
• Start with A ⊂M , f(x) =
∑

m∈A amxm.

• ∆(f) = Conv(A).

• Non-degeneracy condition (NDC): fΘ(x) = xi
∂f
∂xΘi = 0

should have no solutions.

• If fΘ = f , Θ = ∆, we need Zf ⊂ Td non-singular.
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Example:

• A = [0, 1, . . . , n], ∆ = [0, n]. f(x) =
∑n

i=0 aix
i.

• NDC: a0anD(f) 6= 0, where D(f) is the discriminant.

More generally, we consider the determinant det(C)
of the Koszul complex:
We take the d + 1 elements F0, F1, . . . , Fd ∈ S1

∆ ⊂ S∆,
a resolution of Sf = S∆/〈F0, . . . , Fd〉S∆.
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• Consider f =
∑

amxm, R = Z[a1, . . . , an], where n = |A|.

• The graded pieces form a Koszul complex.

• Sf ← S∆ ← S∆(−1)← · · ·, of the Artin ring Sf .

• Similarly, we construct Sk
f ← Sk

∆ ← Λ1Ñ ⊗ Sk−1
∆ ← · · ·

• Take the determinant det Ck
• (f).

• Theorem: det(Ck
• ) is independent of k for k >> 0, and

EA(f) ≡ det Ck
• (f) ∈ R is called the principal

A-determinant of f .
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• For the example A = [0, . . . , n], we get that
Ea(f) = a0anD(f).

• As another example, let ∆ be a
simplex, A be its vertices, and f =

∑
amxm.

• Then EA(t) = ±(Vol(∆))Vol(∆) · (a0a1 · · · ad)Vol(∆).

• Vol(∆) is d! times the normal volume.

• Example: The unit square. EA(f) = a0a1a2a3(a1a3 − a0a2).
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• EA(f) is homogeneous of degree (d + 1)Vol(∆).

• Example: d = 1,∆ = [0, n].
Then deg EA(f) = 2n and deg ∆(f) = 2n− 2.

• There are d more homogeneity conditions,
coming from the action of Td.

• The classical formula: D(f) = a2n−2
n

∏
i<j(ρi − ρj)2,

where ρ1, . . . , ρn are the roots of f .

• Act by the torus: Π1 × f by
(λ · f)→ a0 + λa1x + · · ·+ λnanxn.
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• Define wt(ai) = i. Then D(f) is quasi-homogeneous
of degree n2 − n:
(A function is quasi-homogeneous if it is homogeneous
with respect to weights.)

• D(f)→ EA(f) = a0anD(f). (More elegant).

• More generally, EA(f) = “
∏

Θ⊂∆ D(fΘ).”
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Secondary Polytope

• The secondary polytope: Newton polytope of EA(f).

• Let n = |A|, ai be monomials, EA(f) =
∑

ckak.

• Lattice points generated by monomials: L ⊂ Zn,
a hyperplane of codimension d + 1.

• Sec(A) = the convex hull of all µ with nonzero coefficients.
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• Gelfand-Kapranov-Zelevinski theorem describes all vertices
of Sec(A). (Statement deffered)

• Take d = 1, and take the Newton diagram of a
1-dimensional deformation of f : Take mi ∈ Z>0, and
ft(x) = tm0 + · · ·+ tmnxn.

• Then D(ft) = ctε(1 + o(t)).

• Compute D(tm0 , . . . , tmn) via (ai → tmi).

• This discriminant equals
∑

ckt〈k,mi〉.

• Or: D(f) = an−2
n

∏
i<j(ρi − ρj).

Write ρi = cit
εi(1 + o(t)) (if we know the Newton diagram).
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The Newton Diagram:

• ft(x) = F (x, t).

• This convex hull is the Newton diagram.

• The diagram uniquely determines the
expression for the roots.

• So vertices of the secondary polytope
correspond to types of Newton diagrams.

• Def: Two Newton diagrams are equivalent if their
projections give the same partition of the interval.
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• An equivalence class of diagrams is given by a
partition of I = [0, 1, . . . , n].

• There are 2n−1 vertices of the cube of dimension n− 1,
so there are 2n−1 types.

• GKZ Theorem: Generalization of this correspondence,
where the polytope is multidimensional.

• Write ft(x) =
∑

m∈A tφ(m)xm.

• These φ(m) generalize the am.

Arizona Winter School 2004 Viktor Batyrev 3/14 10 41:30



Generalizing to GKZ:

• We have a convex φ : A→ Z>0 instead of the am.

• Triangulations generalize partitions of intervals.

• GKZ Theorem: Vertices ⇐⇒ admissible triangulations.

• Further, monomials in EA(f) ⇐⇒ vertices of Sec(A).

• We are interested in
∏

dim T=d ET (a), the product of
principal determinants of each face.

• From before ET (a) = (Vol(T ))Vol(T )(a0 · · · ak)Vol(T ).

• The coefficients are
∏

dim T=d Vol(T )Vol(T ).
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• We need to check triangulations don’t come from
projections of boundaries.

• Action: Td × EA(f) = χBH(t).

• Here χ is the character of a torus, given by
β, where β is the barycenter
of the polytope ∆ times (d1)Vol(∆).
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