- \bullet Introduce A a hypergeometric system
- Take $A \subset M \approx \mathbb{Z}^d$ a finite subset.
- $\langle A, u \rangle = 1$ for all $u \in N$, the dual lattice. This is the regular case.
- Begin with $f(x) = \sum_{m \in A} a_m X^m$, and consider the integral

$$I(\beta, \{a_m\}) = \int_C x^{-\beta} \exp(f(x)) \frac{dx}{x},$$

for some $\beta \in M_{\mathbb{C}}$, over a cycle $C \in \mathbb{T}^d(\mathbb{C})$.

- What are some differential equations satisfied by $I(\beta, A)$?
- Let $A = \{v_1, \dots, v_n\}$ and the map $\mathbb{Z}^n \to M$ which takes the *i*-th standard basis element e_i to v_i .
- This gives the exact sequence

$$R(A) \to \mathbb{Z}^n \to M,$$

where $R(A) = \{(\lambda_1, \dots, \lambda_n) \in \mathbb{Z}^n | \sum \lambda_i v_i = 0\}$, and has rank n - d. We call this the lattice of relations.

- For $(\lambda_i) \in R(A)$, we consider the operators $\prod_{\lambda_i < 0} (\frac{\partial}{\partial a_i})^{\lambda_i}$ and $\prod_{\lambda_i > 0} (\frac{\partial}{\partial a_i})^{\lambda_i}$, and note that, by regularity, applying either to $I(\beta, a)$ gives the same result.
- Thus the difference operator \square_{λ} is 0 on $I(\beta, a)$.

- Take $\beta \in M_{\mathbb{C}}$ or $\beta \in M_{\mathbb{Q}}$, and choose a basis for the dual lattice N, $\{u_1, \ldots, u_d\}$.
- Define for $1 \le k \le d$,

$$D_k^{\beta} = \sum_{i=1}^n \langle v_i, u_k \rangle u_i \frac{\partial}{\partial a_i} - \langle \beta, u_k \rangle$$

•

- Then $D_k^{\beta}I(\beta, a) = 0$.
- We collect now the restrictions that $\Box_{\lambda}\phi(a) = 0$, and $D_i^{\beta}\phi(a) = 0$, for $1 \leq i \leq d$. This is what we call an A-hypergeometric system.

Simplest Example of a Regular Hypergeometric System:

• Let $A = \{0, 1, ..., n\} \in \mathbb{Z}$ to be A, which become the coefficients in

$$f(x) = \sum_{i=0}^{n} a_i X^i.$$

- Here again $\tilde{M} = \mathbb{Z} \oplus M$, giving our usual triangle.
- A is the set of vectors.
- We have the relation $v_i + v_j = v_k + v_\ell \iff i + j = k + \ell$, and that if $i + j = k + \ell$, that

$$\left(\frac{\partial}{\partial a_i}\frac{\partial}{\partial a_j} - \frac{\partial}{\partial a_k}\frac{\partial}{\partial a_\ell}\right)\phi(a) = 0$$

• Moreover, if $\beta = (\beta_1, \beta_2) \in \tilde{M} = \mathbb{Z}^2$, then $\left(\sum_{i=0}^n a_i \frac{\partial}{\partial a_i}\right) \phi = \beta_1 \phi$ and $\left(\sum_{i=0}^n i a_i \frac{\partial}{\partial a_i}\right) \phi = \beta_2 \phi$.

- Consider the hypersurface $\overline{Z}_f \subset \mathbb{T}^d$ defined by f = 0.
- We take a cycle $\gamma \in H_{d-1}(Z_f, \mathbb{Z})$ and take $\omega \in H^{d-1}(Z_f)$.
- Then $\int_{\gamma} \omega$ satisfies a hypergeometric system as a function of the coefficients.
- Restriction gives the map

$$\Omega^{d-1}Z_f \leftarrow \Omega^d(\mathbb{T}^2 \backslash Z_f)$$

on differential forms, defining the form $\frac{x^n}{(f)^k} \frac{dx}{x}$.

Back to the Regular example:

- $f(x) = \sum a_i X^i$, so Z_f is the set of complex roots of f(x).
- A theorem from Mayer states that the μ -th powers of the roots, ρ_1^{μ} , ρ_2^{μ} , ..., ρ_n^{μ} are a solution to the A-hypergeometric system with $\beta = (0, -\mu)$.

How do we solve polynomial equations?

- For n = 2, we have $R(A) = \langle (1, -2, 1) \rangle$, and the relations generated by $\frac{\partial}{\partial a_0} \frac{\partial}{\partial a_2} \left(\frac{\partial}{\partial a_i}\right)^2$.
- For the polynomial $a_0 + a_1x + a_2x^2$, we recover the discriminant $a_1^2 4a_0a_2$. If $a_1^2 >> 4a_0a_2$, we can write the discriminant as $a_1\sqrt{1 \frac{4a_0a_2}{a_1^2}}$, so letting $z = \frac{a_0a_2}{a_1^2}$, we just need to expand $\sqrt{1 4z}$ in power series.
- Else, if $a_0 a_2 >> a_1^2$, we expand $\sqrt{1 \frac{w}{4}}$ for $w = \frac{a_1^2}{a_0 a_2}$.
- In general, we just need to isolate the leading monomial. To do this, we use the Newton polytope.

- Considering the secondary polytope, the power series expansion comes from the expansion of some cone, as in the second lecture.
- For n = 2, the secondary polytope was the line segment with vertices labeled a_1^2 and $-2^2a_0a_2$.
- For n = 3, we get as before a trapezoid with vertices labeled by the monomials appearing in the discriminant.
- In general, Sec(A) is topologically an (n-1)-dimensional cube with 2^{n-1} points (Stumfel).

- In the regular case, for a generic β , consider the polytope Δ , the convex polytope of A, so Δ has dimension d-1.
- Take d=3. For each triangulation, we have a power series

$$\phi_{\alpha}(a) = \sum_{\ell \in R(A)} \prod_{i=1}^{n} \Gamma(\alpha_i + \lambda_i + 1)^{-1} a^{\lambda + \alpha}.$$

- We can choose $\alpha \in \mathbb{C}^n$, so that we get $\beta \in M_{\mathbb{C}}$ in the analytification, and for non-resonant β , we find $\operatorname{Vol}(\Delta)$ independent solutions.
- The size of the secondary polytope is |A| d.
- We now have solutions via power series and via integrals. What's the link?