Grothendieck-Teichmüller theory

• $G_{\mathbb{Q}} = \varprojlim_{\text{certain finite groups } G} G$

•
$$1 \to Gal(\overline{\mathbb{Q}}/\mathbb{Q}^{ab}) \to G_{\mathbb{Q}} \to Gal(\mathbb{Q}^{ab}/\mathbb{Q}) \to 1$$

• $\mathbb{Q}^{ab} = \mathbb{Q}(\text{all roots of unity})$

•
$$Gal(\mathbb{Q}^{ab}/\mathbb{Q}) \cong \hat{\mathbb{Z}}^* = \varprojlim (\mathbb{Z}/n\mathbb{Z})^*$$

• Shafarevich conjecture $\Rightarrow Gal(\overline{\mathbb{Q}}/\mathbb{Q}^{ab})$ free.

- X is an algebraic variety over \mathbb{Q}
- Then if $\overline{\mathbb{Q}}(X)$ denotes the function field of $X/\overline{\mathbb{Q}}$

•
$$\hat{\pi_1} = Gal(\widetilde{\bar{\mathbb{Q}}(X)}/\overline{\mathbb{Q}}(X)) = \lim_{\substack{N \leq \pi_1 \\ \pi_1/N \text{ finite}}} \pi_1/N$$

•
$$1 \to \hat{\pi_1} \to Gal(\widetilde{\overline{\mathbb{Q}}(X)}/\overline{\mathbb{Q}}(X)) \to G_{\mathbb{Q}} \to 1$$

• $G_{\mathbb{Q}} \to Out(\hat{\pi_1})$ canonical

Grothendieck's Vision

- get information on $G_{\mathbb{Q}}$ by using the group structure of the π_1 's.
- 1) $\mathbb{P}^1 \{0, 1, \infty\}$
- 2) Genus zero moduli spaces
- 3) Moduli spaces

•
$$\chi: G_{\mathbb{Q}} \to \hat{\mathbb{Z}}^* = \varprojlim (\mathbb{Z}/n\mathbb{Z})^*$$
 defined by $\sigma(\zeta_n) = \zeta_n^{\chi(\sigma)}$

Fact The $G_{\mathbb{Q}}$ action on a fundamental group preserves inertia up to conjugacy.

- Inertia subgroups are cyclic: $\langle \alpha \rangle \subset \hat{\pi_1}$
- $\sigma(\alpha) = \gamma^{-1} \alpha \gamma$
- $\sigma(\langle \alpha \rangle) = \gamma^{-1} \langle \alpha \rangle \gamma$

Example $\mathbb{P}^1 \setminus \{0, 1, \infty\}$

[Drawing of points 0,1, and ∞ , with loops around them labeled x,y, and z. The loops touch the tip of a vector based at the 0 point labeled $\overrightarrow{01}$.]

- xyz = 1
- Inertia in $\pi_1(X, \vec{01})$ is $\langle x \rangle, \langle y \rangle, \langle z \rangle$

•
$$G_{\mathbb{Q}} \to Out(\hat{F}_2)$$

• $\sigma \in G_{\mathbb{Q}}$. Choose a lifting $\sigma \in Aut(\hat{F}_2)$ s.t.

$$- \sigma(x) = x^{\alpha}$$
$$- \sigma(y) = \tilde{f}^{-1}y^{\beta}\tilde{f}$$
$$- \sigma(z) = \tilde{g}^{-1}z^{\gamma}\tilde{g}$$

- By abelianizing, we can see that $\alpha = \beta = \gamma$, so $\sigma(x) = x^{\alpha}$, $\sigma(y) = \tilde{f}^{-1}y^{\alpha}\tilde{f}$.
- Modifying my lift by $Inn(X^*)$, i.e. modifying the choice of $y^n \tilde{f} x^m \dots$

- ... gives another lift of σ . But in $\{y^m \tilde{f} x^n | m, n \text{ of } X\}$, \exists unique f which is in \hat{F}'_2 .
- \hat{F}'_2 = derived subgroup of \hat{F}_2 .
- $f \in ker(\hat{F}_2 \to mat\hat{h}bbZ)$. $x \mapsto 0, y \mapsto 1$.
- $f \in ker(\hat{F}_2 \to mat\hat{h}bbZ)$. $x \mapsto 1, y \mapsto 0$.

- So to every $\sigma \in G_{\mathbb{Q}}$, I have associated a pair $(\alpha, f) \in \hat{\mathbb{Z}} \times \hat{F}'_2$
- $\alpha = \chi(\sigma)$

- So $G_{\mathbb{Q}} \to \hat{\mathbb{Z}} \times \hat{F}'_2$.
- $Gal(\hat{\mathbb{Q}}/\mathbb{Q}^{ab}) \to \hat{F}'_2$
- Not a group hom with usual group law in $\hat{\mathbb{Z}}^{\times} \times \hat{F}'_2$
- New group law: $(\lambda, f) \mapsto x^{\lambda}, f^{-1}y^{\lambda}f$ endomorphism of \hat{F}_2 .
- $F := f^{-1}y^{\lambda}f$. Compose endomorphisms.

• $(\lambda, f)(\mu, g) = (\lambda \mu, fF(g))$

Interlude: Dessins d'enfants

- A combinatorial way of looking at the Galois action of $\hat{F}_2 = \pi_1(\mathbb{P}^1 - \{0, 1, \infty\}, \vec{01})$
- **Def** A Dessin is a finite collection of vertices and edges on a topological surface of genus g.
 - Connected

- - It cuts the surface into cells.
 - You can color the vertices in 2 colors in such a way that all neighbors of a vertex have the opposite color.

[some children's drawings such as a house, a stick figure, a subdivided torus]

• Dessins are in bijection with conjugacy classes of finite index subgroups of F_2 , which are in bijection with finite covers of $\mathbb{P}^1 - \{0, 1, \infty\}$.

- The open finite index subgroups of \hat{F}_2 (under conjugacy) \leftrightarrow covers \leftrightarrow dessins.
- But $G_{\mathbb{Q}}$ acts on the former, so it acts on dessins.

• Goal of Dessin theory: combinatorially determine the Galois orbit of a dessin, i.e. give combinatorial invariants of dessins which describe the Galois orbit.

$$\begin{array}{c} \beta^{-1}([0,1]) \quad X \quad \text{ramified only over } 0,1,\infty \\ & |\beta \\ [0,1] \quad \mathbb{P}^1 \end{array}$$

[Drawing of a stick figure with black and white vertices]

- Valencies:
 - $\bullet(3, 1, 1, 3)$ $- \circ(1, 1, 4, 2)$
 - $-\infty(2,6)$
- So the set of dessins which might be in the Galois orbit is finite, since they must have the same valency lists.

Invariants

- Galois group of dessin: Galois group of the Galois closure of the cover $\begin{pmatrix} cX \\ | \\ \mathbb{P}^1 \setminus \{0, 1, \infty\} \end{pmatrix}$ Build up dessins by composing - creates new Galois invariants: $\begin{pmatrix} cA \\ | \\ \mathbb{P}^1 \\ | \\ \mathbb{m}^1 \end{pmatrix}$ [two trees each in

- [two trees, each with a central vertex of valence 5, and its adjacent vertices of valences 2, 3, 4, 5, and 6, but the valence 2 and 3 vertices are in opposite orders.]
- $(n, 1, \ldots, 1)$

- (a_1,\ldots,a_n)
- Kotchakov: If $(a_1 + \cdots + a_n)a_1 \dots a_n =$ square, then the dessins "diameter 4 trees" break up into 2 Galois orbits: even permutations and odd permutations of the branches.
- proved by Zappon.