Recall from review session

$$
\Gamma_{0,n} = \text{Diff}^+(\Sigma_{0,n})/\text{Diff}^{\circ} \cong \pi_1(M_{0,n})
$$

where

 $\Sigma_{0,n} = \text{top. sphere with } n \text{ ordered marked points}$ Diff^+ = oriented diffeomorphisms fixing the points $\text{Diff}^{\circ} = \text{those isotopic to the identity}$

and we saw that $\Gamma_{0,n} = B_n^{\text{pure}}/\text{stuff}$ where B_n^{pure} denotes the group of *n*-stranded braids $\left|\left|\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\end{array}\right|\end{array}\right|$ with each strand ending in its starting position. The Dehn twist along the loop $\bullet \bullet \bullet \bullet \bullet \bullet \bullet$ *i i+1 i,i+1* braid

Arizona Winter School 2005 Leila Schneps $3/15$ 1 0:15

$$
\Gamma_{0,[n]} = \text{Diff}^+_{S_n}(\Sigma_{0,n})/\text{Diff}^{\circ}
$$

= diffeomorphisms permuting the n points

is isomorphic to B_n /stuff, B_n the full *n*-stranded braid group.

The Dehn twist along the loop
$$
\begin{vmatrix}\n\cdot & \cdot & \cdot & \cdot \\
i_{i+1} & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot\n\end{vmatrix}
$$
 and corresponds to the braid $\begin{vmatrix}\n\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot\n\end{vmatrix} = \sigma_i$
We have $B_n = \langle \sigma_1, \dots, \sigma_{n-1} \rangle$ with relations
 $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$
 $\sigma_i \sigma_j = \sigma_j \sigma_i$ $|i - j| \ge 2$

Recall the definition of \widehat{GT}

$$
\widehat{GT} = \{ (\lambda, f) \in \widehat{\mathbb{Z}}^* \times \widehat{F}_2' | (0) \begin{cases} x \mapsto x^{\lambda} & \text{ induces an automorphism of } \widehat{F}_2 \\ y \mapsto f^{-1} y^{\lambda} f & \text{if } (I) f(x, y) f(y, x) = 1 \end{cases}
$$
\n
$$
(II) f(x, y) x^m f(z, x) z^m f(y, z) y^m = 1,
$$
\n
$$
m = \frac{\lambda - 1}{2}, \quad xyz = 1
$$
\n
$$
(III) f(x_{34}, x_{45}) f(x_{51}, x_{12}) f(x_{23}, x_{34}) f(x_{45}, x_{51})
$$
\n
$$
\cdot f(x_{12}, x_{23}) = 1 \text{ in } \widehat{\Gamma}_{0,5}
$$

We sketched 2 proofs of the fundamental result

$$
G_{\mathbb{Q}} \hookrightarrow \widehat{GT}
$$

Arizona Winter School 2005 Leila Schneps 3/15 3 4:40

Here is ******

then $M_{0,[n]}$ is also the definition over Q so a usual we have

$$
G_{\mathbb{Q}} \to \mathrm{Out}(\hat{\pi}_1(M_{0,[n]})) = \mathrm{Out}(\hat{\Gamma}_{0,[n]})
$$

Now $\pi_1(M_{0,4}] = \Gamma_{0,4} = \pi_1(M_{1,1}) \cong \text{PSL}_2(\mathbb{Z})$ because $M_{0,4} = \mathbb{P}^1 - \{0, 1, \infty\} / S_4 \xrightarrow{\sim} M_{1,1}$

unordered $\{x_1, x_2, x_3, x_4\} \mapsto$ elliptic curve ramified over those points $\{0, 1, \infty, \tau\} \mapsto y^2 = x(x - 1)(x - \tau)$

$$
F_2 = \Gamma_{0,4} \hookrightarrow \Gamma_{0,[4]} = \langle \sigma_1, \sigma_2 \rangle
$$

$$
x, y \mapsto \sigma_1^2 \sigma_2^2
$$

So
$$
(\lambda, f)
$$
 acts on $\hat{\Gamma}_{0,[4]}$ by $\sigma_1 \mapsto \sigma_1^{\lambda}$
\n $\sigma_2 \mapsto f^{-1} \sigma_2^{\lambda} f$
\n \rightarrow And this is an automorphism
\n $\sigma_2 \mapsto f^{-1} \sigma_2^{\lambda} f$
\n \rightarrow
\n $(\mathbb{Z}/2\mathbb{Z}) * (\mathbb{Z}/3\mathbb{Z})$
\n \rightarrow
\n $(\sigma_1 \sigma_2 \sigma_2) * \langle \sigma_1 \sigma_2 \rangle$

(∗) easily shows that

$$
(\lambda, f) : \sigma_1 \sigma_2 \sigma_1 \mapsto \sigma_1 \sigma_2 \sigma_1 f(\sigma_1^2 \sigma_2^2)
$$

$$
\sigma_1 \sigma_2 \mapsto \sigma_1 \sigma_2 (\ast \ast \ast)^2 f(\sigma_1^2 \sigma_2^2)
$$

Then the relation $(\sigma_1 \sigma_2 \sigma_3)^2 = 1 \Rightarrow f(\sigma_2^2)$ $\frac{2}{2}\sigma_1^2$ $^{2}_{1})f(\sigma_{1}^{2})$ $rac{2}{1}\sigma_2^2$ $2²$) = 1 and $(\sigma_1 \sigma_2)^3 = 1 \Rightarrow$ $f(\sigma_1^2)$ $rac{2}{1}\sigma_2^2$ $\binom{2}{2}\sigma_1^{\lambda-1}$ $\frac{\lambda-1}{1}f(\sigma_3^2)$ $rac{2}{3}\sigma_1^2$ $\binom{2}{1} \sigma_3^{\lambda-1}$ $\frac{\lambda-1}{3}f(\sigma_2^2)$ $rac{2}{2}\sigma_3^2$ $\binom{2}{3}\sigma_2^{\lambda-1}$ $a_2^{\lambda-1} = 1$ (rel(II)).

Ihara showed that (III) is necessary and sufficient for (λ, f) to extend from an automorphism of $\hat{\Gamma}_{0,[4]}$ to one of $\hat{\Gamma}_{0,[5]}$ where

$$
\begin{aligned} &\hat{\Gamma}_{0,[4]}\subset \hat{\Gamma}_{0,[5]}\\ &\langle \sigma_1,\sigma_2\rangle \subset \langle \sigma_1,\sigma_2,\sigma_3,\sigma_3\rangle \end{aligned}
$$

Now we see the true original TWO-LEVEL PRINCIPLE even though there are many relations in the groups $\hat{\Gamma}_{0,[n]}$ $n > 5$ we still have

Theorem.

$$
\widehat{GT} \hookrightarrow Aut(\widehat{\Gamma}_{0,[n]}) \quad \forall n \ge 4
$$

$$
(\lambda, f) : \sigma_i \mapsto f(\sigma_i^2, y_i)\sigma_i^{\lambda} f(y_i, \sigma_i^2)
$$

with $y_i = \sigma_{i-1} \cdots \sigma_1 \sigma_1 \cdots \sigma_{i-1}$

Pants decomposition

 ${2g-2+n \text{ simple closed loops disjoint on } \Sigma_{g,n}}$ cuts the surface into "pants" \iff \iff smallest lego block $(0, 3)$.

Removing any loop (erasing it) gives one larger Lego lock of type ether

Cutting loops can also be considered as "subsurface inclusion"

This gives a morphism on the moduli spaces which is easy to see on their π_1 s

 $\hat{\Gamma}(\Sigma') \mapsto \hat{\Gamma}(\Sigma)$

Dehn twist along $\gamma \mapsto$ Dehn twist along $\ast \ast \ast \ast$

for all simple closed loops γ supported on Σ'

Theorem. $\widehat{GT}_g \to Out(\mathcal{C}_\pi)$ where \mathcal{C}_π is the category of $\pi_1(M_{g,n}) = \hat{\Gamma}_{g,n}$ with subsurface inclusion morphisms **Remark.** GT_g was defined with relations ensuring that (λ, f) acts on $\Gamma_{0,4}$, $\Gamma_{0,5}$, $\Gamma_{1,1}$, $\Gamma_{1,2}$ and the theorem shows that these two levels $(3g - 3 + n = 1, 2)$ suffices for GT_g to be an automorphism ****

Recall that the action of $G_{\mathbb{Q}}$ on $\hat{\Gamma}_{g,n}$ (or any π_1) preserves (cyclic) inertia subgroups. Here inertia is given by Dehn twists d_{γ} along loops γ , so

$$
\sigma(d_{\gamma}) = F_{\sigma}^{-1} d_{\gamma}^{\chi(\sigma)} F_{\sigma}
$$

 $F_{\sigma} \in \hat{\Gamma}_{g,n}$ was mysterious but now thanks to $G_{\mathbb{Q}} \hookrightarrow \widehat{GT}_g$ and the Lego-game property of \widehat{GT}_g this \hat{F}_{σ} can be explicitly computed.

Generators of the game

These generate *** game

Theorem. The $G_{\mathbb{Q}}$ and GT_g actions on ***

Pick a pants decomposition P on Σ let $(\lambda, f) \in \widehat{GT}_g$ (assume $\lambda = 1$ $\rho_2 = 0$ for simplicity)

Then we associate $(\lambda, f) \mapsto F_p \in \text{Aut}(\hat{\Gamma}_{g,n})$ with

(i)
$$
F_p(d_\alpha) = d_\alpha \ \forall \alpha \in P
$$

(ii)
$$
F_p(d_\beta) = f(d_\beta d_\alpha) d_\beta f(d_\alpha d_\beta)
$$
 if $\alpha \mapsto \beta$ is an A move

(iii) $F_p(d_\beta) = f(d_\beta^2)$ $\frac{2}{\beta}d_{\alpha}^{2})d_{\beta}f(d_{\alpha}^{2}d_{\beta}^{2})$ β^2) if $\alpha \mapsto \beta$ is an S move Now, since we can obtain any loop γ on Σ by moving the loop of P around by A and S-moves we find

$$
F_p(d_\gamma) = f(\)^{-1} f(\)^{-1} \cdots d_\gamma f(\) \cdots f(\cdots)
$$

$$
\downarrow \downarrow \downarrow \downarrow \downarrow
$$

$$
A \text{ and } S \text{ moves}
$$

The only difficulty is a topological result showing that the conjugating quantity is independent of the choice of sequences of moves

Conclusion: Using GT theory greatly clarifies the action of $G_{\mathbb{Q}}$ on $\pi_1(M_{g,n})$ and reveals its surprising Lego-combinatorial nature.