RECALL:

$$G_{\mathbb{Q}} \to \widehat{\mathbb{Z}}^* \times \widehat{F_2}'$$

$$\sigma \mapsto (\chi(\sigma), f_{\sigma})$$

Strategy to understand f_{σ} :

- 1. Compute it in quotients of $\widehat{F_2}$.
- 2. Find necessary and sufficient conditions on $f \in \widehat{F_2}'$. The former we know.

$$\mathcal{M}_{g,n}$$

where each point is an isomorphism class of Riemann surfaces of genus g with n distinct points.

Special case: g = 0

Let $(x_1, \ldots, x_n) \in \mathbb{P}^1$, then $(x_1, \ldots, x_n) \cong (y_1, \ldots, y_n)$ iff there exists

$$\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in PSL_2(\mathbb{C})$$

such that

$$\gamma(x_i) = \frac{ax_i + b}{cx_i + d} = y_i \qquad 1 \le i \le n$$

Example:

Given (x_1, \ldots, x_n) there exists a unique $\gamma \in PSL_2(\mathbb{C})$ such that

$$\gamma(x_1) = 0$$

$$\gamma(x_2) = 1$$

$$\gamma(x_3) = \infty$$

So there exists a unique representative in each isomorphism class of the form

$$(0,1,\infty,y_1,\ldots,y_{n-3})$$

So

$$\mathcal{M}_{0,n} = (\mathbb{P} - \{0, 1, \infty\})^{n-3} - \Delta$$

where $\Delta = \bigcup \{y_i = y_j\}$

$$\mathcal{M}_{0,4} = \mathbb{P} - \{0, 1, \infty\}$$

Idea for sufficient conditions:

Take all conditions on an $f \in \widehat{F_2}'$ coming from its actions on all π_1 's of all \mathbb{C} varieties.

Then f does come from $G_{\mathbb{Q}}$.

Category C:

Objects: some Q-varieties.

Morphisms: all \mathbb{Q} -morphisms φ

Associated category C_{π} :

Objects: $\pi_1(X)$ for all $X \in \mathcal{C}$

Morphisms: φ_* up to inner automorphisms.

$$\operatorname{Aut}(\mathcal{C}_{\pi}) = \{ (\phi_X)_{X \in \mathcal{C}} | \phi_X \in \operatorname{Aut}(\pi_1(X)) \}$$

$$\begin{array}{ccc}
\pi_1(X) & \xrightarrow{\varphi_*} & \pi_1(Y) \\
\psi_X \downarrow & \circlearrowleft & \downarrow \phi_Y \\
\pi_1(X) & \xrightarrow{\varphi_*} & \pi_1(Y)
\end{array}$$

Pop's unpublished theorem answering a question of Oda-Matsumoto:

$$\operatorname{Aut}(\mathcal{C}_{\pi}) = G_{\mathbb{Q}}$$

if $C = \{\text{all } \varphi\text{-varieties}\}$

Let $\Sigma_{g,n}$ be a Riemann surface (equipped with an analytic structure):

Diffeomorphism \longrightarrow loop on $\mathcal{M}_{g,n}$

$$\operatorname{Diff}^+(\Sigma)/\operatorname{Diff}^0(\Sigma) \xrightarrow{\sim} \pi_1(\mathcal{M}_{g,n})$$

A generating set of diffeos of Σ is the Dehn twists along simple closed loops on Σ

In genus 0:

 $\mathcal{M}_{0,4},\,\Sigma_{0,4}$

where $x = x_{12}$, $y = x_{23}$, $z = x_{13}$, and xyz = 1

$$\pi_1(\mathcal{M}_{0,4}) = \Gamma_{0,4} = \langle x, y, z | xyz = 1 \rangle$$

= $F_2 = \pi_1(\mathbb{P}^1 - \{0, 1, \infty\})$

 $\mathcal{M}_{0,5}$

$$< x_{12}, x_{23}, x_{34}, x_{45}, x_{51} > = \Gamma_{0,5}$$

= Diff⁺(\Sigma)/Diff⁰(\Sigma)
= $\pi_1(\mathcal{M}_{0,5})$

Notation:

$$x, y \mapsto a, b$$

$$\widehat{F_2} \to G$$

$$f \mapsto f(a, b)$$

<u>Definition:</u>(Grothendieck-Teicmüller group)

$$\widehat{GT} = \left\{ (\lambda, f) \in \widehat{\mathbb{Z}}^* \times \widehat{F_2}' \middle| \begin{array}{c} (I)f(x, y)f(y, x) = 1 \\ (II)f(x, y)x^n f(z, x)z^n f(y, z)y^n = 1 \\ (III)f(x_{12}, x_{23})f(x_{23}, x_{34})f(x_{34}, x_{45})f(x_{51}, x_{12}) = 1 \end{array} \right\}$$

$$\widehat{GT}_g = \{(\lambda, f) \in GT | f(e_1, a_1) a_3^{-8\rho_2} f(a_2^2, a_3^2) (a_3 a_2 a_3)^{2m} f(e_2, e_1) e_2^{2m} f(e_3, e_2) a_2^{-2m}$$

$$(a_1 a_2 a_1)^{2m} f(a_1^2, a_2^2) a_1^{8\rho_2} f(a_3, e_3) = 1 \}$$

$$\exists g \in \widehat{F_2} \text{ such that } f(x,y) = g(y,x)^{-1}g(x,y)$$

$$\overline{g(x,y)} = (x,y)^{\rho_2} \in \widehat{F_2}^{ab}$$

Theorem 1:

$$G_{\mathbb{Q}} \hookrightarrow \widehat{GT}_g \hookrightarrow \widehat{GT}$$

Theorem 2:

$$\widehat{GT} = \operatorname{Aut}(\mathcal{C}_{\pi})$$

$$\mathcal{C} = \langle \operatorname{all\ genus\ zero\ } \mathcal{M}_{0,n} \operatorname{moduli\ spaces} \rangle$$

$$= \langle \mathcal{M}_{0,4}, \mathcal{M}_{0,5} \rangle \operatorname{(two-level\ principle)}$$

$$\dim \mathcal{M}_{g,n} = 3g - 3 + n$$

Theorem 3:

$$\widehat{GT}_g = \operatorname{Aut}(\mathcal{C}_{\pi})$$

$$\mathcal{C} = \langle \operatorname{all} \mathcal{M}_{g,n} \rangle$$

$$= \langle \mathcal{M}_{0,4}, \mathcal{M}_{0,5}, \mathcal{M}_{1,1}, \mathcal{M}_{1,2} \rangle$$

Ask:
$$G_{\mathbb{Q}} \stackrel{???}{=} \widehat{GT}_g$$

$$S_n \hookrightarrow \operatorname{Out}(\widehat{\Gamma_{0,n}}) \qquad n > 4$$

$$S_n = \operatorname{Aut}(\mathcal{M}_{0,n})$$

 S_n induces an outer automorphism of $\widehat{\Gamma_{0,n}}$ by $x_{ij} \mapsto x_{\sigma(i)\sigma(j)}$

Theorem:

$$G_{\mathbb{Q}} \hookrightarrow \mathrm{Out}_{S_n}(\widehat{\Gamma_{0,n}}) = \widehat{GT}$$

$$\sigma(p) = pf_{\sigma}$$

$$\sigma(r) = rg_{\sigma}$$

$$\theta(z) = 1 - z$$

$$\theta(r)^{-1}r = p$$

$$\theta(rg_r)^{-1}rg = pf_{\sigma}$$

$$= \theta(g_r)^{-1}g_{\sigma}$$

$$= f_{\sigma} \Leftrightarrow g_{\sigma}(yx)^{-1}g_{\sigma}(xy) = f_{\sigma}(xy)$$