Fact Let K/\mathbb{Q} be a function field then one has:

1.

$$\mathbf{td}(K) = d \iff \begin{cases} \forall t_1, \dots, t_{d+2} \implies q_{(t_1, \dots, t_{d+2})} \\ \text{is universal over } K(\sqrt{-1}) \\ \mathbf{and} \\ \exists t_1, \dots, t_{d+2} \text{ such that } q_{(t_1, \dots, t_{d+2})} \\ \text{does not represent 0 over } K(\sqrt{-1}) \end{cases}$$

2. Suppose $\mathbf{td}(K) = d$ and $t_1, \ldots, t_d \in K^{\times}$, $\exists : a, b$ rational numbers such that $q_{(t_1, \ldots, t_d, a, b)}$ does not represent 0 over $K(\sqrt{-1})$. Then t_1, \ldots, t_d is a transcendence base

Zusatz $\forall t_1, \ldots, t_d$ TB \exists "many" natural numbers a_1, \ldots, a_d, a, b such that $q_{(t_1-a_1,\ldots,t_d-a_d,a,b)}$ satisfies 2).

Proof Step 1 Cohomological interpretation of td(K) = d

Lemma Let $E/_K$ be a finite extension with $\sqrt{-1} \in E$. Then the following are equivalent:

- 1. td(K) = d
- 2. $\forall t_1, \dots, t_{d+3} \in K^{\times} \implies (t_1) \cup \dots \cup (t_{d+3}) = 0 \text{ in } \mathbf{H}^{d+3} (E, \mu_2)$ and

 $\exists t_1, \dots, t_{d+2} \in K^{\times} \text{ such that } (t_1) \cup \dots \cup (t_{d+2}) \neq 0 \text{ in } \mathbf{H}^{d+2}(E, \mu_2)$

Idea of Proof

- Use: let k be a non-real number field, and $K/_k$ a function field then $\operatorname{cd}_2(K) = 2 + \operatorname{td}(K/_k)$
- Now this assertion is equivalent to 2)
- Based on:
 - (Tate) $\operatorname{\mathbf{cd}}_2(k) = 2$
 - (Serre, Galois Cohomology) In general $K/_k$ function field \Longrightarrow $\mathbf{vcd}_2(K) = \mathbf{vcd}_2(k) + \mathbf{td}(K_k)$

Step 2

- Milnor Conjecture E field, $Char(E) \neq 2$
- Milnor **K** groups: $\mathbf{K}^m(E)$ generated by symbols $\{a_1, \ldots, a_n\}$ satisfying relations
- Witt Ring of E: $\mathbf{W}(E) = \{$ all anisotropic quadratic forms over E $\}$ Together with addition and multiplication
- $I(E) \subseteq \mathbf{W}(E)$ ideal of even dimensional quadratic forms

•
$$I^2(E), I^3(E), ...$$

•

$$\mathbf{Gr}(\mathbf{W}(E)) = \bigoplus_{n=0}^{\infty} I^n(E)/_{I^{n+1}(E)}$$

•
$$I^0(E)/_{I(E)} = \mathbb{Z}/_{2\mathbb{Z}} \stackrel{\text{degree (mod 2)}}{\longleftarrow} \mathbf{W}(E)$$

•
$$I^1(E)/_{I^2(E)} = K^{\times}/_q \stackrel{\text{discriminant}}{\longleftarrow} \mathbf{W}(E)$$

•
$$I^2(E)/_{I^3(E)} = \stackrel{\text{Clifford invariant}}{\longleftarrow} \mathbf{W}(E)$$

• Fact $I^n(E)$ is generated by the *n*-fold Pfister forms

• The famous triangle $\forall n \geq 0$ (Milnor, Tate...)

$$\mathbf{K}^n E/_2 \xrightarrow{h_n} \mathbf{H}^n(E, \mu_2)$$

$$\{a_1, \dots, a_n\} + \underbrace{s_n} (a_1) \cap \dots \cap (a_n)$$

$$q_{(-a_1,\ldots,|-a_n)} \xrightarrow{e_n} I^n(E)/_{I^{n+1}(E)}$$

- Milnor Conjecture h_n , s_n are isomorphisms. In particular e_n exists
- Long history
- (Voevodsky, et.al.) MC is OK

Lemma Let E be as above, and $q_{(a_1,...,a_n)}$ n-fold Pfister form. Then the following are equivalent:

- 1) q represents $a \in E^{\times}$
- 1') $q_{(a_1,\ldots,a_n,a)}$ is hyperbolic
- 2) $(-a_1) \cap (-a_2) \cdots \cap (-a_n) \cap (-a) \in \mathbf{H}^{n+1}(E, \mu_2)$ is trivial

Relies on Milnor Conjecture

back to the proof of the fact

- For 1), combine Lemmas above
- for 2), Claim t_1, \ldots, t_d are algebraically independent
 - Proof by contradiction.
 - Let K_o =Relative closure of $\mathbb{Q}(t_1,\ldots,t_d)$ in K
 - \Longrightarrow $\operatorname{td}(K_o) < d$
 - The fact that $q_{(t_1,...,t_d,a,b)}$ does not represent 0 over $K(\sqrt{-1})$, thus over $K_o(\sqrt{-1})$ contradicts 1)

For the **Zusatz**

- $R = \mathbb{Z}[t_1, \dots, t_d]$
- $S = \text{integral closure of } R \text{ in } K(\sqrt{-1})$
- Higher dimensional Cebotarev density theorem: \exists "many" closed points x of R which are totally split in S
- let $y \in S$
- $\hat{\mathcal{O}}_{R,x} \cong \hat{\mathcal{O}}_{S,y} \cong \mathbb{Z}_q[t_1 a_1, \dots, t_d a_d]$

Folklore

- K some field, I index set (e.g. ω_o)
- D is an ultrafilter
- $K_{\mathcal{D}} = K^I/_{\mathcal{D}}$
- Question analyze/describe the relatively algebraically closed subfields $K \subset L \subset K_{\mathcal{D}}$

Proposition(Folklore) For L as above: $\forall l_i \subset L$ finitely generated over K one has:

- Let $X_i \longrightarrow K$ be some model, then $X_i(K)$ is Zariski dense.
- Conversely, if $Y|_K$ is some variety the $K(Y) \hookrightarrow K_{\mathcal{D}} \iff Y(K)$ is Zariski dense

Theorem(Faltings) K an number field. For every $L \subset K_{\mathcal{D}}$ as above with $\mathbf{td}(L/K) = 1$ then every L_i is the function field of some projective smooth curve $X_i \longrightarrow K$ with $g_{X_o} \leq 1$

Conjectural Theorem Suppose the Lang conjectures are true, $L \subset K_{\mathcal{D}}$ with $\mathbf{td}(L/K)$ finite and $L_i \subset L$ finitely generated, then Li is not of general type