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String theorists are interested in several quantum field theories and string
theories associated with Calabi–Yau threefolds. The most straightforward
of these to formulate is the two-dimensional quantum field theory which
governs the physics of a string propagating on the Calabi–Yau threefold.
However, making calculations directly with that quantum field theory is quite
difficult. To the extent that they can be made, some amazing things have
been discovered about Calabi–Yau threefolds, including the famous counting
of rational curves (as “instantons”) on the quintic threefold.

In 1992, Witten proposed an alternative way to study these quantum
field theories for certain Calabi–Yau threefolds, by means of his “gauged lin-
ear sigma model” (GLSM). The connection to the Calabi–Yau threefold is
less direct, but the model has some features which make calculations eas-
ier in many cases. For example, the instantons in this model can often be
calculated explicitly with some ease, although they have a different math-
ematical interpretation (i.e., they do not directly count rational curves on
the Calabi–Yau threefold). When gathered into an appropriate “instanton
sum,” they are expected to express intrinsic information about the physical
model, and so be ultimately related to the famous curve-counting problem.
Many remarkable features of Calabi–Yau threefolds and their moduli spaces
can be seen from calculation involving these GLSM instantons.

The course will describe the mathematical aspects of these GLSM the-
ories, focusing on instantons and also on monodromy of various structures
defined over the moduli space. The basic reference is [1], although that paper
was not written with a mathematical audience in mind.

The student project will study these GLSM instanton sums, and other
features of the moduli space, explicitly in the case of a particular Calabi–Yau
threefold (the so-called (2,86) model). The geometry of the (2,86) model is
described many places, such as [2]. Some aspects of the GLSM for this model
were discussed in [3].

Useful mathematical orientation is provided in [4], section 3.3 of [5], and
[6].
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