

The mirror image is

 $\mathcal{W} = \mathcal{M}$ $\widehat{\Lambda A/C}$ \overline{G}

Kähler class:

$$
h^{1,1}(\mathcal{W}) = h^{2,1}(\mathcal{M}) = 101
$$

Arizona Winter School 2004 **Candelas** $3/15$ 1 2:30

$$
\zeta_W = \frac{R_0}{(1 - T)(1 - pT)^{101}(1 - p^2T)^{101}(1 - p^3T)} =
$$

=
$$
\frac{R_0}{(1 - T)(1 - pT)(1 - p^2T)(1 - p^3T)} \cdot \frac{1}{(1 - pT)^{100}(1 - p^2T)^{100}}
$$

Fundamental period:

$$
\varpi(\lambda,\epsilon) = \sum_{n=0}^{\infty} A_n(\epsilon) \lambda^{n+\epsilon} = \sum_{k=0}^{3} \frac{1}{k!} \varpi_k(\lambda)
$$

 $\mathcal{L}\varpi = 0$ has 4 solutions $\varpi_0, \varpi_1, \varpi_2, \varpi_3; \quad \epsilon^4 = 0, \epsilon^3 \neq 0$

Arizona Winter School 2004 **Candelas** 3/15 2 7:30

We can calculate $N = \frac{\nu-1}{n-1}$ $\frac{\nu-1}{p-1}$ instead, in terms of $\varpi_0, \varpi_1, \varpi_2, \varpi_3$ We can set $p^4 = 0$

$$
\epsilon^4 = 0, \qquad H^4 = 0
$$

For the quartic, $h^{1,1} = 1$

For the octic, $h^{1,1} = 2$

$$
\mathbb{P}^2[3]: \qquad \sum_{i=1}^3 x_i^3 - 3\psi x_1 x_2 x_3 = 0
$$

 $x^{\mathbf{m}}, \quad \mathbf{m} = (m_1, m_2, m_3), \quad m_i \ge 0, \quad m_1 + m_2 + m_3 = 3$

We get a pair of reflexive polyhedra:

 Δ = Newton polyhedron ∇ = polyhedron over the fan of \mathbb{P}^2

 $\mathcal{M} \simeq (\Delta, \nabla)$

Conversely, the toric data constructs a family of manifolds containing M.

$$
\mathcal{W}\simeq(\nabla,\Delta)
$$

A point in Δ is a monomial corresponding to M and a divisor of the toric variety in which W is a hypersurface.

Arizona Winter School 2004 **Candelas** $3/15$ 5 27:40

$\mathcal M$ a CY hypersurface in $\mathbb P_\nabla$

$$
P(x) = \sum_{\substack{\mathbf{m} \in \Delta \\ \mathbf{m} \neq (1,1,1,1,1)}} c_{\mathbf{m}} x^{\mathbf{m}} - c_0 Q
$$

$$
\varpi(c,D) = \frac{\prod_{\mathbf{m}}' \Gamma(D_{\mathbf{m}}+1)}{\Gamma(-D_0+1)} \sum_{\gamma \in V_{\nabla}} \frac{\Gamma(-\gamma D_0 - D_0 + 1)}{\prod_{\mathbf{m}}' \Gamma(\gamma D_m + D_m + 1)} c^{\gamma + D}
$$

Where $D_{\mathbf{m}}$ are the toric divisors of \mathbb{P}_{∇} ,

$$
c^{\gamma+D} = \prod_{\mathbf{m}\in\Delta} c_{\mathbf{m}}^{\gamma_{\mathbf{m}}+D_{\mathbf{m}}}, \qquad D_0 = -\sum_{\mathbf{m}}' D_{\mathbf{m}}
$$

and the sum is over γ in the Mori cone of \mathbb{P}_{∇} .

Apply to the mirror quintic:

The columns give relations between the divisors:

$$
D = (D_0, D_m), \quad D_0 = -\sum' D_m, \quad \gamma = (\gamma_0, \gamma_m), \quad \gamma_0 = -\sum' \gamma_m
$$

$$
D_0 = -5D_1
$$

$$
D_0 = -5D_2
$$

$$
\vdots
$$

$$
D_0 = -5D_5
$$

$$
D_1 = D_2 = \dots = D_5 = H
$$

$$
D_0 = -5H
$$

$$
P(x) = c_1 x_1^5 + c_2 x_2^5 + \ldots + c_5 x_5^5 - c_0 x_1 x_2 x_3 x_4 x_5
$$

Change of coordinates: $c_i^{-1/5}$ $i^{-1/5}y_i = x_i$:

$$
P(y) = y_1^5 + y_2^5 + \ldots + y_5^5 - 5\psi y_1 y_2 y_3 y_4 y_5
$$

where
$$
5\psi = \frac{c_0}{(c_1c_2c_3c_4c_5)^{1/5}}
$$

or
$$
\lambda = \frac{1}{(5\psi)^5} = \frac{c_1c_2c_3c_4c_5}{c_0^5} = c^{\mathbf{k}}
$$

and $\mathbf{k} = (-5, 1, 1, 1, 1, 1)$ generates the Mori cone

Arizona Winter School 2004 **Candelas** $3/15$ 9 49:40

The γ in the Mori cone are then $\gamma = n\mathbf{k}$, and

$$
\mathbf{k} \cdot H = 1, -\gamma D_0 = -\gamma(-5H) = 5n
$$
, so

$$
\varpi(\lambda, H) = \frac{\Gamma^5(H+1)}{\Gamma(5H+1)} \sum_{n=0}^{\infty} \frac{\Gamma(5n+5H+1)}{\Gamma^5(n+H+1)} \lambda^{n+H}
$$