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The aim of this course is to apply certain recent developments in Dwork’s
p-adic theory to study the p-adic variation of the zeta function attached to a
family of affine toric Calabi-Yau hypersurfaces over finite fields, leading up to
Dwork’s unit root conjecture.

1 The basic example

An important example is the following family of (n−1)-dimensional affine toric
Calabi-Yau hypersurfaces

Xλ : X1 + · · ·+ Xn +
1

X1 · · ·Xn
+ λ = 0, Xi 6= 0,

parametrized by λ. This is the mirror family (actually an affine open piece of
it) of the standard Calabi-Yau family in the projective n-space defined by

Yλ : Xn+1
0 + Xn+1

1 + · · ·+ Xn+1
n + λX0X1 · · ·Xn = 0.

The zeta function of this mirror pair of families over finite fields have been
studied in great detail by Dwork [6] for n = 2, 3 and more recently by Candelas,
de la Ossa and Rodriguez Villegas [8] for n = 4. The zeta function and its roots
are closely related to the solutions of the Picard-Fuch differential equations. In
this course, we study the zeta function of the family Xλ for all n and its p-adic
variation when the parameter λ varies.

Let Fq be the finite field of q elements, where q = pa and p is a prime
number. Removing a finite number of the values for λ, we assume that the toric
hypersurface Xλ is ∆-regular. Let λ ∈ Fq. For a positive integer k, let Nk(λ)
denote the number of Fqk -rational points on Xλ. We shall explain how to prove
the following results.

1. There are n algebraic integers α0(λ), · · · , αn−1(λ) such that for each
positive integer k, one has the formula

Nk(λ) =
(qk − 1)n + (−1)n+1

qk
+ (−1)n+1

n−1∑
i=0

αi(λ)k,
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where the αi(λ) are the Frobenius eigenvalues acting on the primitive part of
the cohomology. Furthermore, each αi(λ) has complex absolute value

√
qn−1.

2. The family Xλ is generically ordinary for every p, that is, the generic
Newton polygon coincides with the Hodge polygon. This means that there is a
non-zero Hasse polynomial Hp(λ) over Fp for each prime number p, such that
for all a and all λ ∈ Fpa with Hp(λ) 6= 0, we have

αi(λ) = paiui(λ), (0 ≤ i ≤ n− 1),

where each ui(λ) is a p-adic unit.
3. For each p, there are p-adic “analytic” functions fi,p(x) (0 ≤ i ≤ n − 1)

such that for each ordinary λ̄ ∈ Fpa , one has the p-adic analytic formula for
each unit ui(λ̄):

ui(λ̄) = fi,p(λ)fi,p(λp) · · · fi,p(λpa−1
),

where λ denotes the Teichmuller lifting of λ̄. Each fi,p(x) is formally of the
form gi,p(x)/gi,p(xp), where gi,p(x) is a solution of the Picard-Fuch equation.

4. Each fi,p(x) defines the Frobenius matrix of a rank one unit root F-crystal,
or equivalently, a rank one p-adic Galois representation for the arithmetic fun-
damental group of the ordinary parameter space over Fp. For each integer k,
the k-th power unit root L-function is defined to be

L(uk
i , T ) =

∏
λ̄

1
1− ui(λ)kT deg(λ)

,

where λ̄ runs over the closed points of the ordinary parameter space over Fp.
Each of these unit root L-functions is a p-adic meromorphic function as conjec-
tured by Dwork. Furthermore, for this example, they are p-adic meromorphic
function of finite order!

2 Course content

We hope to summarize the essence of some of the following materials in the
setting of toric hypersurfaces and explain how to apply them to study the above
basic example.

1. Dwork’s trace formula, p-adic meromorphic continuation of the zeta func-
tion via p-adic Fredholm determinant of a compact operator, see [16] for an
elementary exposition. Cohomological formulas. The results of Adolphson-
Sperber [1] and Denef-Loeser [4] as applied to toric hypersurfaces.

2. The Katz type conjecture. Newton polygon and its relation to Hodge
polygon [13][2]. Generic Newton polygon, generic ordinary primes, star decom-
position theorem [15] and collapsing decomposition theorem [19].

3. Deformation theory [5], Newton-Hodge decomposition and unit root for-
mula [11][7].

4. Dwork’s unit root conjecture [7], the speaker’s work [17][18] and Grosse-
Klönne’s rank one generalization [9].
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3 Student project

Take your favorite universal family (other than the above basic example) of
toric Calabi-Yau hypersurfaces of dimension at least 4, say, arising from other
applications. That is, take your favorite reflexive integral polyhedron ∆ in Rn

containing the origin as an interior point, where n ≥ 5. Determine if this family
is generically ordinary for every prime number p, using possibly a combination
of the star decomposition theorem and the collapsing decomposition theorem
[19] (the first part of this article explains how to use the decomposition theorems
to determine if a family is generically ordinary at p). If you cannot find such a
family, ask someone in mirror symmetry (or at the winter school) to give you
a nice family of toric CY hypersurfaces to play with. Another possibility is to
explore the link between the unit root formula and mirror symmetry.

4 Prerequisites

The minimal background is Koblitz’s book [12], which contains basic properties
of p-adic numbers, p-adic analytic functions, Newton polygon, and Dwork’s
rationality proof. The last part will be reviewed in the course. A further
reading in this direction is Monsky’s book [14], which explains Dwork’s p-adic
cohomological formula and how to calculate it in the setting of smooth projective
hypersurface case. For a classical motivation on the relation between Newton
polygon and Hodge polygon, see Mazur’s expository article [13]. For Hodge
numbers and Picard-Fuch equation of affine toric Calabi-Yau hypersurfaces, we
refer to Batyrev’s paper [3]. For a nice and self-contained exposition on the link
between zeta functions and periods for the quintic Calabi-Yau hypersurfaces, see
paper [8]. Attendee interested in algorithms for computing the zeta function is
referred to the expository article [20].
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