

The mirror image is

 $\mathcal{W} = \widehat{\mathcal{M}/G}$

Kähler class:

$$h^{1,1}(\mathcal{W}) = h^{2,1}(\mathcal{M}) = 101$$

Arizona Winter School 2004

Candelas 3/15

$$\zeta_{\mathcal{W}} = \frac{R_0}{(1-T)(1-pT)^{101}(1-p^2T)^{101}(1-p^3T)} = \frac{R_0}{(1-T)(1-pT)(1-p^2T)(1-p^3T)} \cdot \frac{1}{(1-pT)^{100}(1-p^2T)^{100}}$$

Fundamental period:

$$\varpi(\lambda,\epsilon) = \sum_{n=0}^{\infty} A_n(\epsilon)\lambda^{n+\epsilon} = \sum_{k=0}^{3} \frac{1}{k!} \varpi_k(\lambda)$$

 $\mathcal{L}\varpi = 0$ has 4 solutions $\varpi_0, \varpi_1, \varpi_2, \varpi_3; \quad \epsilon^4 = 0, \ \epsilon^3 \neq 0$

We can calculate $N = \frac{\nu - 1}{p - 1}$ instead, in terms of $\varpi_0, \varpi_1, \varpi_2, \varpi_3$ We can set $p^4 = 0$

$$\epsilon^4 = 0, \qquad H^4 = 0$$

For the quartic, $h^{1,1} = 1$

For the octic, $h^{1,1} = 2$

$$\mathbb{P}^{2}[3]: \qquad \sum_{i=1}^{3} x_{i}^{3} - 3\psi x_{1}x_{2}x_{3} = 0$$

 $x^{\mathbf{m}}, \quad \mathbf{m} = (m_1, m_2, m_3), \quad m_i \ge 0, \quad m_1 + m_2 + m_3 = 3$

We get a pair of reflexive polyhedra:

 $\Delta = \text{Newton polyhedron}$ $\nabla = \text{polyhedron over the fan of } \mathbb{P}^2$

 $\mathcal{M}\simeq (\Delta,\nabla)$

Conversely, the toric data constructs a family of manifolds containing \mathcal{M} .

$$\mathcal{W}\simeq (\nabla, \Delta)$$

A point in Δ is a monomial corresponding to \mathcal{M} and a divisor of the toric variety in which \mathcal{W} is a hypersurface.

Arizona Winter School 2004 Candelas 3/15

${\mathcal M}$ a CY hypersurface in \mathbb{P}_∇

$$P(x) = \sum_{\substack{\mathbf{m} \in \Delta \\ \mathbf{m} \neq (1,1,1,1)}} c_{\mathbf{m}} x^{\mathbf{m}} - c_0 Q$$

$$\varpi(c,D) = \frac{\prod_{\mathbf{m}}' \Gamma(D_{\mathbf{m}}+1)}{\Gamma(-D_0+1)} \sum_{\gamma \in V_{\nabla}} \frac{\Gamma(-\gamma D_0 - D_0 + 1)}{\prod_{\mathbf{m}}' \Gamma(\gamma D_m + D_m + 1)} c^{\gamma+D}$$

Where $D_{\mathbf{m}}$ are the toric divisors of \mathbb{P}_{∇} ,

$$c^{\gamma+D} = \prod_{\mathbf{m}\in\Delta} c_{\mathbf{m}}^{\gamma_{\mathbf{m}}+D_{\mathbf{m}}}, \qquad D_0 = -\sum_{\mathbf{m}} D_{\mathbf{m}}$$

and the sum is over γ in the Mori cone of \mathbb{P}_{∇} .

Apply to the mirror quintic:

D_0	$\left(1\right)$	1	1	1	1	1	
D_1	1	5	0	0	0	0	
D_2	1	0	5	0	0	0	
D_3	1	0	0	5	0	0	
D_4	1	0	0	0	5	0	
D_5	$\left(1 \right)$	0	0	0	0	5	

The columns give relations between the divisors:

$$D = (D_0, D_m), \quad D_0 = -\sum' D_m, \quad \gamma = (\gamma_0, \gamma_m), \quad \gamma_0 = -\sum' \gamma_m$$
$$D_0 = -5D_1$$
$$D_0 = -5D_2$$
$$\vdots$$
$$D_0 = -5D_5$$
$$D_1 = D_2 = \ldots = D_5 = H$$
$$D_0 = -5H$$

$$P(x) = c_1 x_1^5 + c_2 x_2^5 + \ldots + c_5 x_5^5 - c_0 x_1 x_2 x_3 x_4 x_5$$

Change of coordinates: $c_i^{-1/5}y_i = x_i$:

$$P(y) = y_1^5 + y_2^5 + \ldots + y_5^5 - 5\psi y_1 y_2 y_3 y_4 y_5$$

where
$$5\psi = \frac{c_0}{(c_1c_2c_3c_4c_5)^{1/5}}$$

or
$$\lambda = \frac{1}{(5\psi)^5} = \frac{c_1 c_2 c_3 c_4 c_5}{c_0^5} = c^{\mathbf{k}}$$

and $\mathbf{k} = (-5, 1, 1, 1, 1, 1)$ generates the Mori cone

Arizona Winter School 2004

The γ in the Mori cone are then $\gamma = n\mathbf{k}$, and

$$\mathbf{k} \cdot H = 1, \ -\gamma D_0 = -\gamma (-5H) = 5n, \text{ so}$$

$$\varpi(\lambda, H) = \frac{\Gamma^{5}(H+1)}{\Gamma(5H+1)} \sum_{n=0}^{\infty} \frac{\Gamma(5n+5H+1)}{\Gamma^{5}(n+H+1)} \lambda^{n+H}$$