Slope.

$$2(U_{S_{i}},T) \sim T(1-\alpha_{i}NT)$$
 $d_{i}(\lambda) \in \overline{Q}$.

1) $\alpha_{i}(\lambda) \hookrightarrow C$.

 $\alpha_{i}(\lambda) = |\alpha_{i}(\lambda)| \cdot e^{i\theta(\lambda)}$
 $= g^{\omega_{i}(\lambda)} \cdot e^{i\theta(\lambda)}$
 $W_{i}(\lambda)$ is constant. \hookrightarrow Hodge number h^{PR}

3),
$$d_{\theta}(\lambda) \subset \mathcal{P}$$
.

 $d_{\theta}(\lambda) = g^{-S_{\theta}(\lambda)} \cdot u_{\theta}(\lambda) \cdot |u(\lambda)|_{p} = 1$
 $s(\text{ope } s(\lambda)) = \text{ord}_{q}(\lambda \lambda) \cdot G(\lambda)$.

 $depends \text{ on } \lambda \text{, in mild way.}$
 $(\text{only } finite \# \text{ of } possibility)$

 \Rightarrow Newton Polygon NP(F) is a finer invariant than HP(\triangle) but cruder than Zeta.

GNP(
$$\Delta$$
, p). $\stackrel{?}{=}$ HP(Δ).

Coaj. \exists a positive integer ALLOS $\mathcal{M}(\Delta)$

sit. $\{p > d(\Delta) \mid p \text{ ordinary}\}$
 $= disjoint union of some congruence classes mod $\mathcal{M}(\Delta)$$

18). Ordinary primes for reflexive
$$\Delta$$
.

Def. $\Delta \subseteq \mathbb{R}^n$, n -din integ. Convex

$$\Delta^* = \{(\chi_1, \dots \chi_n) \in \mathbb{R}^n \mid \sum_{i \ge 1} \chi_i y_i \ge -1, \quad \forall \ y \in \Delta \}$$

$$\Rightarrow \Delta^* \quad \text{is convex, but not integral.}$$

Def.
$$\Delta$$
 is reflexive if Δ^{*} is also integral.

$$(\Delta^{*})^{*} = \Delta$$
Def. Δ is Fano. if reflexive.

$$\Delta_{i} \text{ is a simpler}$$
with $d(\Delta_{i}) = 1$.

Thin B Let
$$\Delta$$
 be reflexive.
I) If $n \leq 4$. $\Rightarrow \Delta$ is ordinary $\forall p > d(\Delta)$.
2) If Δ is Fano, $\Rightarrow \Delta$ is ordinary
for all $p > d(\Delta) \neq n \neq 1$.
 $= \#\{of Codin 1 faces\}$

Then (Star decomp).
$$\triangle$$
 reflexive.

 $\Delta = \bigcup_{i=1}^{n} \Delta_{i}$

If p is ordinary $\forall \Delta_{i}$.

 $\Rightarrow p$ is ordinary $\forall \Delta_{i}$.

7 If Reflexive Δ has dim = $n = 5$.

Is Δ ordin for $p > d(\Delta)$?

19. Basic example.
$$f(\lambda, x) = x_1 + x_2 + \dots + x_n + \frac{1}{x_1 \cdots x_n} - \lambda.$$

$$\Delta = \Delta(f) = \langle e_1, e_2, \dots, e_n, -\langle e_1 + \dots + e_n \rangle \rangle$$

$$\Delta^* = \langle (n, -1, \dots, -1), \dots, (-1, -1, \dots + n), (-1, -1, \dots + 1) \rangle$$

$$th_{m}$$
 $tot p + (n+t)$ $f(\lambda, x)$ is $\Delta - regular/F_{g} \Rightarrow$

1)
$$L(x,t,\tau)^{(-1)^n} = \int_{t=0}^{\infty} (1-4t) dt$$

$$|A_{0}(y)| = |A_{1}(y)| = |A_{1}(y)| = |A_{1}(y)| = |A_{1}(y)|$$

3) Generically ordinary
$$\forall p \nmid (n+1)$$
.
For all but Sinitely many λ , \Rightarrow
ord_p($\alpha_i(\lambda)$) = i .

Question. 1). How 2(Vfx, T) varies with 7?

2) How di (2) varies with 7?

20). Zeta functions.
$$f \in \mathbb{F}_{g}[X_{1}^{\pm 1}, ..., X_{n}^{\pm 1}] \quad \Delta - \text{regular}/\overline{\mathbb{F}_{g}}$$

$$L(x, f, T)^{H}|_{T=1} = 0.$$

$$\frac{L(x, f, T)^{H}|_{T=1}}{1-T} = P(f, \delta T),$$

$$P(f, T) \in I+T \geq CT$$
of deg $d(\Delta) - I$

$$\frac{1}{2}(v_{f}, \tau) = \prod_{\substack{i=0\\i=1\\i=1}}^{n} (1 - g^{i}\tau)^{(i)^{n-i-1}\binom{n}{i}} L(x_{i}f, \tau)$$

$$= \prod_{\substack{i=1\\i=1\\i=1}}^{n-1} \cdots \left(\frac{L(x_{i}f,\tau)^{(i)}}{1 - T}\right)^{(i)^{n-i-1}\binom{n}{i}} P(f,\tau)^{(i)^{n}}$$

$$\frac{1}{2}(v_{f}, \tau) = \prod_{\substack{i=0\\i=1\\i=1\\i=1\\i=1}}^{n-1} (1 - g^{i}\tau)^{(i)^{n-i-1}\binom{n}{i}} P(f,\tau)^{(i)^{n}}$$

$$P(f,T) = \frac{d(\Delta)-2}{11} (1-\beta_i T)$$

$$\Rightarrow \psi_f(f_{ef}^{k}) = \frac{(g^{k-1})^n + (-1)^{n+1}}{g^{k}} + (-1)^{n+1} (\beta_i + \beta_i + \beta_$$

