Integer factorization,
part 1: the Q sieve

Integer factorization,
part 2: detecting smoothness

Integer factorization,
part 3: the number-field sieve

D. J. Bernstein

Problem: Factor 611.

The Q sieve forms a square
as product of 2(z + 6117)
for several pairs (2, 7):
14(625) - 64(675) - 75(686)
= 44100007

gcd{611,14 - 64 - 75 — 4410000}
— 47.

The Q(+/14) sieve forms a square
as product of (z + 257)(z 4+ v/147%)
for several pairs (2, 7):

(—11 +3-25)(—11 4 34/14)

(3 +25)(3 + /14)
= (112 — 16+/14)?.
Compute

s=(—11+3-25)- (3 +25),
t =112 —16- 25,
gcd{611,s —t} = 13.

Why does this work?

Answer: Have ring morphism

Z|\14]| — Z/n, /14 — 25,
since 252 = 14 in Z/n.

Apply ring morphism to square:
(—11+3-25)(—11+ 3-25)
(3 4+ 25)(3 + 25)

— (112 — 16 - 25)? in Z/n.

ie. s>=t’inZ/n.

Unsurprising to find factor.

Generalize from (z° — 14, 25)
to (f, m) with irred f € Z|z],
m e Z, f(m) e nZ.

Write d = deg f,
f=faz*+ -+ frzt + foz°.

Can take fy = 1 for simplicity,
out larger f; allows

better parameter selection.

Pick a € C, root of f.
Then fya is a root of

monic g = 41 f(z/f4) € Za]

Build square in Q(a) from
congruences (1 — 7m)(z — ja)
with ©Z 4+ 9Z = Z and 5 > 0.

Could replace 1 — gz by
higher-deg irred in Z[z];
quadratics seem fairly small

for some number fields.
But let's not bother.

Say we have a square

[(ij)es(z —3m)(2 — ja)
in Q(a); now what?

[1(2 — 3m) (2 — ja) £
Is a square in O,
ring of integers of Q(a).

Multiply by g'(fge)?,
putting square root into Z|fal:
compute 7 with 72 = ¢'(fya)?:
06— 3m)(6 — ja)f3.

Then apply the ring morphism
¢ : Z|fqa]l — Z/n taking

fqa to fym. Compute gcd{n,
p(r) — g'(fam)[1(z — 3m) fa}.
In Z/n have ¢(r)° =

g'(fam)* [(i — ym)*fy.

How to find square product
of congruences (1 — 7m)(z — ja)?

Start with congruences for,
e.g., y° pairs (4, 7).

Look for y-smooth congruences:
y-smooth 2 — 7m and

y-smooth fynorm(z — ja) =
fai®+ -+ fog® = 7% (3/9).

Find enough smooth congruences.
Perform linear algebra on

exponent vectors mod 2.

Exponent vectors have

many “rational’ components,
many “algebraic” components,
a few “character’ components.

One rational component
for each prime p < y.
Value ordy(z — 3m).

One rational component for —1.
Value 0 if 2 — 3m > 0,
value 1 if 2 — 3m < 0.

If | |(z — 3m) is a square
then vectors add to 0
In rational components.

One algebraic component
for each pair (p,) such that
D IS a prime < y;

fa ¢ pZ; disc f ¢ pZ;

r € Fp; f(r)=0in Fy.

Value 0 if 1 — jr ¢ pZ;
otherwise ord,(5¢f(i/7)).

This Is the same as

the valuation of 1 — j&

at the prime pO + (fqa — fur)O.
Recall that 1Z + 9Z = Z,

so no higher-degree primes.

One character component
for each pair (p, r) with
p In a short range above .

Value 0 if 2 — g7 is 3
square in Fy, else 1.

If | |(z — ja) is a square
then vectors add to 0

in algebraic components
and character components.

Conversely, consider vectors

adding to 0 In

all components.

| |(z — gm) must be a square.

Is | |(2 —) a square?
Ideal | |(z — 7a)O must be

square outside

fqdisc f.

What about primes in f;disc f?
Even if ideal is square,

IS square root principal?

Even if ideal is generated

by square of e

does square eq

ement,

wal (3 — ja)?

Obstruction group is small,
conjecturally very small.
“(f4 disc f)-Selmer group.”

A few characters
suffice to generate dual,

forcing | |(z — ja)
to be a square.

Can be quite sloppy here;
easy to redo linear algebra
with more characters if
non-square is encountered.

Sublattices

Consider a sublattice

of pairs (2, 7) where

g divides 7¢£(1/5).
Assume squarish lattice.
(2 — gm)3*f(3/5)

expands by factor g(@+1)/2
before division by g.

Number of sublattice elements
within any particular bound

on (2 — gm)3¢f(i/5)
is proportional to g—(¢—1)/(d+1)

Compared to just using g = 1,
conjecturally obtain y*/(d+1)+0o(1)
times as many congruences

by using sublattices for

all y-smooth integers g < y?.

Separately consider
1 —jm and 5¢f(i/7)/q
for more precise analysis.

Limit congruences accordingly,
Increasing smoothness chances.

Multiple number fields

Assume that f +z — m € Z|x]
Is also irred.

Pick 8 € C, root of f + = — m.
Two congruences for (2, 7):
(i—3m)(i—7ja); (i—3m)(i—73P).
Expand exponent vectors to
handle both Q(a) and Q(8).

Merge smoothness tests
by testing 1 — 3m first,
aborting if 2 — 7m not smooth.

Can use many number fields:
f +2(x —m) etc.

Asymptotic cost exponents

Number of bit operations
in number-field sieve,

with theorists’ parameters,
ic [1.90...40(1) \where | —

exp((log n)Y/3(log log n)2/3).
What are theorists’ parameters?

Choose degree d with
d/(log n)/3(log log n)~1/3
€1.40...40o(1).

Choose integer m ~ nl/d.

Write n as

m + fyom® 1+ 4+ fim+ fo
with each f, below n(lto(l))/d
Choose f with some randomness
in case there are bad f's.

Test smoothness of 1 — 1m
for all coprime pairs (2, 7)

with 1< 1,7 < LO'95"'+0(1),
using primes < [0-95-.+o(1)

L1.90...—|—0(1) pairs.

Conjecturally [1.65-+0o(1)
smooth values of 2 — 3m.

Use L0-12--F0(1) number fields.

For each (z, 7)
with smooth 72 — 3m,
test smoothness of 1 — j&

and 2 — 98 and so on,
using primes < [0-82...+0(1)

Each ‘]df(z/])‘ < m2-80...+0(1)
Conjecturally £09-95--+o(1)

smooth congruences.

In the exponent vectors.

Three sizes of numbers here:
(log n)/3(log log n)2/3 bits:
Y, 1 7

(log n)%/3(log log n)1/3 bits:
m, 1 — jm, 3*f(1/7).

log n bits: n.

Unavoidably 1/3 in exponent:
usual smoothness optimization

forces (log y)? ~ log m;
nalancing norms with m

forces dlogy ~ log m;
and dlogm =~ logn.

The number-field sieve

is asymptotically much faster
than the quadratic sieve

and the elliptic-curve method.

Also works well In practice.

Latest record: NFS found

two prime factors as 2332

of “"RSA-200" challenge, using
~ 5 - 1018 Opteron cycles.

Batch NFS

The number-field sieve used
[1.90...+0(1) pit operations
finding smooth 2 — 3m; only
[1.77..+0(1) pit operations
finding smooth j%f(4/7).

Many n's can share one m;
[1.90...4+0(1) hit operations

to find squares for all n's.

Oops, linear algebra hurts;
fix by reducing y.

But still end up factoring
batch in much less time than

factoring each n separately.

