
Toric Mirror Symmetry

• X and Y Calabi-Yau varieties.

• The corresponding conformal field theories are
sometimes “isomorphic.”

• Similar example from elementary geometry:
A lattice cone 〈e1, e2〉 in a plane, and “half-twist” it
by shifting the origin to the center of the parallelogram.

• This transformation is in GL(2,Z).

• When can 2 non-isomorphic cones give
isomorphic parallelograms?
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Cone Duality

• View a parallelogrm as a gluing of two triangles.

• Standard cone generaed by (1, 0) and (1, n).
Here, all lattice points lie on the drawn diagonal.

• Construct the dual cone of σ by
σ̂ = {y : 〈x, y〉 ≥ 0∀x ∈ σ}

• Geometrically, this is done by taking orthogonal vectors
to the defining ones for σ.

• For n 6= 1, 2 there are non-isomorphic cones, with
isomorphic parallelograms.
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Toric Mirror Symmetry

• Also based on duality between cones.

• Construct a cone over our given polytope, where the
section is defined by a scalar product restriction: 〈x, u〉 = 1.

• We want the property that the dual cone is also over
some polytope.

• A reflexive polytope is a polytope such that the dual cone
of the cone over the polytope can also be viewed as the
cone over some other polytope.

• For d = 1, we just have intervals. For higher dimensions,
there are computer classifications.
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Cohomological Interpretation

• A family of polynomials f(x) =
∑
m∈A amx

m, defining a
collection of hypersurfaces Zf ⊂ (C∗)d.

• Consider the primitive cohomology:
dimPHd−1(Zf ) =Vol(∆)− 1 = d(∆)− 1.

• Consider the Hodge filtration:
S∆ → P∆(t) =

∑
k≥0 `(k∆) = ψ0(∆)+ψ1(∆)+···+ψd(∆)td

(1−t)d+1

• Here, ψ0(∆) = 1 always, and ψi = dimSif , recalling
that by definition, Sf = S∆/〈F0, . . . , Fd〉.
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• Similarly, we consider I∆ → Q∆(t) =
∑
l∗(k∆)tk.

• Q∆ = φ∆(t)
(1−t)d+1 counts the analogous

dimension for If = I∆/〈F0, . . . , Fd〉.

• We also have the pairing Sif × Id+1−i
f → Id+1

f ≈ C.
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• Take the polytope ∆ ⊂MR to (1,∆) ⊂ M̃R,
where M̃ is a lattice of rank d+ 1.

• We wish to associate some variety.

• Assume |A| = n, and {(i, vi)} ∈ M̃ , for i = 1, . . . , n.

• Then we have a natural map Zn → M̃ by sending
the unit basis vectors ei → (i, vi).

• This gives an exact sequence
0 → R(A) → Zn → M̃ ,
which extends to
0 → R(A)R → Rn → M̃R → 0.
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• The secondary polytope is a preimage of a point under
the last map in the short exact sequence.

• Here, R(A) is the secondary polytope, and
we have dimR(A)R = n− d− 1.

• We also wish to consider the dual sequence
0 → ÑR → Rn → R(A)∗R → 0.

• Duals of polytopes correspond to fern structures.

• Take a point p ∈ R(A)∗R, and consider the Hamiltonian,
a smooth map from Cn to Rn given by
(z1, . . . , zn) → (|z1|2, . . . , |zn|2), and compose it with the
map to the dual space, and get...
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• This composition is the momentum map µA:
µA : Cn → R(A)∗R.

• We factorize by the torus µ−1(p)/T (A),
where T (A) = R(A)R/R(A) embeds into U(1)n.

• The torus action respects the Hamiltonian map.

• This is known as symplectic reduction on this orbifold.

• So we have a quasi-smooth quasi-projective algebraic
variety X(p) = µ−1(P )/T (A).

• 0 → R(A) → Zn →M → 0, where T = R(A)R/R(A).
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• Points p ∈ In+1σ ⇐⇒ vertices of Sec(A)
⇐⇒ convex triangulations of ∆ =Conv(A).

• Inσ is the corresponding secondary fan, dual to the polytope.

• Choose p so that the triangulation is unimodular.

• Then X(p) is smooth, and Betti numbers are given by:
rk(Hi(X(p),Z)) = 0 if i = 2k + 1
rk(Hi(X(p),Z)) = ψk(∆) if i = 2k.

• Dimensions of Hodge filtration occur as Betti numbers.
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• We now have two objects:
S+
f ≈ PHd−1(Zf ) and H∗(X(p).

• Their dimensional components coincide.

• What is the relation? Quantum cohomology.

• Example in the case of curves: d = 2, and a lattice
polytope equipped with a unimodular triangulation.

• What does it mean for Zf ⊂ (C∗)2 to be an affine curve?

• We associate every triangle with a sphere minus 3 points,
and get out a multi-holed torus by gluing.
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Example

• Consider a simplex with the above construction.

• This gives us a torus minus three points.

• So `∗(∆) = g(Zf ), dimH1(Zf ) = 2g.

• We have H ⊂ PHd(Zf ), with dimH = `∗(∆).

• ψ : S∗f = (`(∆)− 3)t+ `∗(∆)t2.

• This number is also the number of Kahler deformations.
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• Consider again X(p).

• dimH2(X(p)) = `(∆)− 3.

• dimHn(X(p)) = `∗(∆).

• A better thing to consider is the function
K̃q(X(p)) = K0(X(p))⊕ Z.

• This compares to PH1(Zf ).

• This worked only because of the unimodularity
assumption on the triangulation.
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