764128948944072857085701103222940
T\ 277487787329244632169121 ' 146172545791721526568155259438196081

See Exercise 30 for another example of the use of Heegner points.

8.7 Computation of Integral Points

For this section I have closely followed the presentation of Chapter XIII of
[Smal.
8.7.1 Introduction

Let FE be an elliptic curve defined over Q, but which we now assume to be
given by a generalized Weierstrass equation

y2 + a1y + aszy =23 +a2:c2 + a4 + ag ,

where the a; are all integral. We want to compute the complete set E(Z) of
integral points on E, which by Siegel’s theorem we know to be finite. Note
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that although E(Q) does not depend on the chosen model (i.e., equation or
system of equations) for E, on the other hand E(Z) does depends on the
model.

We first describe the general strategy, and give details afterward. We
assume that using one of the above methods we have completely computed
the Mordell-Weil group E(Q) (and not only the rank), in other words that we
know the torsion subgroup E;(Q) of E(Q) and an r-element basis (P;)i<igr
of the torsionfree part of E(Q), where r is the rank of E. Thus any element
P of E(Q), and in particular any element of E(Z) can be written in the form

P=T+ Y pP
1<isr

for some T € E;(Q) and some p; € Z.

A deep theorem generalizing the theorems of A. Baker on linear forms
in logarithms to linear forms in elliptic logarithms implies that when P €
E(Z), the |p;| are bounded by a (usually very large) constant. When we say
very large, we mean something like €199 for instance (see examples below).
However the sheer ezxistence of this bound is sufficient to continue. Applying
a now classical method used by several authors and systematized by Tzanakis
and de Weger, using lattice reduction algorithms such as the LLL algorithm
we can drastically reduce the upper bound on the |p;| (see Section 2.3.5).
Thus typically after two passes of the LLL algorithm we often obtain bounds
such as |p;| < 30. It then becomes possible to do a systematic search on the
possible p;, and we thus obtain the set E(Z) of integral points.

The search for integral points on an elliptic curve is an important Dio-
phantine problem, and although it requires techniques of a different kind than
those that we have studied up to now, its importance justifies a detailed study
of the necessary tools. By nature the present section is more algorithmic than
most of the rest of this book.

8.7.2 An Upper Bound for the Elliptic Logarithm on E(Z)

Let E be an elliptic curve defined over Q by a generalized (affine) Weierstrass
equation y2 + a1y + azy = 3 + a2:z:2 + asx + ag where we assume a; € Z.
We assume (and this is of course the essential and difficult assumption) that
we have explicitly computed the Mordell-Weil group E(Q), in other words
the finite group E;(Q) and independent points P; for 1 < i < r such that

EQ=EQe @ zp.

1<igr

Consider the height pairing matriz Q = ((P;, Pj))i1<i,j<r, which we have
already introduced, where as usual (P;, P;) is the bilinear form associated to
the canonical height function h Since by definition the P; are independent this
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matrix is nonsingular, and it is the matrix of a positive definite quadratic form
on E(Q)/E;(Q), hence all its eigenvalues A; are strictly positive. In particular
R(E) = det(Q) = []; i > 0 is the regulator of E, and is independent of the
choice of the P;.

Now let P = (z(P),y(P)) € E(Z) be an (unknown) integral point. We
can write in a unique way P =T + 3, ;. piP; for some T' € E¢(Q) and
pi € Z, and we set H = max;(|p;|). Our main goal is to find inequalities for
1/|z(P )| involving H and the elliptic logarithm (P). Since E%9 is compact,
it is usually very easy to find all integral points on it, hence we will always
assume that P € E° (although it would be a simple matter to generalize to
the whole of E(Q)). Also we may evidently assume that x(P) # 0.

Lemma 8.7.1. Keep the above notation, let c2 = mini ;< A be the small-
est eigenvalue of @, and set ¢1 = exp(u(E) + 2.14) where p(E) is defined
in Theorem 8.1.18. If P = (x(P),y(P)) € E(Z) is any integral point with
z(P) # 0 and H = max;(|pi|) as above then

1 _ 2
my S

Proof. Since z(P) € Z \ {0} we have h(P) = max(log(|z(P)|),0) =
log(|z(P)|), hence by Theorem 8.1.18 log(|z(P)|) > E(P) — log(e1), with
c1 defined as above. Let X = (py,...,p,)! be the column vector of the p;.
Since h is a positive definite quadratic form on E(Q)/E; (Q) with matrix @,
we have E(P) = X!QX. A standard undergraduate exercise (see Exercise 32)
shows that

}\L(P) > XX > e Z pZ > cH?

1<igr

proving the lemma. o

We now want a link between z(P) and the elliptic logarithm (P). After
the standard transformations explained in the preceding chapter we can put
our curve in the form Y2 = f(X) with f(X) = 4X® — goX — g3, where
g2 = c4/12 and g3 = ¢/216, and where we recall that X = z+ by /12. Denote
as usual by ey, es and e3 the complex roots of f(X) = 0.

The following lemma relates ¢ (P) to x(P) for any real point P € E°, not
necessarily integral.

Lemma 8.7.2. Let P = (z(P),y(P)) € E° be a real point, and assume that
|z(P) + b2/12| > 2max(|e], |e2], |es]). If we choose the (essentially) unique
determination of 9 (P) such that |(P)| < w1/2 we have

w3 |ba|

T +8.

where c¢3 =
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Proof. Write P = (X (P),Y (P)). Since P € E° we have X (P) > e3. Since
X(P) = z(P) + by /12 this implies that X (P) > 0 otherwise e3 < X(P) <
0, hence | X (P)| < |es|, contrary to our assumption. Now as mentioned in
Section 7.3.2, for P € E° and the chosen determination we have the explicit
formula

X(P)
u(P) = sign(v () [ ff(t) .

By assumption if t > X (P) we have t > 2|¢;| for 1 < ¢ < 3, hence

t—2|€i|

[t —es| >t—|es| = 5

t _t
- >
+2 2

It follows that |f ()] = 4], ;s It — €| > t°/2, hence
X(P) g

<21/2/00 i< 23/2
SN IOI xp) t¥2 7 /X (P)

or, equivalently, X (P) < 8/v(P)%. We thus have

by [bo] 8 |bs |
- 2L L

12 <SX(P)+ 12 S y(P)2 " 12
8 + (P)?|ba|/12 < 8 + w?|by|/48

- $(P)? S e(p)?

since |¢(P)| € w1/2, proving the lemma. |

[z(P)| = | X(P)

From now on, when P € E° we will always assume that we choose the
above principal determination of ¢(P), i.e., such that |[¢(P)| < w1/2.

Corollary 8.7.3. Let ¢; be the constants defined in the above two lemmas
and set cs = yJ/cic3. If P = (x(P),y(P)) is an integral point in E° with
2(P) # 0 and if |a(P) + by/12] > 2max(jex |, ea], les]) then

[p(P)| < czec2H™/2

Proof. Clear by combining the two lemmas. O

8.7.3 Lower Bounds for Linear Forms in Elliptic Logarithms

Now is the time to introduce high technology. This should be taken as an easy-
to-use black box, but the reader should be aware that the mathematics and
computations leading to lower bounds for linear forms in logarithms (elliptic
or not) initiated by A. Baker, are one of the major advances in number theory
in the second half of the twentieth century.
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The following theorem is due to S. David, and we only give the special
case of Q. For the general case, as well as the corresponding statements for
linear forms in complex or p-adic logarithms, I refer to [Smal].

First, we need some notation. Let E be an elliptic curve defined over QQ,
and as above let Y2 = 4X3 — g, X — g3 be the equation of E obtained after
the standard changes of variable. Recall that if P = (2o : --- : z,,) € P*(Q)
we have defined h(P) = maxogign log(|yi|), where P = (yo : -+ : yp) is
one of the two representations with y; € Z for all i and gcd(yo, .- ,yn) = 1,
hence in particular if v = n/d € Q* with ged(n,d) = 1 we have h(u) =
max(log(|n|),log(|d|)). We define the height h(E) of the elliptic curve by the
formula

h(E) = max(1, h(1,92,93), h(§(E)))

and we set ¢7 = 31/ (WiS(w1/w2)). If P € E(Q) we define a modified height
function hn,(P) by the formula

hn(P) = max(h(P), h(E), er[9(P)[*) .

Theorem 8.7.4 (David). Let P,...,P, be points in E(Q), and set

han (P5)

€ .
cg = max(eh(E),lréliasxn hm(P;)) and cg = ﬁ lIgniléln WP
For p; € Z we set H = max(|pi|), and L =}, ;c,, z:¢(P;), Then if H >
exp(cg) and L # 0 we have

log(L) > —c10(log(H) + log(cy)) (log(log(H)) + h(E) + log(cy))"+*
where

c1o = 2 108¥77(2/)2™ (n + 1) 107 Jog (gg) ~2n—1 H h (P;)
1<ign

Remark. Recall that ¢(P) is only defined modulo A. This theorem is valid
for any determination of ¢(P). In particular we have ¥(O) = 0 (mod A),
so by choosing one of the P; equal to O we can include any integral linear
combination of w; and ws among the ¥ (F;).

We now explain how to use this theorem combined with Corollary 8.7.3
to find integral points. As already mentioned, the fundamental assumption
is that we have computed exactly the Mordell-Weil group as

E(Q =EQe P zp,
1<igr

and we recall from Section 7.3.2 that we have a disjoint union E(R) = E%9 U
E°, where E° is the connected component of the identity, and the possibly
empty set E99 is compact. I claim that we can assume that at most one of
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the P; is in E99: indeed, if P; € E9 and P; € E9 with ¢ # j, then in
the Mordell-Weil basis we may replace {P;, P;} by {P; + P;, P;}, and since
P; + P; € E° by Section 7.3.2, we have one point less in E%9, proving my
claim. We may thus assume that P; € E° for 2 < i < 7.

We write our integral point Pas P =T+, <igr p; P; for some unknown
T € E;(Q) and p; € Z. We may clearly assume that P € E°, that P ¢ E;(Q)
(so that the p; are not all equal to 0), and that x(P) # 0, since all the points
that we exclude in this way are easy to find. Since we want to restrict to E° we
set Q; = Pifor2<i<r,and Q; =2P,if P, € E99 and Q, = P, if P, € EY,
so that Q; € E° for all . We can thus write P = T+U+ 3 <igr 4iQi, Where
¢ =piifi >2orifi=1and P, € E° and q1 = |p1/2] if P, € E°, and
U=P if P, € £9 and p; is odd, U = O otherwise. Since P and the @); are
in E° we also have T + U € Ey, so that T + U belongs to a finite set having
at most 2|E;(Q)| elements. We will write @Qr4+1 = T + U (we can of course
avoid this extra point if we know in advance that it will be equal to O, for
instance if P, € E® and E;(Q) = {O}).

By definition the elliptic logarithm is additive modulo A, and since on E°
we have chosen the principal determination it is clear that if P =", <i<n R;
then 1(P) = mwi + 32 <;c,, Y(R;) where [m| < |[n/2]. In particular

$(P) =mw +P(Qri1) + Y @p(Qi)

1<igr

with [m| < (1 + 3, ¢ic, 19:])/2, and even [m| < 35, i, |0il /2 if Qry1 = O.
This is a linear form in elliptic logarithms, so we can combine Corollary 8.7.3
with David’s theorem. If we set L = ¢(P) and

Hy = max(1, max(|¢;[)) < max(|pi|) = H ,

Corollary 8.7.3 tells us that when |z(P) + b2/12| > 2max(|e1], |ez2], |es]) we
have

—log(|L|) > c2H?/2 — log(cs) > 02H§/2 —log(cs) ,
and David’s theorem (applied to the Q; and ton =r+2or ton =r + 1 if
Qry1 = O) implies that

—log(|L|) < c10(log(H,) +log(cy)) (log(log(H;)) + h(E) + log(ce))™+" ,

where H, =rH,; + 1, or H, = rH, when Q,4+; = O . Since the upper bound
grows logarithmically in H, and the lower bound grows like H, 3, it is clear
that these bounds are contradictory for H, sufficiently large.

Since all the constants are explicit we can thus compute some bound B
such that H, > B leads to a contradiction, so that we know that H, =
max(|g;|) < B. This bound will usually be extremely large, but now we use
the techniques explained in Section 2.3.5 (in particular Corollary 2.3.17 and
Proposition 2.3.20) to the inequality |L| < ¢s exp(—coHZ2/2), possibly two or
three times, to reduce the bound to something manageable which we then
enumerate by brute force.
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8.7.4 A Complete Example

Since the above description contains a lot of notation and may be hard to
understand at first, the best is to give in detail a complete example. We will
again consider the curve y?+y = 2% — 72+ 6 studied in detail in Section 8.5.6.
We have seen that it has no torsion, and that it has rank 3, where generators
can be taken to be P; = (2,0), P» = (—1,3) and P; = (4,6). The reduced
Weierstrass equation of this curve is obtained by setting ¥ = 2y + 1 and
X =z, sothat Y2 = 4X3 —28X +25. We thus compute that by = 0, go = 28,
g3 = —25, disc(E) = 5077, j(E) = 37933056/5077, hence h(E) = 17.45,
w(E) = 3.90855, ¢; = 423.5, A\; = 0.3228, Ay = 0.4925, A3 = 2.623, hence
c2 = 0.3228, c3 = 8, c5 = 58.21, e; = —3.0124, ex = 1.0658, e3 = 1.9466.
Thus if P = py Py +paPo+p3Ps € E° is an integral point such that |z(P)| > 7
we have the fundamental inequality |1)(P)| < 58.21exp(—0.1614H?), where
H = max(p;). Now among the P; only P, is in E%9, so we set Q1 = P,
Q3 = P3, and Q2 = 2P> = (114/49,—720/343). Since there is no torsion we
have P = q1Q1 + ¢2Q2 + ¢3Q3 + U with ¢1 = p1, g2 = |p2/2], g3 = p3 and
U = O or P, but since we only look for P € E°, we have in fact U = O,
g2 = p2/2 and Q4 = O.

We are now ready to apply David’s theorem to the form L = mw; +
@ ¥(Q1) + @9 (Q2)+431(Qs) (hence n = 4), where m < (|qu|+]gz(+1as])/2 <
(3/2) max(|g;|). We find ¢; = 1.5599, h,,(Q;) = h(E), hence cg = 47.4376,
co = 5.8503, and finally c;o = 2.97 - 10'°7. Thus we have the inequalities

—log(|¢(P)|) > 0.1614H; — 4.064 and
—log(|%(P)|) < 2.97-10"(log(1.5H,) + 1.7665)(log(log(1.5H,)) + 19.218)°

the second one being valid only for 1.5H, > exp(cg) = 4.01 - 102°. We imme-
diately find that these equations are incompatible for H, > 10%, hence we
have a first basic upper bound H, < 10%. Note that it is completely unneces-
sary to take sharp bounds anywhere in this computation, since the next step,
i.e., the use of the LLL algorithm, will drastically reduce the bound anyway.
Since we are no longer going to use David’s theorem, we can also forget the
lower bound (3/2)H, > 4.01 - 10?° necessary for the validity of his theorem.

After having used the above high technology, we can now use the magic
of the LLL algorithm, more precisely Corollary 2.3.17 and Proposition 2.3.20
applied to the inequality

|mw1 + q1¢(Q1) + QQ¢(Q2) + q3¢(Q3)| < 88.21 exp(—0.1614H3) ,

where we now know that H, = max(|¢|) < 10°° and m < 1.5-10°. We first
choose C' > (10%0)%, say C' = 10%%°, and form the 4 x 4 matrix

1 0 0 0
0 1 0 0
0 0 1 0
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An application of the (integral) LLL algorithm shows that the first vector
of an LLL-reduced basis of the lattice generated by the columns of B is an
explicit vector whose entries have approximately 60 decimal digits. We easily
compute that for i = 1, 2, 3, 4 we have ||by[|?/||b}]|*> = 1, 0.718, 0.426, 0.338
respectively, so that with the notation of Corollary 2.3.17 we have ¢; = 1,
hence

d(L,0)* > ||by]|*/e1 > 2.5-10"%0 .

With the notation of Proposition 2.3.20 we have Q = 3 -10'2° and T =
(1+4.5-1089)/2, so d(L,0)* > T? + Q. Since the points ); are independent,
we deduce from Proposition 2.3.20 that

|1 (Q1) + @(Q2) + g3(Q3) + mw;| > 1.5-107184 .

Combining this with the inequality

|l (Q1) + 21(Q2) + q31(Q3) + muwy | < 58.21e~01614H7

gives H, < 51, which is much more manageable than our initial bound of
1090,

Although 51 is now a reasonable number it is worthwhile to iterate the
whole LLL process using the new inequality H, < 51. This time we must be
a little careful with the choice of C' so as to be able to obtain an improvement
using Proposition 2.3.20. We choose C' = 10%, and after a similar computation
as that performed above we find the new bound H, < 11. By using still
another LLL process with C = 107, we could still reduce this to H, < 10,
but there is not much point in doing so.

We now perform a direct systematic search: on EY99 we find the in-
tegral points (—3,0), (-3,-1), (-2,3), (-2,—4), (-1,3), (-1,—-4), (0,2),
(0,-3), (1,0), (1,-1), (2,0), (2,—1). The points on E° with z(P) < 6 are
(3,3), (3,—4), (4,6) and (4. — 7). All the others are on E° with z(P) > 7,
hence of the form ¢1Q1 + ¢2Q2 + ¢3@3 with |¢;| < 11, and we may assume
g1 = 0 if we take care to compute also the opposites of the points which
we find. Thus after searching through 12 - 232 = 6348 points we find (in
seconds) the additional integral points (where we of course also include the
opposites of the points found) (8,21), (8,—22), (11,35), (11, —36), (14,51),
(14, -52), (21,95), (21,-96), (37,224), (37,—225), (52,374), (52,—375
(93,896), (93,—897), (342,6324), (342,-6325), (406,8180), (406, —8181
(816,23309), (816,—23310), all corresponding to coefficients ¢; with H, =
max(|g;|) < 3. We have thus found a total of 36 integral points, and we have
proved (this was of course the main difficulty) that there are no others.

It should be remarked that 36 is a very large number of integral points for
an elliptic curve, but it is a completely general and only partly understood
phenomenon: if we choose an elliptic curve having the smallest or one of the
smallest conductors for a given rank, it will have a large number of integral
points. Indeed, it is known that our curve is the curve of rank 3 with the
smallest conductor (see Exercise 33 for rank 2).

)7
);
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8.8 Exercises for Chapter 8

1. Prove Corollary 8.1.9.

2. Let R be a commutative ring, let f € R[X] be a monic polynomial, let A =
R[X]/(f(X)R[X]), and let  be the class of X modulo f(X), so that f(a) =0.
Finally, set g(V) = (f(¥) - £(a))/(Y — a) = f(Y)/(Y — a) € A[Y].

(a) Prove that

disc(g) = g(a)® disc(f) = ' (a)* disc(f) .
(b) Deduce the existence of polynomials U and V in R[X] such that U(X)f(X) +
V(X)(f(X))? = disc(f), thus explaining the identity used in the proof of
Theorem 8.1.10 (I thank H. W. Lenstra for this proof).

3. Generalizing Theorem 8.1.10, let E be an elliptic curve given by 4> +a1zy+asy =
2 + a2ax? + asx + ae with a; € Z, and let T = (z,%) be a torsion point of order
not dividing 2. Show the following:

(a) (x,y) € Z* and (2y + a1z + a3)? | 4 disc(E).
(b) If a1 € 2Z then (2y + a1z + a3)? | disc(E).
(c) If a1 € 2Z and a3 € 2Z then (y + (a1/2)z + (a3/2))? | disc(E)/16.

4. Using Sections 7.3.6 and 7.3.7, generalize the Nagell-Lutz Theorem 8.1.10 to a
general number field.

5. Prove Corollary 8.1.15 (2).

6. Using reductions to standard Weierstrass form, compute a Weierstrass equation
for the hyperelliptic quartic curve y?> = 226" — 1 using the known rational
point (z,y) = (1,15), and show that the rank of this elliptic curve is equal to
3.

7. (Bremner—Tzanakis.) This exercise is a sequel to Exercise 40 of Chapter 6, whose
notation we keep.

(a) By setting & = —P/Q? show that for n = 7 coprime pairs (P, Q) as in the above-
mentioned exercise are in one-to-one correspondence with rational points on
the elliptic curve E whose equation is y* = z® + 6x2 + 5z + 1.

(b) By using the methods of this chapter, show that this curve has no torsion, and
that it has rank 1 generated by the point (—1,1).

(c) Give the first seven coprime pairs (P, Q) coming from the preceding question.

In their papers [Bre-Tzal] and [Bre-Tza2] the authors solve in detail the cases
n = 8 and n = 12, and conjecture that such coprime pairs cannot exist for other
values of n.

8. Let E be the elliptic curve Y? = X3 — 34992.

(a) Using mwrank or descent, show that E has rank 1 and no torsion, a generator
being P = [36, 108], which corresponds to the point (z,y) = (1,2) under the
birational transformation of Proposition 7.2.3.

(b) Using the group law and that proposition, solve Fermat’s challenge (which he
knew how to solve) of finding strictly positive coprime integers z, y, and z such
that z° + y* = 92° other than (1,2,1) and (2,1,1) (the smallest answer has 12
decimal digits).

(c) Perform the same computation, but now using Exercise 9 (b) of Chapter 7.
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9. Find all £ € Q be such that 2> + 4 is the square of a rational number and

4x 2+ +2
x?+4 x> +4

2+ 2x —

is also the square of a rational number (reduce to finding all rational points on
an elliptic curve).

10. (Mestre.) Let 71, re, r3s and r4 be distinct rational numbers and let ¢t € Q be a
parameter. Consider the 12th degree polynomial

PxX)= [ &-(rittry).

146,54, i#d

(a) By considering the Laurent series expansion of Q'/? show that for any monic
polynomial @ of degree 12 there exists a unique polynomial g € Q[X] such
that deg(Q(Xg —¢*(X)) £ 7, and show that in our special case we have in fact
deg(P(X) - g°(X)) < 6.

(b) Show that there exists ¢(X) € Q[X] and r(X) € QfX] such that P(X) =
g3(X) + q(X)g(X) + r(X) with deg(q) < 2 and deg(r) < 3.

(c) Deduce from this that the equation Y* +¢(X)Y +7(X) = 0 is the equation of a
cubic with rational coefficients, and that the 12 points (r; + tr;, g(ri +tr;))iz;
give 12 (not necessarily distinct) rational points on this cubic.

(d) Give explicit values of the r; and ¢t for which the cubic is non-singular, the
above 12 points are distinct and in fact linearly independent for the group law
on the cubic.

(e) Using the algorithm described in Section 7.2.4, find a Weierstrass equation
corresponding to the cubic, and give explicitly an elliptic curve defined over
Q whose rank is at least equal to 11 as well as 11 independent points on the
elliptic curve (note that we have to “lose” a point in order to obtain an elliptic
curve).

Remarks.

(a) To answer the last two questions of this exercise, the reader is strongly advised
to use a package such as mwrank.
(b) The largest known rank for an elliptic curve defined over Q is 24, see [Mar-McM].

11. (R. Schoof.) Define a Cassels—Sansone number (abbreviated to CS number) as
an integer a of the form z/y +y/z + z/x for some nonzero integers z, y, and z.
We let C, be the curve with projective equation 2 + vz + 2%y = azyz.

(a) Prove that C, is an elliptic curve if and only if a # 3, and give a rational
parametrization of the curve C3. From now on we assume a # 3.

(b) Let E, be the elliptic curve with affine equation 3> + axy +y = 2°. Show that
E, and C, are isogenous over Q, and give explicitly the isogenies and their
degree.

(c) The point T' = (0, 0) is trivially a point of order 3 on E,. Prove that the torsion
subgroup of E, is strictly larger than < 7' > if and only if a = —1 and a =5,
and give the torsion subgroup in these cases, as well as the corresponding points
on the curve C,.

(d) Prove that a is a CS number if and only if a = —1, 3, 5, or if the rank of the
elliptic curve E, is at least equal to 1.

(e) Using Tate’s algorithm, it can be shown that the sign of the functional equation
of L(E,,s) is equal to (—1)¢"* if 3 { a or if a = 12 (mod 27), and is equal to
(—1)? otherwise, where d is the number of prime divisors of a® — 27 which are
congruent to 1 modulo 3. Using BSD, deduce a sufficient condition for a to be
a CS number.
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(f) By computing numerically L(E,,1) when the sign of the functional equation
is equal to 1, make a small table of CS numbers.

(g) By using the Heegner point method, compute explicitly integers z, y, and z
such that z/y + y/z + z/z = —32.

(h) Show that if a is a CS number the Diophantine equation x> +y%+2® = azyz has
a nontrivial solution, but that the converse is false. Does this remark simplify
the Heegner point computation of the preceding question?

12. Using a software package such as mwrank or descent methods, show that the
parabolic-type super-Fermat equations z? + y* = 22* and 2* + 8y* = 2? have
an infinity of integral solutions with z, y and z pairwise coprime (reduce to a
hyperelliptic quartic). Find all such solutions with min(|z|, |y|, |2|) < 10'%.

13. Consider the hyperelliptic quartic equation y? = (z — 1)z(z + 1)(z + 2).

(a) Using Proposition 7.2.1, find a generalized (not necessarily minimal) Weier-
strass equation for this elliptic curve.

(b) Compute its torsion subgroup and its rank, using 2-descent.

(c) Deduce the following result due to Euler: the product of 4 integers in arithmetic
progression can never be a nonzero square, in other words the only solutions
in Z to the Diophantine equation n(n + d)(n + 2d)(n + 3d) = m® have m = 0.

14. In this chapter, in Chapter 14, and at other places we needed to explicitly
compute the Mordell-Weil group of a number of elliptic curves. Although we can
use Cremona’s mwrank package, it is instructive to do some of the calculations by
hand. Perform explicitly the necessary computations as follows. For each given
curve E, first transform it into the canonical 2-descent form y? = z® 4 az® + bz
(when it has rational 2-torsion, which will usually be the case), and compute
a(E) and &(E(Q)) by looking at the real, 2-adic or 3-adic solubility of the
necessary quartics.

(a) 92 = (z— 1)(3/:2 — 14z + 1): show that |a(E(Q))| = 2 and |6(E(Q))| = 2, hence
T(E) =

(b) y*> = (z + 1)(«® + 14z + 1): show that |a(E(Q))| = 4 and |6Z(E’(Q))| =2, s0
that r(E) =1, and give explicit generators.

(c) y* ( 1)( — 4): show that |a(E(Q))| = 4 and |a(E(Q))| = 1, so that

T E
(d) y* = 2 — 8: show that one can reduce to the equation studied in (a), hence
that r(E) = 0.

(e) y = z(x2 —9) show that |a(E(Q))| =4 and |a(E(Q))| = 1 so that r(E) = 0.

(f) y? = 9z* + 1822 4+ 1: show that this curve is isomorphic to y* = z(x? —9) hence
that r(E) =0.

(g) y* = 122" +1: setting y = 1+ Y and using the algorithm described in Section
7.2.4 and Proposition 8.2.15 show that r(E) = 0.

15. Continue the study of 3-descent by first proving an analogue of Proposition
8.2.4 (3) and (4). You will need in particular to work with prime ideals of K.
Prove also an analogue of Proposition 8.2.8.

16. Let E be an elliptic curve defined over a field K of characteristic 0. It is clear
(and we have used this fact in 2-descent) that if E has a rational point of order
2 its equation can be taken of the form y? = 23+ ax? 4 bz (here and afterwards
the parameters a and b are implicitly assumed to be in K).

(a) Using Proposition 8.4.2, show that if F has a rational point of order 3 its
equation can be taken of the form

y + by = 2 +a’2” + abx .
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(b) By writing 2[0,0] = —2[0, 0], show that if E has a rational point of order 4 its
equation can be taken of the form

y® + 2aby = 2° + (a + b%)2” + 2ab’x .

(c) By writing 3[0, 0] = —2[0, 0], show that if E has a rational point of order 5 its
equation can be taken of the form

y® 4 (2a — b)b’y = &® + (a® + 2ab — b*)z” + (2a — b)ab’x

(hint: transform the polynomial relation between a2, as, and a4 obtained from
3[0,0] = —2[0, 0] by setting a4 = tas, dividing by a$, setting z = a2 —*#?, solving
in ¢, and simplifying the resulting equation).

(d) Using practically the same method as for order 5, show that if E has a rational
point of order 6 its equation can be taken of the form

y® — 2a(a — b)(2a — b)y = & — (20 — 6ab + 3b*)z® — 2ab(a — b)(2a — b)x .

Note that since these equations are not unique, your results may be a little
different.

17. Using Legendre symbols or otherwise, prove that if F is the elliptic curve with
affine equation y* = 2% + 1 we have a,(E1) = 0 (mod 2). Using Propositions
2.5.20 and 8.5.3, deduce Corollary 8.5.4.

18. The aim of this exercise is to study the decomposition of 22 as a sum of two
rational cubes.

(a) Let z, y, z be pairwise coprime integers such that z® + y* = 222 (since 22 is
cubefree, it is clear that we can reduce to this case). Show that 66 | z + y and
that « and y are odd.

(b) Using this and making a systematic search with |y| < z, show that 22 is the
sum of two rational cubes by giving explicitly z, y and z.

(¢) Thanks to Proposition 7.2.3, we can also study the rational points on the
elliptic curve E whose Weierstrass equation is y?> = z® — 432 - 22% or, more
simply 3> = 2® —27-11? by changing (z,y) to (4z,8y). Using Proposition 8.5.6
and the remark that follows, show that £(E) = —1, hence that under the BSD
conjecture the rank of E is odd, hence at least equal to 1, so that 22 is indeed
a sum of two rational cubes.

(d) Show that L'(E,1) # 0, hence that the analytic rank of E is equal to 1. By
the proven results of Gross—Zagier et al, this shows that the rank of FE is equal
to 1.

(e) By performing a general 2-descent, find explicitly a rational point on E, and
hence a decomposition of 22 as a sum of two rational cubes.

(f) Do the same, but now using the Heegner point method, since we know that E
has rank 1.

19. Set

—t

f(z) = ze"Eq(z) = ze” /oo eT dt .

(a) Show that if we set yo(t) = f(1/t) then yo is a solution of the differential
equation t’y’ + (1 +t)y — 1 = 0.

(b) Prove that yo is a C* function around ¢ = 0, and that it has the (nonconver-
gent) series expansion yo(t) = >, (—1)"n!t".

(c) Consider the differential equation >y’ + (1 + at)y + bty® — ¢ = 0, where a, b,
and c¢ are parameters. Prove that there is a unique solution of this equation
which is C*° around ¢ = 0 and that its value at t = 0 is equal to c.
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(d) Let y»n be a the C* function which is a solution of t2y'+(1+ant)y+bnty2—cn =
0. Prove that if we set yn, = ¢, /(1 4+ tyn+1) then y,41 is the C*° function that
is a solution of t%y’ + 14 ant1t)y + bpi1ty? — cpyr = 0 with a1 =1 — an,
brnt+1 =1, and cp+1 = an + bncp.

(e) By proving the convergence of the continued fraction, deduce that

—x

1
1
It =
T+ ———
2
14+

E1 (.’II) =

T+

T4+ .
(f) By contracting this fraction, deduce finally that

Ei(z) =T1(1,2) = e’

12

z+1—
22
z+3—

2
z+5— 3

47—

20. (Continuation of the preceding exercise.)

(a) Denote by pn/gn the nth convergent of the continued fraction for F;(z) ob-
tained at the end of the preceding exercises (so that po =0, p1 =e™*, o =1,
q1 =z + 1). Show by induction that

" 2
n Ny ]
an :Z() (n—’ .
j=0 J
(b) Show that the largest summand in this sum is obtained for jo equal to one of
the two integers closest to

jo=—-1—2z/2+/nzx+zx+22/4,

and using Stirling’s formula show that as n — oo this summand is asymptotic

to
n!ezx/nze—m/2

2m\/nx
(c) By setting j = jo + An'/* and approximating the sum by an integral, show
that as n — oo we have
o ~ nle2VrEe=e/2 and  p ~ nle?V"@ et 2 B (z)
N R " 2/m(nz)l/4
(d) Deduce that

Ei(z) — Pn ome=tVme
dn
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21.

22.

23.
24.
25.

(a)

(c)

26.

(a)
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Prove completely similar results to those of Exercises 19 and 20 for the incom-
plete gamma function I'(s,z) = f:o e~tt*~! dt. In particular, show that
x’e™ "
P =
(s,2) T
ol=s— 22— s)
z+3—s5—
T+5—s— .

and that if p, /g is the nth convergent of this continued fraction, then as n — oo
we have 5
Pn ™ —4y/nzx
I'(s,z) —— ~ ———e
(s,2) o " T—s)
(when s € Z3; this means that the left hand side is equal to 0, due to the fact
that the continued fraction terminates).

Assume that F is an elliptic curve defined over Q of rank 1 and that one
knows a point of infinite order in E(Q). Explain how to find a generator for the
torsionfree part of E(Q).

Prove Proposition 8.6.2.
Prove Proposition 8.6.6.

(Atkin—Lehner.) Let N > 1 be an integer, and let @ be a (positive) divisor of
N such that ged(Q,N/Q) = 1.

Prove that there exist x, ¥, z, and w in Z such that if we set

Q
We = (N:z Qyw) ’

then det(Wg) = @. Such a matrix Wg will be called an Atkin—Lehner matrix
for the divisor @ of N.

Prove that Wy is unique up to left multiplication by an element of I'g(IV), in
other words that if v € I'o(N) then yWg is again an Atkin-Lehner matrix
for Q, and conversely that if Wo and W, are two such matrices there exists
v € To(N) such that Wg = yWa.

Prove that W3 = Qv for some v € I'o(N), hence that the action of Wg via
linear fractional transformations is an involution on I'g(IV)-invariant functions.

(Continuation of the previous exercise.) Let 7 be a Heegner point of level N,
and let (A, B, C) = 0 be the corresponding primitive positive definite quadratic
form, hence by Proposition 8.6.3 such that N | A and gcd(4A/N,B,CN) =1
(or gcd(N,B,AC/N) = 1). Let Wg = (16\2,0: Q’"’w) be an Atkin-Lehner matrix
corresponding to some @ | N such that ged(Q, N/Q) = 1. We set 11 = (Qz7 +
y)/(Nzt + Qw), which we write as 71 = Wq(7), and let (A, B, C1) be the
corresponding primitive quadratic form.

Compute explicitly A1, B1, and C in terms of A, B, and C (and of course of
the matrix Wg), and conversely compute explicitly A, B, and C in terms of
A1, B1, and Cq (hint: this second computation is immediate from the first).
It is immediately seen from the formulas that N | A1, so the first condition for
a Heegner point of level N is satisfied. Using gcd(A/N, B.CN) =1, prove that
if p is a prime such that p | N/Q then p t gcd(A1/N, By, C1N).

Using now gcd(N, B, AC/N) = 1, prove that if p is a prime such that p | @
then again p { gcd(A1/N, B1,C1N), so that 71 = Wg(7) is a Heegner point of
level N.



27.

28.

29.

30.

31.

32.

33.
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Compute all the integral points on the elliptic curves y*> = z® + ¢ for t = —26,
—29, —38, -39, —53, —59, —61, —83, —89, and ¢t = 17, which are needed for
Theorem 6.7.14 and Exercise 34 of Chapter 6. For instance, first show that a
basis of the Mordell-Weil group is given by (P, Q) = ((5,6), (1563/4,1891/8))
for t = -89, (P, Q) = ((4,5), (10,31)) for t = —39, and (P, Q) = ((—2,3),(4,9))
for ¢ = 17, and proceed similarly for the other values of t.

The reader may have noticed that not only the denominator, but also the
numerator of the z-coordinate found in the example of Section 8.6.5 is the
square of an integer. Explain and generalize this phenomenon.

Compute a rational point on the elliptic curve y? = z* — 157%z considered in
Section 8.6.5, but now using the 2-descent method (hint: cheat and start from
the point found in the text to see on which quartics to look, and at what height).

Using the Heegner point method, compute rational numbers u and v such that
u® 4+ v® = 697. For this, first show that the minimal Weierstrass model of the
corresponding elliptic curve is y?+y = x> —3279211. You will have to perform all
the subsequent computations with reasonably small accuracy (66 to 75 decimal
digits), but you will need several hundred million coefficients of the L-series, so
these will have to be computed on the fly. The smallest denominators for u and
v have 50 decimal digits.

(Bremner—Cassels [Bre-Cas].) Using the Heegner point method, find a nontorsion
rational point on the elliptic curve y> = z(z® + 877) (again, this is a large
computation).

Let @ be the matrix of a positive definite quadratic form, and let A be its smallest
eigenvalue. By diagonalizing () on an orthonormal basis of eigenvectors, show
that X*QX > AX*X.

Prove that there are exactly 20 integral points on the elliptic curve with equation
y> +y = 2® + 2% — 2 (this is the curve of rank 2 having smallest conductor,
equal to 389).



14. The Super-Fermat Equation

14.1 Preliminary Reductions

The general super-Fermat equation is the equation Az? + By? + Cz" = 0 for
given nonzero integers A, B, C' and integral exponents p, ¢ and r greater or
equal to 2 (otherwise the equation would have little interest). The number
of integers less than or equal to some large X of the form AzP is O(X!/P),
and similarly for By? and C'2". Thus, to be able to obtain 0 as a sum of such
quantities by something else than pure accident, it is reasonable to believe
that we must have X < O(X!/P+1/a+1/m) in other words 1/p+1/q+1/r > 1.
Thus, we expect (of course we have no proof) that when 1/p+1/¢+1/r <1
(the so-called hyperbolic case), we will have only finitely many solutions. On
the other hand, when 1/p + 1/¢ + 1/r > 1 (the so-called elliptic case or
spherical case), we expect an infinity of solutions. Finally, we cannot say
anything for the moment about the intermediate case 1/p +1/¢+ 1/r =1
(the so-called parabolic case).

This heuristic reasoning is almost correct, but not quite. Indeed, I claim
that for many triples (p,q,r) it is easy to construct an infinite number of
“nontrivial” solutions. Assume for instance that A= B =1 and C = —1 and
that (p,q,r) are pairwise coprime. Let a and b be integers strictly greater
than 1, and set ¢ = a + b. Multiplying this equation by a*I"b"P"c*P? for some
integers u, v and w we obtain

auqr+1 b'uprcwpq + auqrbvpr—i-lcwpq — auqrbvprcwpq+1 .

This is a “nontrivial” solution to our equation if we choose u = (gr)!
(mod p), v = (pr)~! (mod ¢) and w = (pg)~! (mod r). Therefore it is nec-
essary to add a further condition to exclude this type of solutions, and the
natural choice is to ask that z, y and z be pairwise coprime. With that
additional restriction, our heuristic reasoning is correct.

A second reduction can be made most of the time. Assume that two among
p, ¢ and r are coprime. Without loss of generality, assume for example that
ged(p,q) = 1. There exist unique positive integers u and v such that that
up—vg =1land 1 < u < p,1 < v < ¢q. Multiplying our equation by A7 BP4~vP
gives the equation z} + y7 + C12" = 0 with z; = (AB)%z, y; = AYBP™y
and C; = AYIBPI~“P(C. We may thus in that case assume that A = B = 1.
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Note, however, that the coprimality of the solutions may be destroyed by this
transformation.

In this chapter, we will in fact often consider the case A = B = 1 and
C = #£1. Tt is easy to see that we can then reduce to the case C = —1:
indeed, if C' = 1 and if 2P + y? + 2" = 0, then if p, ¢ and r are all three
even it is clear by positivity that there are no nontrivial solutions, or else
at least one of them, say r, is odd, and then the equation can be written
2P + y? — (=2)" = 0, thus with C = —1. Therefore we will consider mainly
the equations z? + y? = 2", as usual with ged(z,y) = 1.

Finally, given a triple (p,q,r) up to permutation, if we want to fix the
right hand side, say 2", then we must consider the 4 equations —z? —y? = 27,
P —y? = 2", —xP +y? = 2" and 2P + y? = 2". If p (resp., ¢, resp., r) is
odd, we may change x into —z (resp., y into —y, resp., z into —z). Then it
is easily seen by examination of cases that we can reduce to the examination
of a smaller number of equations. More precisely, if at least two of p, ¢ and r
are odd, it is sufficient to consider the equation zP 4 y? = 27; if exactly one
is odd, we must in addition consider the equation z? — y? = 2" if p or r is
odd, and the equation —z? + y9 = 2" if ¢ is odd. Finally, if p, ¢ and r are
even, we must consider the three equations z? + y? = 2", P — y? = 2" and
—xP +y? = 2", except if p = ¢ in which case it is enough to consider the first
two.

We will begin by considering the elliptic case. Up to permutation of
(p,q,r), this corresponds to the cases (p,q,7) = (2,2,r) for r > 2, (2,3,3),
(2,3,4), (2,3,5), which for reasons which will be seen below can be called the
dihedral, tetrahedral, octahedral and icosahedral cases respectively.

14.2 The Dihedral Cases (2,2, 7)

This case is the simplest. We must consider the two equations z? — y2 = 2"
and 22 + 92 = 2".

14.2.1 The Equation 2 — y% = 27

We set a = z +y, b = x — y, so that ab = 2". Since z and y are coprime,
there are two cases. Either  #Z y (mod 2), in which case a and b are coprime
and z is odd, hence a = +s], b = *t] for coprime odd integers s; and ¢y,
so that © = £(sT +t7)/2, y = £(s] — t7)/2 and z = s1t; (and also —s;1t; if
r is even). If we insist in not having denominators, we set s = (s1 + t1)/2,
t = (s1 —t1)/2 which are coprime integers of different parity, hence we obtain
the parametrization

(z,y,2) = (£((s + )"+ (s = 1)) /2, £((s + )" — (s — 1)")/2, 8% — 1?)
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(and also z = t? — s if r is even). Note that here we can either insist that
the + signs are the same (this is how they have been obtained), or that they
are independent, since a change of ¢ in —¢ changes only y into —y.

Or else z = y = 1 (mod 2), in which case a and b are even but a/2
and b/2 are coprime of opposite parity. Changing y into —y if necessary, we
may therefore assume that a/2 is even and b/2 is odd. Since (a/2)(b/2) =
27=2(2/2)", we have a = £2"~1s" b = £2¢" for coprime integers s and ¢ with
toddifr > 3,t # s (mod 2) if r = 2, so that we obtain

(z,y,2) = (£(2" 2" +17), £(27 25" — t7), 2st)

(and also z = —2st if r is even).

We thus obtain the following special cases, where we always assume that
s and t are coprime, plus indicated additional conditions modulo 2. Often
the additional sign of z, y or z when r is even can be absorbed by changing
s into —s, t into —t or by exchanging s and ¢.

r=2:(z,y,2) = (£(s? +t2),2ts, (s — t)(s + t)), where s Z t (mod 2), up
to exchange of y and z.

r=3: (z,y,2) = (s(s% + 3t2),t(3s2 + t?),(s — t)(s + t)), where s # t
(mod 2), or (z,y,2) = (£(28% +13),2s% — t3,2ts), where 2{ t.

r=4:(2,y,2) = (£(s* +6t2s% +1*), 4ts(s®> +12), (s—t)(s+1)), where s Z t
(mod 2), or (z,y,2) = (£(25% — 2st + t)(2s* + 2st + t2), £(2s* — t?)(25% +
t?),2ts), where 2 1 t.

r=5: (z,y,2) = (s(s* + 10t%s% + 5t1), t(5s* + 10t2s% + 1), (s — t)(s + 1)),
where s Z t (mod 2), or (z,y,z) = (£(8s5 +t),8s% — 1%, 2ts), where 2 1 t.

14.2.2 The Equation z2 4+ y% = 27

Here we set a =z + iy, b=z —iysothat ab=2".ff wehadz =y =1
(mod 2), we would have 2" = 2 (mod 8), which is impossible since r > 2.
Thus since = and y are coprime, z and y have opposite parity and a and
b are coprime in the principal ideal domain Z[i]. It follows that there exist
o = s+ it € Z[i] and some v = 0, 1, 2, or 3 such that z + iy = i’a”, hence
z—iy =i Y&,z = aa (and also z = —aa if r is even). Clearly multiplication
by iV corresponds to changing signs of z and/or y and exchange of = and y,
so that up to exchange of z and y we obtain the parametrization

z =4 ZOSkSLr/zj (_1)k(2rk)t2ksr—2k
¥ =% 0ckg(r-1)/2) (—1)k (2kr+l)t2k+15r—2k_1

z =3s2+12 (and also —(s? + t2) if r is even).

Furthermore, the condition ged(z,y) = 1 of course implies that s and ¢ are
coprime, and since r > 2, if s and t were both odd we would have a" =
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(144)" =0 (mod 2Z][i]), so that z and y would both be even. It follows that
in addition s and ¢t have opposite parity. Conversely, it is easy to see that if
this is the case then z and y are coprime.

We thus obtain the following special cases, where we assume that s and ¢
are coprime of opposite parity. Again the additional sign of z, y or z when r
is even, or the exchange of x and y can be absorbed by changing s into —s,
t into —t or by exchanging s and ¢, or a combination.

r=2:(z,y,2) = (2ts, s> — 2, £(s%> + t2)), up to exchange of z and y.
r=3: (x,y,2) = (s(s% — 3t2),t(3s% — t?), 5% + 12).

r=4: (z,y,2) = (£(s2—2st—12) (s> +2st—1t2), 4ts(s—t) (s+1), £ (s> +1?)),
up to exchange of z and y.

r=5: (z,y,2) = (s(s* — 10t2s% + 5t1),t(5s* — 10t2s2 + 1), 8% + ¢2).

14.2.3 The Equations z2 4 3yZ = 23 and 22 4 3y?% = 423
As additional examples of dihedral equations we prove the following:

Proposition 14.2.1. (1) The equation z* + 3y? = 2% in nonzero integers z,
y and z with x and y coprime can be parametrized by

(z,y,2) = (s(s — 3t)(s + 3t),3t(s — t)(s + 1), 52 + 3t?) ,

where s and t denote coprime integers of opposite parity such that 3 1 t.
(2) The equation x2 + 3y? = 42 in nonzero integers =, y and z with x and
y coprime has the two disjoint parametrizations

(z,,2) = ((s +t)(s — 2t)(25 — t), 3st(s — t), 8% — st +1°) ,
(z,y,2) = (£(s> + 357t — 6st> + %), 5% — 3%t + 13,52 — st + 1),

where in both cases s and t are coprime integers such that 34 s +t. The
first parametrization corresponds to the case where 6 | y, and the second
to the case where y is coprime to 6.

Proof. For (1) we set 1 = x+ 3y and the equation becomes z? —3x1 (2y) +
3(2y)? = 2%. Thanks to Proposition 6.4.4 of Chapter 6 we know that this
equation has three disjoint parametrizations. Among these only the first gives
an even value for the second variable, hence z; = s® + 352t — 6st2 + 3,
y=3st(s—t)/2,and z = s> —st+t2. If siseven we set S =t—s/2, T = 5/2,
if ¢t is even we set S = s —t/2, T = t/2, and if s and ¢ are both odd we set
S=(s+1t)/2 and T = (s — t)/2. In all three cases we check that up to sign
we obtain the given parametrizations and the conditions at the primes 2 and
3.

For (2) we note that z and y are both odd, so we set 1 = (z + 3y)/2,
and the equation is 22 — 3z1y + 3y? = 23. By Proposition 6.4.4 once again we
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obtain three parametrizations, but it is immediate that (up to the sign of z
which does not matter) the last two are interchanged by exchanging s and ¢,
so we have only the two parametrizations given above. Note that because of
this sign change in the interchange of the last two parametrizations we have
to add a + sign for the parametrization of x. O

Note that by looking modulo 8 it is clear that the equation 22 4 3y? = 22°
is impossible in coprime x, y.

14.3 The Tetrahedral Case (2,3, 3)

14.3.1 The Equation z3 + y3 = 22

Thanks to the reductions made above, for (p,q,r) = (2,3, 3) it is sufficient to
consider the single equation 23 + y3 = 22. We will imitate what we did in the
case of FLT, by factoring #° + y® in Z[(], where ( is a primitive cube root of
unity. Thus, we write

(z+y)(z+ Y@+ Cy) =27

Case 1: 3tz

If 7 € Z[¢]is a prime element which divides two distinct factors on the left,
then 7 | 1=, hence 7 = 1 —(, which is excluded since 3 t z. Thus the factors
are coprime in Z[(], and each one is equal to a unit multiplied by a square. If
we had factored directly in Z, we would have obtained that z + y = +a? for
a € Z, and since the cofactor 22 — xy + y? is always positive and 22 > 0, we
necessarily have « +y = a2. Thus our equation implies that = + y = a2 with
a € Z and = + Cy = (—()*a? for some integer k, and conversely this implies
also = + %y = (—(?)*a’, hence z = +aca. In addition, since ¢ = (* is a
square, we may write (—()*a? = (=1)¥(a¢?*)2. Thus finally our equation is
thus equivalent to the equations = +y = a?, z + (y = ea?, 2z = faaaq, where
a€Z,a€Z[(]and e = £1.

If we set 3 = (2a then

B +B = (a?+ % =e(l(z+Cy) + Cl+ Cy)) = e(—z —y) = —ea®.

Conversely, if 8 € Z[(] satisfies 82 + 32 = —ea? and if we set a = (3, then

one checks that L

ea —a®_ ., (-1
ea? — a? (-1
owever 3 1 a, so that a? (mod 3),

mod 1 — (). However 1f a? = —¢

and also (1 —¢) t B so that a (
€)(C+¢%) =1 (mod 1 — (), which is

so that y = (ea® —a?)/((—-1) € Q
(mod 1 — (), we would have — E:

Ho
+e
(=
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absurd. Thus a? = ¢ (mod 1 — ), hence in fact y € Z. Thus our equation is

now equivalent to the single simpler equation a? = —&(8% + 32) If we write
B =wu + v( with v and v in Z, this gives finally the equation

a® = e(v? + 2uv — 2u?) .

Note that the condition ged(z,y) = 1 implies that a and § are coprime in
Z[(], hence that gcd(u,v) = 1. Note also for future reference that this implies
that u + v and a are coprime (easy exercise left to the reader). Also since we
are in the case 31 z, we have 31 a hence 3t u + v. Thus

l1=a’=¢e((u+v)? —3u?) =¢(u+v)? =¢ (mod 3),

so that we must have ¢ = 1.

We have thus reduced our problem to the solution of a Diophantine equa-
tion of degree 2, for which an algorithmic solution is always possible.

We can do one more important reduction. It is clear that exchanging x
and y is equivalent to changing 3 into 3, or in other words the pair (u,v) into
the pair (u — v, —v). Note that v = a (mod 2). Thus, if a is odd, v is odd, so
either u or w — v is odd. If a is even, then v is even, hence u is odd since it
is coprime to v. Thus in all cases we may assume, possibly after exchanging
z and y, that u + v # a (mod 2).

We write 3u? = (u 4+ v)? —a? = (u +v — a)(u + v + a). Since 3 { a and
3t (u+v), if necessary by changing 8 into —3 (or a into —a) we may assume
that 3 | u+v—a, and then 3 { u+v+a. Since u+v and a are coprime, and since
we have reduced above to the case where they do not have the same parity,
it follows that u +v — a and u + v + a are coprime. Thus u + v — a = 3¢5,
u+v+a= elt%, hence u = g951t; with s; and ¢; coprime and odd and with
€1 = x1 and g5 = £1. If we change simultaneously u, v and a into their
opposites, we may assume that €; = 1. Changing s; into —s; we may also
assume that €5 = 1. Finally we set s = s1, t = (t1 — s1)/2, which are coprime
with s odd, which gives u = s(s+2t), v = s2+2t2, a = —s% + 25t + 2t2). The
condition 3t u + v (or 3 | a) is equivalent to 3 1 (s + st + t2), hence (since
s and t are coprime) to s Z ¢t (mod 3). Replacing everywhere gives the first
parametrization

x = s(s + 2t)(s? — 2ts + 4t?)
y = —4t(s — t)(s% + ts + t?)
z = +(s? — 2ts — 2t2)(s* + 2ts3 + 61252 — 4135 + 4t1) |

where s is odd and s Z t (mod 3), up to exchange of z and y.

Note that if we had s =t (mod 3) we would have 3 | ged(z,y), contrary to
our assumption. Note also that if we had not done the reduction equivalent to
exchanging = and y, we would have obtained a second parametrization, which
would have been equivalent to the first one where x and y are exchanged.
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Case 2: 3| 2z

In this case 2 +y, = + (y and = + (2y are all three divisible by 1 — ¢, and
their quotient by 1 — { are pairwise coprime. Thus

r+yz+Cyz+Cy

5 1-¢ 1-¢ /¥

with the three factors on the left pairwise coprime, hence as above our
equation is equivalent to z +y = 3a?, z + Cy = (1 — ()a?, z = +3aaaq,
with e = +1. We note that since 3 t zy (otherwise 3 | ged(z,y)) then
0p(z + Cy) = vy(z +y + (C — 1)y) = 1 where p = (1 — ()Z[C], %o that a
is coprime to 1 — (.

We have (1 — )y = 3a® — (1 — {)a?, hence y = (1 — (?)a® — ea?, and
since y € Q we obtain o? —a = ea?(¢ —¢?). Conversely, if this is satisfied for
some a € Z[(], then we can take y = (1 —(?)a? —ea? € Z. Thus as before our
equation is equivalent to the single simpler equation a?(¢ — (?) = e(a? —52).
If we write & = u 4+ v{ with » and v in Z, this gives finally the equation

a® =ev(2u —v) .

We have already mentioned that a is coprime to 1 — ¢, which is equivalent
to 3t u+v. In addition, the condition ged(z,y) = 1 implies that a and « are
coprime in Z[¢], hence that gcd(u,v) = 1. Thus the GCD of v and 2u — v is
equal to 1 if v is odd, and to 2 if v is even.

It is easily seen that exchanging x and y is here equivalent to simultane-
ously changing o« into o and € into —e. Thus, we may assume that ¢ = 1.
Thus we have two possibilities according to the parity of v.

e If v is odd, then v = £,82, 2u — v = €12, hence a = e8¢, with s; and
t; odd and e; = £1. Changing « into —a, we may assume that e; = 1, and
changing s; into —s; that e; = 1. We set s = (s1 +t1)/2, t = (51 — t1)/2
which are coprime integers of opposite parity, so that v = (s+1t)2, u = s +12,
a = s — t2. The condition 3 { u + v is again equivalent to s # ¢ (mod 3).
Replacing everywhere gives the second parametrization, where the sign of z
can be absorbed by exchanging s and t.

z = st — 4ts® — 61252 — 435 + 11
y = 2(s* + 2ts® + 2t3s + 1)
z2=3(s —t)(s +t)(s* + 253 + 65212 + 2513 + 1*) ,

where s Z t (mod 2) and s #Z ¢ (mod 3), up to exchange of z and y.

o If v is even, then v = 2¢;8%, 2u — v = 2,12, hence u = £;(s? + t?)
and a = 2e3st, where s and t are coprime integers of opposite parity. As
before, we may reduce to the case ¢; = €3 = 1. The condition 3 t u + v
is now equivalent to 3 1 t. Replacing everywhere gives the third and final
parametrization, where the sign of z can be absorbed by changing s into —s.
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= —3s* + 6t2s2 + ¢4
y = 3s* + 61252 — 4
z = 6st(3s* + 1),

where s Z t (mod 2) and 31 ¢, up to exchange of z and y.
We have thus shown the following theorem.

Theorem 14.3.1. The equation z° + y> = 22 in integers x, y, z with
ged(z,y) = 1 can be parametrized by one of the above three parametrizations,
up to exchange of x and y, where s and t denote coprime integers satisfying
the given congruences modulo 2 and 3. In addition these parametrizations are
disjoint, in that any solution to our equation belongs to a single parametriza-
tion (up to exchange of x and y).

14.3.2 The Equation 3 4+ y2 = 222

This equation is very similar to the preceding one, and will be needed in the
octahedral case. Thus we only give a brief sketch. We can factor 23 + ¢ as
usual, and we use the fact that 2 is inert in Z[(]. As usual we distinguish two
cases.
Case 1: 3tz

Using the same technique as above, it is easily seen that our equation is
equivalent to the equations =+ y = 2a2, z = +af3, and 2a% = —(v? + 2uv —
2u?), where 8 = u+wv(, and u and v are coprime. Thus v = 2w must be even,
hence u is odd so we obtain (u — w — a)(u — w + a) = 3w?. It follows that
a’? = (u—w)?—3w? = (1-w)?—3w? =1 (mod 2), hence a is odd. Since 3 | a
and 3t u+v =u —w (mod 3), we may assume that 3 | (u —w — a). Thus,
we have two different cases (where as usual we can get rid of the signs):
Case 1.1: 2{w

Here v —w —a = 3s?, u — w + a = t? with s; and ¢; odd and coprime,
hence setting s = s1, t = (t1 — $1)/2 coprime with s odd and with s # ¢
(mod 3), we obtain w = s(s + 2t), a = —s? + 2st + 2t?, u = 35 + 4st + 2t°.
Replacing gives the first parametrization, where the exchange of z and y can
be absorbed by the exchange of s and t.

x = —(s? + 4ts — 2t?)(3s% + 4ts + 2t?)
y = (8% + 2t?)(5s% + 8ts + 2t%)
2z = +(s2 — 2ts — 2t2)(7Ts* + 20ts® + 24t%s% + 8t3s + 4t1) |

where s is odd and s #Z ¢t (mod 3).
Case 1.2: 2 | w

Here u —w —a = 652, u —w + a = 2t%, w = 2st, hence a = t? — 352,
u = 3s% 4+ 2st + t2, and s and t are coprime integers of opposite parity with
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3 t t. Replacing gives the second parametrization, where the exchange of x
and y can be absorbed by changing s into —s.

z = (3% — 6ts + t2)(3s? + 2ts + t2)
y = (3s? — 2ts + t?)(3s% + 6ts + t2)
z = £(3s% — t2)(9s* + 18t%s% + 1),

where s Z t (mod 2) and 3 1¢.
Case 2: 3| 2

Using the same technique as above, it is easily seen that our equation is
equivalent to the equations z + y = 6a2, z = +3aaa, y = 2(1 — (?)a® — ea?,
and 2a? = ev(2u — v), where & = u + v¢ and u and v are coprime, and « is
coprime to 1 — (. Thus v = 2w must be even, hence u is odd so we obtain that
a is even and ew(u — w)/2 = (a/2)%. Since exchanging z and y is equivalent
to changing a into a and ¢ into —¢, we may assume that ¢ = 1. Once again
we have two cases, where as usual we can get rid of the signs.

Case 2.1: 2{w
Here w = 52, u —w = 2t2, a = 2st, hence u = s + 2t2, v = 252, where s
and t are coprime with s odd. Replacing, we obtain the third parametrization

r = —3s* + 12t%s? + 4t*
y = 35t + 121252 — 44
z = 6ts(3s* + 4t)

where s is odd and 3 t¢, up to exchange of z and y.
Case 2.2: 2 |w
Here w = 252, u — w = t2, a = 2st, hence u = 2s% + t?, v = 4s2, where
s and t are coprime with ¢t odd. Replacing, we obtain the fourth and final
parametrization
= —12s* + 12¢%s* + t*
y = 125" + 12252 — 4
2z = 6ts(12s* + t4) ,

where t is odd and 3t ¢, up to exchange of z and y.
We have thus shown the following theorem.

Theorem 14.3.2. The equation =3 + y3 = 22° in integers x, y, z with
ged(z,y) = 1 can be parametrized by one of the above four parametriza-
tions, up to exchange of © and y, where s and t denote coprime integers
with the indicated congruence conditions modulo 2 and 3. In addition these
parametrizations are disjoint, in that any solution to our equation belongs to
a single parametrization (up to exchange of © and y).
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14.3.3 The Equation =% — 2y3 = 22

We will also need this equation in the octahedral case. Note first that z is
necessarily odd, otherwise z is even, hence y is even, contradiction. Similarly,
it is easy to check that the congruence z° — 2y® = 0 (mod 9) implies that
z =y = 0 (mod 3), which is impossible. Thus we must have 3 1 z, i.e., the
“second case” does not occur.

We now work in the number field K = Q(f), where §° = 2, whose ring
of integers is Z[f] and is a principal ideal domain. Note also that 3 is totally
ramified in Z[6]. Our equation is a norm equation of the type N'(a) = 22, for
a =z —yf € Z[6)]. We factor our equation as (x —y8)(z% + zyf + y26?) = 2.
Since 3 t z, as usual it is easily seen that the two factors on the left are
coprime in Z[f)], hence z — yf = +£e*32 for € = § — 1 the fundamental unit,
and some (3 € Z[6]. We may of course assume that k¥ = 0 or 1. Taking norms
and using the fact that NV'(g) = 1 gives 22 = + N(8)?, so that the sign must
be +, and then z = + A/ (B). The only condition is thus that £¥3? have no
terms in 2. Writing 8 = u + v0 + wd?, we thus have two cases.

Case 1: k=0

Then we obtain the equations v? + 2uw = 0, z = u? + 4vw, y = —2(w? +
wv), z = +(u® + 203 + 4w® — 6uvw). Thus v = 2v; is even, hence u is odd.
Since z and y are coprime, so are u and w. Thus the equation uw = —2v?
implies that u = €182, w = —e12t%, v = €525t for some £; and €3 equal to
+1, with s and ¢ coprime and s odd. As usual changing if necessary £ into
—f, and s into —s, we may assume that £; = €3 = 1. Replacing gives the
first parametrization

z = s(s3 — 16t3)
y = —4t(s® + 2t3)
z = £(s® +40t3s® — 32t9) |

where s is odd and s # ¢t (mod 3).

Case 2: k=1
Here we obtain the equations (2v — 2w)u — v? + 2w? = 0, z = —u? +
dwu + 202 — dwv, y = —u? + 2vu — dwv + 2w?. The first equation can

be written (u — w)? + w? = (v — u)?. Since ged(u,v,w) = 1, the solution
to the Pythagorean triple equation gives the parametrizations u — w = 2st,
w=s8—t2 v—u=¢e1(s2+t?) orw = 2st, u—w = s> —t>, v—u = £, (s> +?)
for e = £1, where s and t are coprime integers of opposite parity. Since we
can change f into —f3, we may assume that €; = 1. Replacing gives the
following two further parametrizations:

x = 35t + 12ts3 + 61252 + 4t3s + 3¢t
y = —3s* + 6252 + 8t3s + t*
2 = £(9s% + 18ts° + 45t2s* + 60t3s% + 15t*s? — 6t°s — 5t9) |
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where s #Z ¢t (mod 2) and 3 1¢.

x = Ts* + 4ts® + 61252 — 4t3s — t*
y = 3s* — 8ts® — 6t2s2 — ¢4
2z = (1755 4 30ts® — 15¢2s* 4 20t3s% + 15¢%s? + 6t5s — 19) |

where s Z t (mod 2) and s Z ¢t (mod 3).
We have thus shown the following theorem:

Theorem 14.3.3. The equation =3 — 2y® = 22 in integers =, y, z with
ged(z,y) = 1 can be parametrized by one of the above three parametriza-
tions, where s and t denote coprime integers with the indicated congruence
conditions modulo 2 and 3. In addition these parametrizations are disjoint,
in that any solution to our equation belongs to a single parametrization.

14.4 The Octahedral Case (2, 3,4)

According to the reductions made above, this case reduces to the two equa-
tions 22 + y* = 23. We consider both separately.

14.4.1 The Equation 2 — y* = 23

Factoring gives (z —y?2)(z +y?) = 23. Since z and y are coprime, either z —y?
and x + y? are coprime, or z and y are odd and (z — y?)/2 and (z + y?)/2
are coprime.

Case 1: 2tz

Here z — y? and z + y? are coprime, so that z — y? = o, z + y? = V2,
z = ab (the possible sign can be removed by changing the sign of a). This
is equivalent to = = 32 + a®, z = ab and 2y® + a® = b3. Changing variable
names, we are thus reduced to the equation 23 + y® = 222 with 2 and y odd,
which we have studied above. Note that the exchange of z and y in this latter
equation is equivalent to the exchange of b with —a, hence to the exchange
of x with —x in our initial equation. Thus after replacing we obtain the
following four different parametrizations of our equation, where in each case
s and t are coprime integers satisfying the indicated additional congruence
conditions modulo 2 and 3.

x = 45(s + 2t)(s2 + ts + t2)(s? + 4ts3 + 16t2s% + 24¢3s + 12t4)
(19s* — 4ts® + 8t3s + 4t1)

y = +(s% — 2ts — 2t2)(7s* + 20ts® + 24t%s% + 8t3s + 4t1)

2z = (82 4 2t2)(s? + 4ts — 2t2) (352 + 4ts + 2t%)(5s? + 8ts + 2t2) ,
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where s is odd and s Z ¢ (mod 3).
Note that changing ¢ into —s —t changes x into —z, hence we do not need
to put a =+ sign in front of x.

T = 4ts(3s? + t2)(3s* — 2t%s? + 3t*)(81s* — 61252 + 1)
y = +(3s% — 2)(9s* + 1825 + t)
2z = —(3s? — 6ts + t2) (352 — 2ts + t2)(3s% + 2ts + t2)(3s? + 6ts + t2) ,

where s Z t (mod 2) and 3 1¢.

x = £(3s* — 4t*)(9s® + 408t*s* + 16t%)

y = 6ts(3s* + 4t1)

2z = (3s* — 12¢%s% — 4t*)(3s* + 12t%s% — 4t*) |
where s is odd and 3 ¢t¢.

= (125 — 1) (14458 + 408t*s + ¢8)

y = 6ts(12s* + t)

2z = (125 — 12t%s% — t)(12s* + 12252 — t1) |
where ¢ is odd and 3 1 ¢.

Note that the exchange of z and y in the parametrizations of 23 +3 = 223
correspond only to the exchange of x and —z in the present ones.

Case 2: 2| z

Here we must have 2 | ((z —y?)/2)(x +y?)/2, so that changing z into —z
if necessary, we may assume that 4 | z — y2. It follows that z — y? = 4a3,
z +y? = 2b%, z = 2ab. This is equivalent to z = y? + 4a®, z = 2ab and
y?+2a® = b3, with y odd. We are thus reduced to the equation z°® —2y3 = 22,
which we have studied above. We thus obtain three parametrizations, which
after replacing gives the following three additional parametrizations of our
equation, for a total of seven:

x = %(s% — 176t%s% — 32t%)(s5 + 32t9)
y = £(s + 40t3s® — 32t°)
z = —8ts(s® — 16t3)(s® + 2t3) ,

where s is odd and s # ¢t (mod 3).

T = £(—275'2 + 324ts' + 1782¢2510 + 35641%5° + 3267t1s®
+2376t5s7 + 2772555 + 3960t7s° + 4059¢8s*
+ 2420t%s% + 72611052 + 1561115 + 29¢12)

y = £(9s° + 18ts° + 45t%s* + 60t>s® + 15t*s% — 6t5s — 5t%)

2z = —2(3s* — 6257 — 835 — 1) (35 + 12t53 + 625> + 4t3s + 3t1) |
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where s #Z ¢t (mod 2) and 3 1¢.

T = (397512 + 156ts1! + 2046¢2s10 + 1188t35% — 1485t s® — 2376t%s7
— 9241956 — 792t7s% + 99t8s* + 441953 — 66t105% — 12¢11s — 3t12)

y = £(17s% + 30ts® — 15t2s* + 203s% + 15t1s? + 6t°s — t9)

2z = 2(3s* — 8ts® — 61252 — t1)(Ts? + 4ts® + 6t2s% — 4t3s — t1) |

where s Z t (mod 2) and s Z ¢t (mod 3).
Remark. We could have used the parametrizations of the dihedral equation
2% —y? = 23, but it would not have been really simpler. The same is true for
the next equation.

We have thus shown the following theorem:

Theorem 14.4.1. The equation 22 — y* = 23 in integers x, y, 2 with

ged(z,y) = 1 can be parametrized by one of the above seven parametriza-
tions, where s and t denote coprime integers with the indicated congruence
conditions modulo 2 and 3. In addition these parametrizations are disjoint,
in that any solution to our equation belongs to a single parametrization.

14.4.2 The Equation z2% + y* = 23

We note that here we cannot have z and y both odd, otherwise z° = 2
(mod 8), absurd. We work in Z[i] and factor the equation as (z + iy?)(z —
iy?) = 2°. Since = and y are coprime and not both odd, z + iy? and z — iy?
are coprime in Z[i]. Thus there exists a € Z[i] such that z + iy® = o?, hence
z—iy? = a’, z = aa, where the possible power of i can be absorbed in a. We
write o = u+iv, so that z = w2 +v?, z = v —3uwv?, and y? = 3u?v—v>. Thus,
we must solve this equation. Note that since z and y are coprime, we have
ged(u,v) = 1 and w and v have opposite parity. We write y? = v(3u? — v?)
and consider two cases.

Case 1: 3tv

Then v and 3u? —v? are coprime, hence v = ea?, 3u? —v? = eb?, y = +ab
with € = £1, and then a and b are coprime, b is odd, and 3 { ab. We note
that 3u? —v? = —(u? +v?) = —1 (mod 4) since u and v have opposite parity,
hence we must have e = —1, so the equations to be solved are v = —a? and
3u? = v? — b2 Since 3 { v and 3 { b, changing if necessary b into —b, we
may assume that 3 | v — b, so the second equation is u> = ((v — b)/3)(v + b).
Note that v and b are coprime. I claim that v is odd. Indeed, otherwise a
is even, hence 4 | v = —a?, hence v> — b?> = 7 (mod 8), while 3u? = 3
(mod 8), a contradiction. Thus v is indeed odd, so w is even and v — b and
v + b are even with (v — b)/2 and (v + b)/2 coprime. Thus we can write
v—b=6e1c2, v+b=2e1d% u = 2cd (where the sign of u can be removed by
changing ¢ into —c) with ¢ and d coprime, and 3 { d. Thus v = &;(3¢® + d2),
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b = g1(d? — 3¢?), and since v = —a? we have ey = —1, the last remaining
equation to be solved is the second degree equation d? + 3¢ = a?. Corollary
6.3.15 gives us & priori the two parametrizations d = +(s? — 3t2), ¢ = 2st,
a = +(s? + 3t%) with coprime integers s and t of opposite parity such that
3ts,and d = £(s2+4st+12), c = s> — 2, a = £2(s? + st + t?), with coprime
integers s and t of opposite parity such that s Z ¢t (mod 3). However, since
v = —a? is odd, a is odd hence this second parametrization is impossible.
Thus there only remains the first one, so replacing everywhere gives the first
parametrization

x = 4ts(s® — 3t?)(s* + 61252 + 81t1)(3s* + 2t%s? + 3t4)

y = (s + 3t%)(s* — 18252 + 9t*)

2z = (s* —2t25% + 9t*) (s* + 30252 + 9t*) |
where s #Z ¢t (mod 2) and 31s.
Case 2: 3| v

Set w = v/3. Then 3 { u, w and u? — 3w? are coprime, hence v = £3a?,

u? — 3w? = eb?, y = +3ab with ¢ = £1, and then a and b are coprime and
b is odd. Since u and v (hence w) have opposite parity, we have u? — 3w? =
u? + w? = 1 (mod 4), hence we must have ¢ = 1, so the equations to be
solved are w = a? and u? —3w? = b2. Corollary 6.3.15 tells us that there exist
coprime integers ¢ and d of opposite parity such that either u = ¢ + 3d2,
w = 2cd, b =c*—3d® with 3{ ¢, or u=2(+cd+d?), w=c%—d?
b = c? + 4ed + d? with ¢ Z d (mod 3), where the signs can be absorbed as
usual either by changing z into —z or b into —b. Thus in the first case the
final equation to be solved is 2cd = a2, so that there exists coprime s and ¢
with 3 1 s such that either ¢ = 25, d = t?, a = +2st and ¢ odd, or ¢ = s2,
d = 2t%, a = +2st and s odd. Replacing everywhere gives the second and
third parametrizations:

x = +(4s* 4+ 3t*)(16s® — 408t1s* + 9t%)
y = 6ts(4s* — 3t*)
z = 16s% + 168t*s* + 9t |

where ¢ is odd and 31 s.

z = (st +121)(s® — 40815t + 144¢8)
y = 6ts(st — 12t)
2z =88 + 168t1s* + 14418 |

where s is odd and 31 s.

In the second case the final equation to be solved is ¢ — d?> = a? with
¢ and d of opposite parity, hence with a odd, so that by the solution to the
Pythagorean equation there exists coprime integers s and t of opposite parity
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such that ¢ = s2 + 2, d = 2st, a = s* — t? with s Z ¢t (mod 3) Replacing
everywhere gives the fourth and final parametrization:

x = +2(st + 2t5% + 61252 + 2t3s + 11)(235% — 16ts7 — 172t2s% — 112¢35°
—22ttst — 112t%5% — 172t%5% — 16t7s + 23t%)
y=3(s—t)(s +t)(s* + 8ts® + 6t2s% + 835 + 1)
2z = 13s% 4+ 16ts7 + 28t2s5 + 112355 4 238t%s*
+ 1126553 4 281852 + 16t7s + 133 |

where s Z ¢ (mod 2) and s #Z t (mod 3).
We have thus shown the following theorem:

Theorem 14.4.2. The equation z* + y* = 2% in integers =, y, z with
ged(z,y) = 1 can be parametrized by one of the above four parametriza-
tions, where s and t denote coprime integers with the indicated congruence
conditions modulo 2 and 3. In addition these parametrizations are disjoint,
in that any solution to our equation belongs to a single parametrization.

14.5 Invariants, Covariants and Dessins d’Enfants

There is a completely different way of attacking the super-Fermat equation in
the elliptic case, which is based on geometrical methods. This is an alternate
way for the tetrahedral and octahedral cases, but is the only known way of
solving the icosahedral case. The reason is that in the tetrahedral case (2, 3, 3)
and the octahedral case (2, 3,4), we can factor the equation (possibly in some
number field), hence reduce to a simpler equation, and we treated these cases
with complete success. On the other hand in the icosahedral case (2,3,5),
it is not possible to factor the equation. Thus another approach is needed,
which will be given by the considerations of the present section.

14.5.1 Dessins d’Enfants, Klein Forms and Covariants

The present subsection will serve as a motivation for the results which will be
given without proof below, and we refer to [Edw] for details. For the moment
we ignore all rationality questions and we look for one-variable polynomials
P, Q and R with complex coefficients satisfying P? + Q* = R? for k = 3,
4 and 5. We could try to solve this by indeterminate coefficients, but there
is no guarantee that we will succeed. However, we can use a very impor-
tant theorem due to Belyi, which tells us (in our special case) that for any
graph inscribed in the Riemann sphere (a “dessin d’enfant”, name coined by
A. Grothendieck), there exists a rational function ¢ from the sphere to Py
such that the zeros of ¢ have order equal to the number of edges meeting at
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the vertices V of the graph, the poles of ¢ have order equal to the number of
vertices along the faces F' of the graph, and finally the values where ¢ = —1
have order 2, one for each edge E of the graph, and the coefficients of ¢ may
be chosen in a number field.

We apply this to the 5 platonic solids, and we index the polynomials
according to their degrees.

e For the tetrahedron, we have ¢ = P}/Q3 and ¢ + 1 = R2/Q3, so that
P} + Q3 = R3.

e For the cube, we have ¢ = P3/Q¢ and ¢+1 = R%,/Q¢, so that P{+Qa =
R2,.

e For the octahedron, we have ¢ = P#/Q3 and ¢ + 1 = R%,/Q3, so that
P§ + Q3 = R},. This is exactly the same equation as for the cube (coming
from the fact that the cube and the octahedron are dual), hence we do not
need to consider the cube.

e For the dodecahedron, we have ¢ = Py, /Q3, and ¢ + 1 = R3,/Q3,, so
that Py, + Q35 = R,.

e For the icosahedron, we have ¢ = P}, /Q3, and ¢+1 = R2,/Q3,, so that
P}, + Q3 = R},. This is exactly the same equation as for the dodecahedron
(coming from the fact that the dodecahedron and the icosahedron are dual),
hence we do not need to consider the dodecahedron.

This geometric interpretation explains the origin of the tetrahedral, octa-
hedral and icosahedral terminology, which is always used when considering
finite subgroups of PSL,(C).

Almost a century before Belyi, Klein had already shown the existence of
the Belyi functions ¢ in the case of platonic solids. More precisely, he showed
the following;:

Theorem 14.5.1. Let G be the vertices of a regular tetrahedron, octahedron
or icosahedron inscribed in the Riemann sphere, let N be the north pole of
the sphere, and for g € G let (ag : By) € P1(C) be the point obtained by
stereographic projection from N (if g = N, choose the point at infinity (1 : 0)).
Let k = |G| be the number of vertices (4, 6 or 12 respectively), let r be the
number of edges meeting at each vertex (3, 4, or 5 respectively), and set

fa(s,t) = H (Bgs — ayt),

geG

host) = — L [(Pla®lo  (Ofa’
GOV T REk-1)2 \ 05 o dsot ’
1 8fa Ohg _ dfc ahg>

Ja(s8) = spm = ( ds ot ot Os

Then after o suitable rotation of the sphere there exists a constant ug € C
such that
J& +hE + fGjua =0.
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Although for the moment the polynomials are with coefficients in C, this
is exactly what we need for solving the (2, 3,r) equation in the elliptic case.
To make this clearer, we look at all three cases. Consider first the regular
tetrahedron. Up to rescaling and rotation we can choose fg(s,t) = t(s® —t3)
(the factor t corresponds to the north pole N, and the roots of s — 3 to the
cube roots of unity, i.e., to the face of the tetrahedron opposite to N). A short
computation shows that jZ + h% + f2/64 = 0, so that ug = 64. Similarly,
consider the regular octahedron. Clearly we can choose fg(s,t) = st(s* — t*)
(draw a picture!), and a short computation shows that jZ + h$, + f& /432 =
0, so that ug = 432. Finally, consider the regular icosahedron. Here the
geometry is slightly more complicated, but after a little work it can be seen
that we may choose fg(s,t) = st(s'® — 11s°t° — #10) (Exercise 1), and a short
computation shows that jZ + h, + f2/1728 = 0, so that ug = 1728.

Starting from these basic solutions, if we apply an element of GLy(C) we
obtain a new relation of the same type (this is in fact the meaning of the word
covariant), hence as many as we want. The basic problem is now to obtain
polynomials with coefficients in Q, or even in Z, and to separate equivalent
parametrizations under GLo(Z). This can be done using a suitable reduction
theory, see [Edw].

14.5.2 The Icosahedral Case (2,3,5)

It can be checked that up to signs, all the parametrizations that we have given
in the preceding sections correspond to special cases of Klein’s theorem: let
us introduce a convenient shorthand, copied from [Edw]. We simply write
f =lak,--.,a0] as an abbreviation for

f(s,t) = Z ({:)aisitk—i'

0<i<k

The inclusion of the binomial coefficient is natural and simplifies the formulas.
Starting from f we define h and j as in the theorem, and since we now want
arithmetic solutions, we will impose ug = %1, so that the parametrizations
of 22 + 4% £ 2" = 0 will be x = +j, y = h and 2z = £ for any sign in z and
any sign in z if r = 4.

So that the reader can relate to what we have done in the cases r = 3 and
r = 4, we give in abbreviated form the results that we have obtained, in the
same order.

For z? + y® — 2% = 0 the 3 parametrizations are f; = [1,0,0,2,0], fo =
[2,1,0,1,2], and f; = [3,0,1,0,—1].

For z24+y%—2* = 0 the 7 parametrizations are f; = [7,1, -2, —4, —4, —4, —8§],
f2 =127,0,3,0,-1,0,-1], f3 = [0,3,0,0,0,4,0], f =[0,12,0,0,0,1,0], f5 =
[1,0,0,2,0,0,-32], f6 =19,3,3,3,1,—1,-5], and fr =[17,5,-1,1,1,1,-1].

For £2 4>+ 2* = 0 the 4 parametrizations are f; = [1,0, 1,0, 3,0, 27],
f2=10,4,0,0,0,-3,0], fs =[0,1,0,0,0,—12,0],and f4 = [3,4,1,0,—1, -4, —3].
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We can now give without proof Edwards’s result on the (2, 3,5) equation.

Theorem 14.5.2. Up to changing = into —x there are exactly 27 distinct
parametrizations of x> + y° + 2% = 0 given by

f1 =10,1,0,0,0,0,—144/7,0,0,0,0, —20736, 0]

f> =[-1,0,0,-2,0,0,80/7,0,0,640,0,0, —102400]

f3 =[~1,0,—1,0,3,0,45/7,0,135,0, —2025,0, —91125]
f1=1[1,0,—1,0,—3,0,45/7,0,—135,0, —2025,0,91125]

fs =[-1,1,1,1,—1,5,—25/7,—35, —65, —215, 1025, —7975, —57025]
fo=1[3,1,-2,0,—4,—4,24/7,16, —80, —48, —928, —2176, 27072]
fr=1[-10,1,4,7,2,5,80/7, —5, —50, —215, —100, —625, —10150]

fs = [—19,—5,—8,—2,8,8,80/7, 16,64, 64, —256, —640, —5632]
fo=[~7,-22,-13,—6,—3,—6,—207/7, =54, —63, —54, 27, 1242, 4293
f10 = [-25,0,0,-10,0,0,80/7,0,0,128,0,0, —4096]

fi1 =[6,—31,—32,—24, —16, —8, —144/7, —64, —128, —192, —256, 256, 3072]
fio = [-64,-32,-32,-32,—16,8, 248/7, 64, 124, 262, 374, 122, —2353]
fi3 = [—64,—64,—32, —16, —16, —32, —424/7, —76, —68, —28, 134, 859, 2207]
fia = [25,-50,—25,—10, =5, —10, —235/7, —50, —49, —34, 31, 614, 1763]
fis = [55,29, -7, -3, -9, —15,—81/7,9, =9, —27, —135, =459, 567

fie = [-81,—27,-27,-27,-9,9,171/7, 33,63, 141, 149, —67, —1657]
fir = [~125,0,—-25,0,15,0,45/7,0, 27,0, 81,0, —729]

fis = [125,0,—25,0,—15,0,45/7,0,—27,0,—81,0, 729]

fio = [-162,-27,0,27,18,9,108/7, 15,6, —51, —88, —93, —710]

f20 =[0,81,0,0,0,0,—144/7,0,0,0,0, —256, 0]

fo1 = [—185,—12,31,44,27,20,157/7,12, =17, —76, —105, —148, —701]
fan = [100,125,50,15,0, —15, —270/7, —45, —36, —27, —54, —297, —648]
fos = [192,32, 32,0, —16, —8,24/7,8, —20, —6, —58, —68, 423]

foa = [-395, 153, -92, —26, 24, 40, 304/7, 48, 64, 64,0, —128, —512]

fas = [—537,—205, —133, —123, —89, —41,45/7,41, 71,123, 187, 205, —57]
fa6 = [359,141, -1, —21, —33, —39, —207/7, -9, —9, —27, —81, —189, —81]
for = [295, 17, —55,—25, 25, —5,31/7,—5,—25, —25, —55, —17, 295]

For instance, one of the simplest parametrizations, given by faq, is explic-
itly
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z = (8150 + 256t19) (6561520 — 6088608t°s1® — 207484416¢1051°
+19243008t1°s° + 65536t2°)

y = —6561520 — 2659392t°s'% — 10243584050 + 8404992¢1555 — 65536120

z = 12st(81510 — 1584t%s5 — 256t10) .

14.6 The Parabolic and Hyperbolic Cases

14.6.1 The Parabolic Case

We now consider the parabolic case 1/p+1/¢+ 1/r = 1. Up to permutation
of (p,q,r), this corresponds to the three cases (p,q,r) = (2, 3,6), (2,4,4) and
(3,3,3). The result is then simply as follows.

Proposition 14.6.1. In the parabolic case 1/p+ 1/q+ 1/r = 1, the equa-
tion P + y? = 2" has no solutions in nonzero coprime integers, except that
the equation z3 + y® = 22 has the solutions (z,y,2) = (2,%1,£3), and the
equation 3 + y* = 25 has the solutions (z,y,z) = (=2,+3, £1).

Proof. The (3,3,3) case is FLT for exponent 3, which has been proved
in Section 6.9. The (2,4,4) case corresponds to the equations z* £ y* = 22
which have also been treated in that section (Proposition 6.6.14). We are left
with the (2,3, 6) case which, thanks to the reductions made above, reduces to
the equations z3 + y% = 22. Setting X = x/y2, Y = z/y3, our equations are
thus equivalent to finding rational points on the curves Y2 = X3 + 1. This
is done by the 2-descent technique, explained in Chapter 8, which is here
very easy to apply since the 2-torsion point (F1,0) has rational coordinates.
We have treated this example in Proposition 8.2.14, but we can of course be
lazy and use Cremona’s mwrank program which tells us that both curves have
rank 0. The curve Y2 = X3 — 1 has only the point (1,0) as torsion point (in
addition to the point at infinity). On the other hand, the curve Y2 = X3 +1
has a torsion subgroup of order 6, and apart from the point at infinity the
torsion points are (—1,0), (0, £1) and (2, £3). The points (—1,0) and (0, £1)
correspond to z = 0 and x = 0, respectively, while the points (2,+3) give
x = 2y?, z = +3y3. Since z and y are coprime, we must have y = %1, hence
z = 2 and z = £3, proving the proposition. ]

Thus in the parabolic case there are only finitely many nonzero coprime
solutions. Note however that this is because we only consider the super-
Fermat equation with coefficients +1. In case of general coefficients, the
equation may have finitely or infinitely many coprime solutions, depending
on whether the rank of the corresponding elliptic curve is zero or not. For
instance the equations 22 4+ y* = 22* and z* 4+ 8y* = 22 have infinitely many
coprime solutions, see Exercise 12 of Chapter 8 and Exercise 2.
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14.6.2 General Results in the Hyperbolic Case

We finally consider what is by far the most difficult case, the hyperbolic case
1/p+1/q¢+ 1/r < 1. Proving all that is known would require a book in
itself, so we will only give a survey with little proofs. Note that when we
talk of solutions to our equations, we always mean integral nonzero coprime
solutions.

First, there is a beautiful theorem of Darmon and Granville [Dar-Gra| as
follows.

Theorem 14.6.2. For fized p, q, and r such that 1/p+1/g+1/r <1 and
fixed nonzero integers A, B, and C, there exist only finitely many solutions
to the equation AxzP + By? + Cz" = 0 in integers x, y, and z with x and y
coprime.

To prove this theorem, they succeed in reducing it to Faltings’s famous
theorem on the finiteness of the number of rational points on a curve of genus
greater than or equal to 2 (Mordell’s conjecture), which is not a trivial task
since AxzP + By? 4+ C'z" = 0 does not a priori represent a curve.

Second, we recall the very important abc conjecture of Masser—QOesterlé,
which implies many results or other conjectures in number theory (for in-
stance Elkies has proved that it implies Faltings’s result above: abc implies
Mordell, see [Elk]). There are several possible statements of this conjecture,
but the following is sufficient.

Definition 14.6.3. For a nonzero natural integer N we define the radical
rad(N) of N as the product of the prime numbers dividing N, i.e., rad(N) =
leN b

The abc conjecture is then as follows.

Conjecture 14.6.4. Let € > 0. If a, b, and ¢ are three nonzero pairwise
coprime integers such that a + b+ ¢ =0 then

max(|al, [b], [¢]) = O-(rad(abc)'**) .
We then have the following result:

Proposition 14.6.5. The abc conjecture implies that the total number of
nonzero coprime solutions to P £ y9 + 2" =0 with 1/p+ 1/q+ 1/r < 1 is
finite, even allowing p, q and r to vary. Here, if x = 1 (resp., y = %1, resp.,
z = %1), we identify solutions having the same value of xP (resp., y?, resp.,
z").

Proof. Order p, ¢ and r such that p < ¢ < . Then the hyperbolic cases
correspond to the triples (2,3,r) for r > 7, (2,4,r) for r > 5, (2,¢,r) for r >
q25,(3,3,r)forr >4, (3,q,r)forr >q>4,0r (p,g,r) withr > g>p > 4.
In all these cases one checks immediately that 1/p + 1/q + 1/r < 41/42,
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attained for (p,q,r) = (2,3,7). We apply the abc conjecture to a = zP,
b= +y? and ¢ = £2", and choose £ = 1/42. Note that rad(abc) = rad(zyz) <
zyz. If we set M = max(|z?|, |y?|,|2"|), we thus have

M = O((zyz)'*®) = O(MA/P+1/at1/r)(+e))
= O(M(41/42)(43/42)) — O(M1763/1764)

which is impossible if M is sufficiently large. Thus M is bounded, hence so
are z, y. z, p, ¢ and r (except in the special case min(|z|, |y|,|z|) = 1), proving
the proposition. ]

A stronger statement is given in Exercise 3.

Remark. As already mentioned in Chapter 1, it has been proved by P. Mih4i-
lescu in 2002 that Catalan’s conjecture is true, i.e., that P £y? = 1 is possible
only if 2P = 9 and y? = 8, and I refer the reader to Section 6.11 and Chapter
16 for a detailed description of the proof (see also [Bilu] and [Mis]). Thus the
special case mentioned in the proposition occurs only (up to ordering of p, ¢
and r) for p=2,¢=3,r > 7, with (£3)? — 2?7 = 1" (and also (—1)" when
is even).

A computer search gives the following 10 essentially different solutions
(where as above the first one is only counted once, and we also count once
solutions differing only by sign changes).

1"+ 2% = (£3)® (for r > 7, with also (—1)" for 7 even)
(£3)" + (=2)° = (£7)°
2%+ (-7)° = (£13)?
27 4173 = (£71)2
35 4 (£11)* = (£122)?
15613% — (+33)® = (£1549034)>
657 + (—1414)® = (£2213459)?
1137 + (—9262)° = (+15312283)?
177 + 76271° = (£21063928)?
(£43)® + 962223 = (£30042907)*

These solutions can easily be found in a few seconds by a systematic search
on a fast PC. A search for several weeks has not revealed any additional
solutions. There may be no more, and on probabilistic grounds one would
expect at most 2 or 3 more. Note also that the number of solutions found
decreases with x = 1/p+ 1/q¢ + 1/r — 1, as can be expected: counting the
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first one when possible, we have 5 solutions for x = —1/42, 3 solutions for
x = —1/24, 2 solutions for x = —1/20, 1 solution for x = —1/18 and no
solution for other x (apart from the first when applicable).

14.6.3 The Equation 6 — y* = 22

We now study a few hyperbolic equations. In each case, we proceed as follows.
We reduce the equation to finding integral or rational points on curves. We
then use general methods to find this set of points. When the curve is an
elliptic curve, we use Cremona’s mwrank program, which does all the work
for us, or the methods explained in Chapter 8. When the curve is a curve of
higher genus, or an elliptic curve of nonzero rank, the problem becomes more
difficult and we will only mention the known results.

Proposition 14.6.6. The equation z® — y* = 22 has no solution in nonzero
coprime integers T, y, z.

Proof. Although we could use the solution of the elliptic equation z2+y* =
23 given in Section 14.4.2, it is much simpler to use only the solution to the
dihedral equation z? + y?> = 2%. Indeed, we obtain that z6 — y* = 22 is
equivalent to 22 = s? + 2, y? = s(s% — 3t2), z = t(3s — t?) where s and ¢
are coprime with s Z ¢ (mod 2). The first equation is equivalent to s = 2uwv,
t =u? —0?, z = £(u? + v?), up to exchange of s and t, where u and v are
coprime integers of opposite parity. We consider both cases.
Case 1: 2| s

Set a = v + v, b = u — v, which are coprime and both odd. Then s =
(a®> — b?)/2 and t = ab, so the last equation to be solved can be written
8y? = (a? — b?)(a* — 14a%b? + b*). Since b is odd, we can set Y = y/b3,
X = a?/b?, and we obtain the elliptic curve 8Y? = (X — 1)(X?% — 14X + 1),
which can be given in reduced Weierstrass form as y? = (z+2)(z? — 2z —11).
In any case, the mwrank program tells us that (outside the point at infinity)
the only rational point has y = 0, which does not correspond to a solution of
our equation.
Case 2: 245

Here s = u? — v?, t = 2uw, so that the last equation to be solved can be
written y2 = (u? — v?)(u? — 14u?0v? + v*). We cannot have v = 0, otherwise
t = 0 hence 2z = 0, which is impossible. Thus, we canset Y = y/v®, X = u? /v?
and we obtain the elliptic curve Y2 = (X — 1)(X?% — 14X + 1), which can be
given in reduced Weierstrass form as y? = (z + 4)(z? — 4z — 44). In any case
the mwrank program again tells us that the only rational point has y = 0,
which again does not correspond to a solution. O

14.6.4 The Equation z* — y% = 22

Proposition 14.6.7. The equation z* — y® = 22 has no solution in nonzero
coprime integers T, y, z.
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Proof. Once again, we use the solution to the dihedral equation. We obtain
that our equation is equivalent to 22 = s(s2+3t2), z = t(3s2+12), y? = s2—12
with s and t coprime of opposite parity, or to 22 = £(2s% +#3), z = 2s% — 13,
y? = 2ts with s and ¢ coprime and ¢ odd. We consider both cases separately.
Case 1: 21y

This corresponds to the first parametrization. Since y% + 2 = s and y is
odd, there exist coprime u and v of opposite parity such that y = u? — v?,
t = 2uv and s = £(u? + v?). Since z? > 0, we have s > 0 so the + is +. The
last equation to be solved is thus is #? = (u? +v2)(u* + 14u?v? +v*). Note for
future reference that since u and v have opposite parity, = is odd. We have
v # 0 otherwise ¢t = 0 hence z = 0, which is impossible. Thus we set Y = z /v,
X = u?/v? and obtain the elliptic curve Y2 = (X 4 1)(X? + 14X + 1), which
can be given in reduced Weierstrass form as y* = (z—4)(z?+4x—44). However
here the mwrank program tells us that this is a curve of rank 1, hence we must
proceed differently. Note that when we set X = u?/v?, we implicitly forget
the information that X is a square. In order to keep it, we must return to the
equation 22 = (u? +v?)(u* 4+ 14u?v? + v*). First, we set a = u+v, b =u—wv,
which are coprime and both odd. We obtain 222 = (a? + b2)(a? — a?b? + b*).
Since a* — a?b? + b* = (a® + b%)? — 3a?b?, it follows that the only possible
common prime divisor of a® + b2 and a* — a?b? + b* is p = 3. But this is
impossible, since a? + b2 = 0 (mod 3) if and only if @ = b = 0 (mod 3), which
is excluded since a and b are coprime. Thus the factors are coprime, and by
positivity we obtain that there exist integers ¢ and d such that a? + b* = 2¢?,
a* — a?b? + b* = d? and z = *cd, and ¢ and d are both odd since z is odd.

We consider only the second equation. Setting D = d/b?, A = a/b we
obtain the hyperelliptic quartic curve of genus 1 D? = A* — A%2 4+ 1. Corollary
7.2.2 tells us that if we set X = 242 —2D — 1, Y = 24(24> - D — 1)
this is a birational transformation whose inverse is A = Y/(2X), D =
Y?/(4X?) — (X + 1)/2 and which transforms our genus 1 curve into the
Weierstrass equation Y2 = X(X? + 2X — 3), and now the mwrank program
tells us that the rank is zero, but there are 8 rational torsion points on the
curve: not counting the point at infinity, they are (-3,0), (—1,%2), (0,0),
(1,0) and (3,+6). Because of our birational transformation, we cannot have
Y = 0. It is easy to check that the other 4 points (X,Y) = (—1,+2) and
(3,£6) correspond to the 4 points (4, D) = (+1,+1). Since A = a/b and a
and b are coprime, we must have therefore a = +1 and b = £1, hence a = £b.
Now recall that a = u 4+ v and b = u — v. It follows that a = £b is equivalent
to uv = 0, hence to t = 0, which is impossible since this implies z = 0, so
that there are no solutions in this case as claimed.

Case 2: 2|y

This corresponds to the second parametrization z2 = +(2s% + t3), z =
2s% — 3, y2 = 2ts with s and t coprime and ¢ odd. Thus there exist coprime
a and b with @ odd and & = £1 such that t = ea?, s = 2¢b? and y = +2ab.
The last equation to be solved is thus 22 = +e(a® + 16b%). Since a is odd, we
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have € = 4 hence the equation is 2 = a% + 16b%. We have b # 0, otherwise
y = 0, hence setting Y = z/b% and X = a?/b? we obtain the elliptic curve
Y? = X3+16, whose minimal Weierstrass equation is y?>+y = 23, and mwrank
tells us that the only rational points outside the point at infinity of this curve
are those with z = 0, hence X = 0, hence a = 0, which is impossible since a
is odd. O

14.6.5 The Equation z¢ + y* = 22

Proposition 14.6.8. The equation x% + y* = 2% has no solution in nonzero
coprime integers T, y, z.

Proof. Once again, we use the solution to the dihedral equation. We obtain
that our equation is equivalent to z = s(s2+3t2), y? = t(3s2+12), 22 = 5% -2
with s and ¢ coprime of opposite parity, or to z = (2% +3), y2 = 2s® — 13,
22 = 2ts with s and ¢ coprime and ¢ odd. We consider both cases separately.
Case 1: 242

This corresponds to the first parametrization. Since z? + > = s? and
z is odd, there exist coprime u and v of opposite parity such that x =
u? —v?, t = 2uv, s = +(u? + v?). The last equation to be solved is thus
y? = 2uv(3u* + 10uv? + 3v*). We set a = u + v, b = u — v which are both
odd, and this gives 2y = (a?—b?)(a*+a?b?+b%). Weset Y = y /b3, X = a?/b?
and we obtain the elliptic curve 2Y? = (X —1)(X2+ X +1) = X3 —1, whose
reduced Weierstrass equation is y? = 2° — 8. Once again mwrank tells us that
this equation has no solutions with y # 0.

Case 2: 2|z

This corresponds to the second parametrization. Since ¢ is odd, s is even,
and since s and ¢ are coprime the equation 2% = 2ts gives t = eu?, s = 2cv?
and x = +2uv with v and v coprime, u odd and € = £1. The last equation
to be solved is thus y? = &(16v% — u®). Since u is odd, y is odd, hence
y? =1 (mod 8) while 16v% — 4% = —1 (mod 8). Thus € = —1, and we have
y? = ub — 1608. We have v # 0, otherwise s = 0 hence z = 0, which is
impossible. Thus setting ¥ = y/v® and X = u?/v? gives the elliptic curve
Y2 = X2 — 16 in reduced Weierstrass form, and once again mwrank tells us
that this curve has no solutions with y # 0. O

Putting together the three equations above, we obtain the following

Corollary 14.6.9. The equations +2° + y* = 22 have no solutions in
nonzero coprime integers x, y, z.

14.6.6 The Equation z* 4+ y* = 25

Proposition 14.6.10. The equation z*+y* = 25 has no solution in nonzero
coprime integers T, y, z.



14.6 The Parabolic and Hyperbolic Cases 1035

Proof. Once again we use the solution to the dihedral equation. Our equa-
tion is thus equivalent to 22 = s(s* — 10t?s% + 5t1), y? = t(5s* — 10t2s> + 1),
and z = s? +t2, where s and t are coprime integers of opposite parity. I claim
that 5 | st. Indeed, if s and ¢ are not divisible by 5, then the factors in the
expressions for 2 and y? are coprime, hence in particular there exist integers
u and v such that s* — 10#2s2 + 5t* = +u? and 5s* — 10252 + t* = +02.
Then if ¢t is even s is odd, and the second equation gives a contradiction
modulo 8, and similarly if ¢ is odd then s is even and now the first equation
gives a contradiction modulo 8, proving my claim. Thus 5 | st, and exchang-
ing = and y, hence s and ¢ if necessary we may assume that 5 | s. Writing
s = 5s1, we thus have in particular (z/5)% = s1(125s1 — 50t?s? + %), hence
12557 — 50t2s7 + t* = +u? for some integer u. If ¢ is even s; is odd, and
this gives a contradiction modulo 8. Thus s = 5s; is even, and since ¢ is
coprime to 5 the equation for y? gives 5s* — 10t2s2 + t* = +02, and since s
is even and t is odd, again looking modulo 8 we see that the sign must be
+, hence we finally obtain the hyperelliptic quartic of genus 1 with equation
V2 =T4-10T? + 5, with V = v/s? and T = t/s. Corollary 7.2.2 tells us
that if we set X = 2(T? -V —5) and Y = 4T (T? — V —5) this is a birational
transformation whose inverse is T = Y/(2X) and V = Y?/(4X?) — X/2 -5,
and which transforms our genus 1 curve into the Weierstrass equation in
minimal form Y2 = X (X2 + 20X + 80). This curve has a rational point of
order 2, hence the 2-descent method of Section 8.2.4 is easily applicable and
shows that our curve has rank 0 (or we can be lazy and use mwrank). The
only nontrivial torsion point has X = 0, hence V = 5 — T2, but replacing in
the quartic we obtain the contradiction 25 = 5, proving the proposition. 0O

Remark. The equation z* —y* = 2° leads to elliptic curves of nonzero rank,
and I do not know whether it can be treated by similar methods (although
the nonexistence of nontrivial solutions follows from the (2,4, 5) case treated
by Bruin, see below).

14.6.7 Further Results

The reason for which it has not been difficult to treat the (2,4,6) cases
and one of the (4,4,5) cases is that we have always been able to reduce to
curves of genus 1 with only a finite number of rational points. In only one
case, we had a curve of genus 1 with infinitely many rational points, but we
were able to bypass it by using additional information given by the elliptic
parametrizations. Unfortunately, in other hyperbolic cases, when reducing
to finding rational points on curves, some of these curves will have infinitely
many rational points, and some will be of genus greater than or equal to 2, and
our knowledge of algorithmic methods for finding all rational points on such
curves is much smaller. One of the only general methods, due to Chabauty,
unfortunately works only in certain cases, see Chapter 13. In other cases, such
as FLT itself, one can also use the method of Ribet—Wiles for finding all the
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solutions. Thus, we give a brief survey of known results. For equations with
fixed small exponents (p, ¢,7), one method is to find covering curves for the
solutions. These curves may be of genus 1, as we have seen in the (2,4, 6) and
(4,4,5) examples, but are in general of higher genus. We summarize below
the known results, including the highest genus which is necessary and the
name of the authors. Recall that we only consider nonzero coprime solutions.

Equation Solutions Genus Author(s)
+28 £yt =22 none 1 Bruin
2 +yt =28 none 2 Bruin
22—yt =28 (£7,+£3,-2),
(£122, £11,3) 2 Bruin
22 4+ 9y8 =23 (£1549034, £33, 15613) 2 Bruin
22 —gy8 =23 (£3,41,2),
(£30042907, £43,96222) | 2 Bruin
22+ =27 (£3,-2,1),
(£71,-17,2),
(+£2213459, 1414, 65),
(+£15312283,9262,113),
(£21063928, —76271,17) 3 Poonen—Schaefer—Stoll
22+ =2° (£3,-2,1),
(£13,7,2) 3 Bruin

The results of N. Bruin can be found in [Brul] and [Bru2]. The (2,3,7) re-
sult, which is very recent (2004, see [Poo-Sch-Sto]), deserves special mention.
Using Galois representation techniques and level lowering & la Ribet—Wiles
(see Chapter 15), the authors show that solutions come from rational points
on twists of the modular curve X (7) that come from a finite list of elliptic
curves, and this leads to finding the rational points satisfying congruence
conditions modulo 2 and 3 on precisely 10 curves of genus 3 defined over Q,
which over C are all isomorphic to the so-called Klein quartic curve whose
projective equation is 2%y + y3z + 232 = 0.

Using known techniques it is possible to find the rational points satisfying
the congruence conditions on 9 of the 10 curves, leading to the given solu-
tions. To prove that the tenth curve does not have any rational point is more
difficult, but has been achieved by the authors. It is interesting to note that
the large solutions for the (2,3,7) come from extremely small solutions on
the twisted Klein curves.

Once again we note that the large number of solutions in this case is
(heuristically) due to the fact that x = 1/p+1/¢+ 1/r —1 = —1/42is as
close to zero as it can be in the hyperbolic case.

All the other results on the super-Fermat equation (including the original
Fermat equation itself) have also been proved using Galois representation
techniques. We refer to Chapter 15, written by S. Siksek, for a black box




14.7 Applications of Mason’s Theorem 1037

explanation of this method, and we also refer to the excellent papers [Kra2]
and [Ben2] for surveys, details and references. Among the results obtained to
date (2006) using this method we cite the following.

equation conditions author(s)
" 4yt = 2" 3<n Ribet—Taylor-Wiles
3 4y = 2" 17 < n < 10000 or z even Kraus
z® +y® = 2" 3 < n and z even Darmon—Kraus
N T 4<n Darmon—Merel, Poonen
" 4+ y" =28 3<n Darmon—Merel, Poonen
zt 4y =2 2<n Darmon
2 + y4 = 2" 211 <n Ellenberg, Ramakrishnan
22—yt =2 5<n Bennett—Skinner
22 4+ 92" =2 || 11 < n <1000 and n # 31,
or y even Chen
zt 42 =28 2<mn Bennett—Chen
22 4 yin =27 2<mn Bennett—Chen
2" 4 y?n =55 2<n Bennett

14.7 Applications of Mason’s Theorem

It is interesting to note that most of the important Diophantine problems that
we have met in this book, such as Fermat’s last theorem, Catalan’s equation,
the super-Fermat equation, and others, have a very simple answer if we look at
them in the context of polynomials, in other words if we look for polynomial,
as opposed to rational or integral, solutions. This essentially follows from a
single, elementary, result, due to Mason. It should be emphasized that these
results have no use whatsoever for the initial Diophantine equations to be
solved over Q. Nonetheless I believe that it has a place in this book.

14.7.1 Mason’s Theorem

The reader should compare with Definition 14.6.3 and Conjecture 14.6.4.

Definition 14.7.1. For a nonzero polynomial P in one variable, we define
rad(P) to be the monic polynomial with no multiple roots having the same
roots as P, in other words rad(P) = [[p(q)=o(X — @).

Proposition 14.7.2 (Mason). Let A, B, C be pairwise coprime polynomi-
als in one variable, not all constant and such that A+ B+ C = 0. Then

max(deg(A), deg(B), deg(C)) < deg(rad(ABC)) — 1.
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In other words, the abc conjecture is true for polynomials.

Proof. Let f = A/C and g = B/C, so that f and g are rational functiona
such that f + g+ 1 = 0. Note that g is not constant, otherwise f would also
be constant and A, B, and C would be proportional hence constant since

they are pairwise coprime. Differentiating, it follows that f' = —g', hence
B_g__[f'f
A f g/

If we write

AX) = aJ[(X-a), BE) =b[[(X=8)%, CX)=c[[(X-)

i j k

we have

f_I(X) — z a; _Z Ck and g_’(X) _ Z b; _Z Ck,

f ~X—a T X-— g ~X=B; T X=m

Thus if we multiply f'/f and ¢'/g by N = rad(ABC') we obtain polynomials,
and the degree of these polynomials is at most equal to deg(N) — 1. From

the equality

B _ Nf'/f
A~ NgJg
and the fact that A and B are coprime we deduce that B divides Nf'/f
and A divides Ng'/g, hence that max(deg(A),deg(B)) < deg(N) — 1, so
deg(C) = deg(—A — B) < deg(N) — 1, proving the proposition. O

14.7.2 Applications

Corollary 14.7.3. FLT is true for polynomials in one variable which are
not all constant, in other words if f, g, and h are nonzero polynomials, not
all constant and such that f™ + g™ = h™ then n < 2.

Proof. Dividing the equation by ged(f,g)" we may assume that f, g,

and h are pairwise coprime. Setting A = f*, B = ¢g", C = —h™ we have
A+ B+ C =0 and rad(ABC) | fgh. Thus by the above proposition we have

nmax(deg(f),deg(g),deg(h)) < deg(fgh)—1 = deg(f)+deg(g)+deg(h)—1.

Adding the corresponding inequalities for f, g, and h we obtain

n(deg(f) + deg(g) + deg(h)) < 3(deg(f) + deg(g) +deg(h)) — 3,

hence n < 3 as claimed. O
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Note that since we have a two-parameter coprime integer solution to FLT
for n = 2, a fortiori there exists a solution with polynomials in one variable,
for instance f =2z, g =22 —1,and h =22 + 1.

More generally, a similar proof shows that the super-Fermat equation can
have solutions only in the elliptic case:

Corollary 14.7.4. Let p, q, r be integers such that 2 < p < q < 7, and
assume that f, g, and h are pairwise coprime polynomials, not all constant
and satisfying the super-Fermat equation fP + g9 = h". We are then in the
elliptic case, in other words (p,q,7) = (2,2,7) for some r > 2, (2,3,3),
(27374)7 or (2737 5)'

Proof. Once again we have A+ B+ C = 0 with A = fP, B = g%, and
C = —h", which are pairwise coprime by assumption, and rad(ABC) | fgh.
If we denote by a, b, and c respectively the degrees of f, g, and h, the above
proposition tells us that max(pa, gb,7¢) < a+b+c— 1. Since p < ¢ <7 we
have pla+b+¢) < pa+qgb+rc < 3(a+ b+ ¢) — 3, hence as for FLT we
deduce that p < 3, hence p = 2 and the inequality pa < a + b+ c — 1 gives
a <b+c—1.If g = 2 we are in the dihedral case (2,2, r). Otherwise, assume
that ¢ > 3. Our basic inequality now gives 2a + gb + rc < 3a + 3b + 3¢ — 3,
hence since g < r

gb+c) <gb+rc<a+3b+3c—-3<4(b+c)—4,

so that ¢ < 4, hence ¢ = 3. Finally, for p = 2 and ¢ = 3 the inequality for ¢b
gives 2b < a+c—1 < b+2¢c—2,s0 that b < 2¢—2,hencea < b+c—1< 3¢c—3.
Thus re <a+b+c—1<6(c—1), hence r < 6, so r = 3, 4, or 5, proving
the corollary. O

Note that we have seen in Sections 14.2, 14.3, 14.4, and 14.5.2, that in all
the elliptic cases we have a two-variable parametrization, hence in the given
cases of the corollary, solutions do indeed exist.

14.8 Exercises for Chapter 14

1. Show that, as claimed in the text, in Theorem 14.5.1 we can choose fg(s,t) =
st(s'9 — 115%¢% — ¢1°) in the case of the regular icosahedron.

2. As a numerical sequel of Exercise 12 of Chapter 8, compute all coprime integral
solutions of 2 + y* = 22* with |z| < 10'%.

3. (M. Stoll.) Assume that the following weaker form of the abc Conjecture 14.6.4
is valid: there exists ¢ < 1/5 such that for all nonzero pairwise coprime integers
a, b, ¢ with a + b + ¢ = 0 we have max(|al, |b], |¢|]) = O(rad(abc)' ).

(a) Prove that there are in total only finitely many solutions to the super-Fermat
equations with 1/p+1/g+1/r < 5/6 + § for some ¢ > 0 depending on &.

(b) Deduce from the Darmon—Granville Theorem 14.6.2 that there are in total only
finitely many solutions in the hyperbolic case.
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4. Let p and g be integers such that p > 2 and ¢ > 2. Using Mason’s theorem
(Proposition 14.7.2), prove that if f and g are nonconstant coprime polynomials

then
deg(f* —g%) 2 (p—1—p/q)deg(f) +1.

The special case deg(f® — g?) > (deg(f)/2) + 1 is due to Davenport and is the
polynomial analogue of Hall’s conjecture, which states that if a, b are coprime
positive integers different from 1 then for every e > 0 we have |a® —b| > a'/?~¢
except for finitely many (a,b).

5. Let p, ¢, and r be strictly positive integers. Show that there do not exist any
solutions to the negative super-Fermat equation 77 + y~9 = 27" with z, vy,
and z pairwise coprime.



