
Integer factorization

Daniel J. Bernstein ?

djb@cr.yp.to

“The problem of distinguishing prime numbers from composite numbers,
and of resolving the latter into their prime factors, is known to be one of the
most important and useful in arithmetic,” Gauss wrote in his Disquisitiones

Arithmeticae in 1801. “The dignity of the science itself seems to require that
every possible means be explored for the solution of a problem so elegant and
so celebrated.”

But what exactly is the problem?

Do we want to distinguish prime numbers from composite numbers? Or do
we want to find all the prime factors of composite numbers? These are quite
different problems. Imagine, for example, that someone gives you a 10000-digit
composite number. It turns out that you can use “Artjuhov’s generalized Fermat
test”—the “sprp test”—to quickly write down a reasonably short proof that the
number is in fact composite. However, unless you’re extremely lucky, you won’t
be able to find all the prime factors of the number, even with today’s state-of-
the-art factorization methods.

Do we care whether the answer is accompanied by a proof? Is it good enough
to have an answer that’s always correct but not accompanied by a proof? Is it
good enough to have an answer that has never been observed to be incorrect?
Consider, for example, the “Baillie-Pomerance-Selfridge-Wagstaff test”: if n ∈

3 + 40Z is a prime number then 2(n−1)/2 + 1 and x(n+1)/2 + 1 are both zero
in the ring (Z/n)[x]/(x2 − 3x + 1); nobody has been able to find a composite
n ∈ 3+40Z satisfying the same condition, even though such n’s are conjectured
to exist. (Similar comments apply to arithmetic progressions other than 3+40Z.)
If both 2(n−1)/2 + 1 and x(n+1)/2 + 1 are zero, is it unacceptable to claim that n
is prime?

Do we actually want to find all the prime factors of the input? Or are we
satisfied with one prime divisor? Or any factorization? More than 70% of all
integers n are divisible by 2 or 3 or 5, and are therefore very easy to factor if
we’re satisfied with one prime divisor. On the other hand, some integers n have
the form pq where p and q are primes; for these integers n, finding one factor is
just as difficult as finding the complete factorization.

Do we want to be able to find the prime factors of every integer n? Or are we
satisfied with an algorithm that gives up when n has large prime factors? Some
algorithms don’t seem to care how large the prime factors are: for example, “the
Pollard-Buhler-Lenstra-Pomerance-Adleman number-field sieve” is conjectured
to find the prime factors of n using exp((64/9 + o(1))1/3(log n)1/3(log log n)2/3)
simple operations. Other algorithms are much faster at finding small primes:

?

Date of this document: 2005.12.26.



for example, “Lenstra’s elliptic-curve method” is conjectured to find all prime
factors p ≤ y using exp(

√

(2 + o(1))(log y) log log y) simple operations.

More generally, consider an algorithm that tries to find the prime factors of n,
and that has different performance (different speed; different success chance) for
different inputs n. Are we interested in the algorithm’s performance for typical

inputs n? Or its average performance over all inputs n? Or its performance for
worst-case inputs n, such as integers chosen by cryptographers to be difficult
to factor? Consider, for example, the “Schnorr-Lenstra-Shanks-Pollard-Atkin-
Rickert class-group method.” This method was originally conjectured to find
the prime factors of n using exp(

√

(1 + o(1))(log n) log log n) simple operations,
but the conjecture was later modified: the method seems to run into all sorts of
trouble when n is divisible by the square of a large prime.

Do we compare algorithms according to their conjectured speeds? Or do
we compare them according to proven bounds? The “Schnorr-Seysen-Lenstra-
Lenstra-Pomerance class-group method” is proven to find the prime factors of n
using at most exp(

√

(1 + o(1))(log n) log log n) simple operations; the number-
field sieve is conjectured to be much faster, once n is large enough, but we don’t
even know how to prove that the number-field sieve works for every n, let alone
that it’s fast.

How much parallelism do we allow in our algorithms? One number-field-
sieve variant uses L1.18563...+o(1) seconds on a machine costing L0.79042...+o(1)

dollars for L0.79042...+o(1) tiny parallel CPUs carrying out a total of L1.97605...+o(1)

simple operations; here L = exp((log n)1/3(log log n)2/3). Another variant uses
L1.75457...+o(1) seconds on a serial machine costing L1.00573...+o(1) dollars for
L1.00573...+o(1) bytes of memory and a serial CPU carrying out L2.01147...+o(1)

simple operations. Another variant uses L1.90188...+o(1) seconds on a machine
costing L0.95094...+o(1) dollars for L0.95094...+o(1) bytes of memory and a serial
CPU carrying out L1.90188...+o(1) simple operations. The first variant is designed
to minimize price-performance ratio; the second is designed to minimize price-
performance ratio for serial computations; the third is designed to minimize the
number of simple operations.

Do we want to find the prime factors of just a single integer n? Or do we
want to solve the same problem for many integers n1, n2, . . .? Or do we want to
solve the same problem for as many of n1, n2, . . . as possible? One might guess
that the fastest way to handle many inputs is to handle each input separately.
But the “Sieve of Eratosthenes” finds small factors of many consecutive integers
n1, n2, . . . in much less time than handling each integer separately. Furthermore,
recent factorization methods have removed the words “consecutive” and “small.”

Contents of this course. Even a year-long course can’t possibly cover all
the interesting factorization methods in the literature. I’m going to focus on
“congruence-combination” factorization methods, specifically the number-field
sieve, which holds the speed records for real-world factorizations of worst-case
inputs such as RSA moduli. Here’s how this fits into the spectrum of problems
considered above:



• I don’t merely want to know that the input n is composite; I want to know
its prime factors.

• I’m much less concerned with proving the primality of the factors than with
finding the factors in the first place.

• I want an algorithm that works well for every n—in particular, I don’t want
to give up on n’s with large prime factors.

• I want to factor n as quickly as possible. I’m willing to sacrifice proven
bounds on performance in favor of reasonable conjectures.

• I’m interested in parallelism to the extent that I have parallel computers.
• I might be interested in speedups from factoring many integers at once, but

my primary concern is the already quite difficult problem of factoring a single
large integer.

A secondary factorization problem of a quite different flavor turns out to
be a critical subroutine in “congruence-combination” algorithms. What these
algorithms do is

• write down many “congruences” related to the integer n being factored;
• search for “fully factored” congruences; and then
• combine the fully factored congruences into a “congruence of squares” used

to factor n.

The secondary factorization problem is the middle step, the search for “fully
factored” congruences. This step involves many inputs, not just one; it involves
inputs typically much smaller than n; inputs with large prime factors can be,
and are, thrown away; the problem is to find small factors as quickly as possible.
I’ll present the state of the art in small-factors algorithms, including the elliptic-
curve method and a newer method relying on the Schönhage-Strassen FFT-based
algorithm for multiplying billion-digit integers. I’ll also discuss other tools that
show up in the number-field sieve: for example, optimizing the initial choice
of congruences requires understanding the distribution of smooth elements of a
product of number fields.

There are several books presenting integer-factorization algorithms: Knuth’s
Art of computer programming, Section 4.5.4; Cohen’s Course in computational

algebraic number theory, Chapter 10; Riesel’s Prime numbers and computer

methods for factorization; and, newest and generally most comprehensive, the
Crandall-Pomerance book Prime numbers: a computational perspective. All of
these books also cover the problems of recognizing prime numbers and proving
primality. The Crandall-Pomerance book is highly recommended.

Student project. The student project attached to this course is to actually
use computers to factor a bunch of integers! The project will take the secondary
perspective described above: there are many integers to factor; integers with large
prime factors—integers that aren’t “smooth”—are thrown away; the problem is
to find small factors as quickly as possible. We’re going to write real programs,
see which programs are fastest, and see which programs are most successful at
finding factors.



There are several methods in the literature for finding small factors of one
integer:

• Trial division.
• Pollard’s ρ method.
• Pollard’s fast-factorials method. Skip this one; ρ is faster.
• Pollard’s p − 1 method.
• Williams’ p + 1 method.
• Other “cyclotomic” methods. Skip these; p − 1 and p + 1 are faster.
• Lenstra’s elliptic-curve method.
• The Lenstra-Pila-Pomerance hyperelliptic-curve method. Skip this one; the

elliptic-curve method is faster.
• Early aborts. This is an important modification to all of the above methods,

trading success probability for speed.

Students can find pointers to the literature in section 2 of my paper “How to
find small factors of integers,” http://cr.yp.to/papers.html#sf.

There are faster methods of finding small factors of many integers. The state
of the art is explained in my paper “How to find smooth parts of integers,”
http://cr.yp.to/papers.html#smoothparts.


