e Introduce A - a hypergeometric system

o Take A C M ~ Z% a finite subset.

o (A u) =1 for all u € N, the dual lattice. This is the

regular case.
e Begin with f(z) =), .4 amX™, and consider the integral

I(5. {am}) = / v exp(f(2)) 2,

C i

for some 3 € Mg, over a cycle C € T¢(C).
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e What are some differential equations satisfied by I(3, A)?

o Let A= {v1,...,v,} and the map Z™ — M which takes the
1-th standard basis element e; to v;.

e This gives the exact sequence
R(A) - 72" — M,

where R(A) = {(A1,...,A\n) € Z™| > A\jv; = 0}, and has
rank n — d. We call this the lattice of relations.

e For ()\;) € R(A), we consider the operators [] (=2 )™
A <0
and [] ( 8‘2, )*i, and note that, by regularity, applying
A >0 ’
either to I(3,a) gives the same result.

e Thus the difference operator [y is 0 on I(5,a).
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o Take 3 € Mc or 8 € Mg, and choose a basis for the
dual lattice N, {uq,...,uq}.

e Define for 1 < k < d,

e Then D/I(83,a) = 0.

e We collect now the restrictions that y¢(a) = 0, and
D?(b(a) = 0, for 1 < ¢ < d. This is what we call
an A-hypergeometric system.
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Simplest Example of a Regular Hypergeometric System:

o Let A={0,1,...,n} € Z to be A, which become

the coeflicients in
n

fl@) =) a; X",
i=0
e Here again M=Z&M, giving our usual triangle.

e A is the set of vectors.

e We have the relation v; +v; = v +vp <= 1+ j=k+/,
and that if 1 + 7 = k£ + £, that

o 0 0 0
(aai@_a—%a—w> #la) =0

e Moreover, if 5 = (f1,52) € M = 72, then
(Z? oa%aa >¢ f1¢ and (Z? omza )¢ B2¢.
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e Consider the hypersurface Z; C T defined by f = 0.
e We take a cycle v € Hy_1(Zf,Z) and take w € H¥1(Z}).

e Then fv w satisfies a hypergeometric system as a function

of the coefficients.
e Restriction gives the map
Q1 Z, — QUTA\Z))

on differential forms, defining the form % df.
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Back to the Regular example:

e f(x)=>a;X" so Z; is the set of complex roots of f(z).

e A theorem from Mayer states that the u-th powers of the
roots, py, py, ..., pk are a solution to the
A-hypergeometric system with G = (0, —pu).
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How do we solve polynomial equations?

e For n =2, we have R(A) = ((1,—2,1)), and the relations
2
generated by ai o ( o ) :

ao 8a2 8CL7;

e For the polynomial ag + a1z + asx?, we recover the

discriminant a? — 4agas. If a? >> 4agas, we can write the

discriminant as a; \/ 1 — 462)—;“2, so letting z = #2532, we just
1 1
need to expand /1 — 4z in power series.
2
. 2 w _ 9
e Else, if apaz >> a7, we expand /1 — 7 for w = v

e In general, we just need to isolate the leading monomial.

To do this, we use the Newton polytope.
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e Considering the secondary polytope, the power series
expansion comes from the expansion of some cone, as in

the second lecture.

e For n = 2, the secondary polytope was the line segment

with vertices labeled a7 and —22%agas.

e For n = 3, we get as before a trapezoid with vertices labeled

by the monomials appearing in the discriminant.

e In general, Sec(A) is topologically an (n — 1)-dimensional
cube with 271 points (Stumfel).
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e In the regular case, for a generic 3, consider the polytope

A, the convex polytope of A, so A has dimension d — 1.
e Take d = 3. For each triangulation, we have a power series

dala) = Y J[T(ai+Ai+1)" e

(ER(A) i=1

e We can choose a € C", so that we get 3 € M¢ in the
analytification, and for non-resonant 3, we find

Vol(A) independent solutions.
e The size of the secondary polytope is |A| — d.

e We now have solutions via power series and via integrals.
What’s the link?

Arizona Winter School 2004 Viktor Batyrev 3/15 9 35:00



