- Start with $A \subset M$, $f(x) = \sum_{m \in A} a_m x^m$.
- $\Delta(f) = \operatorname{Conv}(A)$.
- Non-degeneracy condition (NDC): $f_{\Theta}(x) = x_i \frac{\partial f}{\partial x} \Theta_i = 0$ should have no solutions.
- If $f_{\Theta} = f$, $\Theta = \Delta$, we need $Z_f \subset \mathbb{T}^d$ non-singular.

Example:

- $A = [0, 1, ..., n], \Delta = [0, n]. f(x) = \sum_{i=0}^{n} a_i x^i.$
- NDC: $a_0 a_n D(f) \neq 0$, where D(f) is the discriminant.

More generally, we consider the determinant det(C) of the Koszul complex:

We take the d + 1 elements $F_0, F_1, \ldots, F_d \in S^1_{\Delta} \subset S_{\Delta}$, a resolution of $S_f = S_{\Delta} / \langle F_0, \ldots, F_d \rangle S_{\Delta}$.

- Consider $f = \sum a_m x^m$, $R = \mathbb{Z}[a_1, \dots, a_n]$, where n = |A|.
- The graded pieces form a Koszul complex.
- $S_f \leftarrow S_\Delta \leftarrow S_\Delta(-1) \leftarrow \cdots$, of the Artin ring S_f .
- Similarly, we construct $S_f^k \leftarrow S_\Delta^k \leftarrow \Lambda^1 \tilde{N} \otimes S_\Delta^{k-1} \leftarrow \cdots$
- Take the determinant det $C^k_{\bullet}(f)$.
- Theorem: det (C^k_{\bullet}) is independent of k for k >> 0, and $E_A(f) \equiv \det C^k_{\bullet}(f) \in R$ is called the principal *A*-determinant of f.

- For the example A = [0, ..., n], we get that $E_a(f) = a_0 a_n D(f)$.
- As another example, let Δ be a simplex, A be its vertices, and $f = \sum a_m x^m$.
- Then $E_A(t) = \pm (\operatorname{Vol}(\Delta))^{\operatorname{Vol}(\Delta)} \cdot (a_0 a_1 \cdots a_d)^{\operatorname{Vol}(\Delta)}.$
- $Vol(\Delta)$ is d! times the normal volume.
- Example: The unit square. $E_A(f) = a_0 a_1 a_2 a_3 (a_1 a_3 a_0 a_2).$

- $E_A(f)$ is homogeneous of degree $(d+1)\operatorname{Vol}(\Delta)$.
- Example: $d = 1, \Delta = [0, n].$ Then deg $E_A(f) = 2n$ and deg $\Delta(f) = 2n - 2.$
- There are d more homogeneity conditions, coming from the action of \mathbb{T}^d .
- The classical formula: $D(f) = a_n^{2n-2} \prod_{i < j} (\rho_i \rho_j)^2$, where ρ_1, \ldots, ρ_n are the roots of f.
- Act by the torus: $\Pi^1 \times f$ by $(\lambda \cdot f) \to a_0 + \lambda a_1 x + \dots + \lambda^n a_n x^n.$

• Define $wt(a_i) = i$. Then D(f) is quasi-homogeneous of degree $n^2 - n$:

(A function is quasi-homogeneous if it is homogeneous with respect to weights.)

- $D(f) \to E_A(f) = a_0 a_n D(f)$. (More elegant).
- More generally, $E_A(f) = \prod_{\Theta \subset \Delta} D(f_{\Theta})$."

Secondary Polytope

- The secondary polytope: Newton polytope of $E_A(f)$.
- Let n = |A|, a_i be monomials, $E_A(f) = \sum c_k a^k$.
- Lattice points generated by monomials: $L \subset \mathbb{Z}^n$, a hyperplane of codimension d + 1.
- $Sec(A) = the convex hull of all <math>\mu$ with nonzero coefficients.

- Gelfand-Kapranov-Zelevinski theorem describes all vertices of Sec(A). (Statement deffered)
- Take d = 1, and take the Newton diagram of a 1-dimensional deformation of f: Take $m_i \in \mathbb{Z}_{>0}$, and $f_t(x) = t^{m_0} + \cdots + t^{m_n} x^n$.
- Then $D(f_t) = ct^{\epsilon}(1 + o(t)).$
- Compute $D(t^{m_0}, \ldots, t^{m_n})$ via $(a_i \to t^{m_i})$.
- This discriminant equals $\sum c_k t^{\langle k, m_i \rangle}$.
- Or: $D(f) = a_n^{n-2} \prod_{i < j} (\rho_i \rho_j).$ Write $\rho_i = c_i t^{\epsilon_i} (1 + o(t))$ (if we know the Newton diagram).

The Newton Diagram:

- $f_t(x) = F(x,t)$.
- This convex hull is the Newton diagram.
- The diagram uniquely determines the expression for the roots.
- So vertices of the secondary polytope correspond to types of Newton diagrams.
- Def: Two Newton diagrams are equivalent if their projections give the same partition of the interval.

- An equivalence class of diagrams is given by a partition of I = [0, 1, ..., n].
- There are 2^{n-1} vertices of the cube of dimension n-1, so there are 2^{n-1} types.
- GKZ Theorem: Generalization of this correspondence, where the polytope is multidimensional.
- Write $f_t(x) = \sum_{m \in A} t^{\phi(m)} x^m$.
- These $\phi(m)$ generalize the a_m .

Generalizing to GKZ:

- We have a convex $\phi : A \to \mathbb{Z}_{>0}$ instead of the a_m .
- Triangulations generalize partitions of intervals.
- GKZ Theorem: Vertices \iff admissible triangulations.
- Further, monomials in $E_A(f) \iff$ vertices of Sec(A).
- We are interested in $\prod_{\dim T=d} E_T(a)$, the product of principal determinants of each face.
- From before $E_T(a) = (\operatorname{Vol}(T))^{\operatorname{Vol}(T)} (a_0 \cdots a_k)^{\operatorname{Vol}(T)}$.
- The coefficients are $\prod_{\dim T=d} \operatorname{Vol}(T)^{\operatorname{Vol}(T)}$.

- We need to check triangulations don't come from projections of boundaries.
- Action: $\mathbb{T}^d \times E_A(f) = \chi B_H(t).$
- Here χ is the character of a torus, given by β , where β is the barycenter of the polytope Δ times (d_1) Vol (Δ) .