

Detecting td(K/k)

- Idea Use homogeneous forms
- $q(x_1, \ldots, x_n)$ homogeneous form over some field K
- $K'/_K$ field extension
- Definition
 - q is <u>universal over K'</u> if the following $\forall \exists$ formula is true in K':

$$\forall a \in {K'}^{\times} \exists a_1, \dots, a_n \in K' \text{ such that } q(a_1, \dots, a_n) = a$$

• q represents zero over K' if the following \exists formula is true in K': $\exists a_1, \ldots, a_n \in K'$ not all zero, such that $q(a_1, \ldots, a_n) = 0$ **Special Case** Suppose that $K' = K[\alpha]$ for α an algebraic integer over K.

Theorem

- q is universal over K' is a $\forall \exists$ formula with only parameters the coefficients q over K
- q does not represent zero over K' is a \forall formula with only parameter the coefficients of q over K

How To Use It

- (t_1, \ldots, t_r) a system of elements in K^{\times}
- p a natural number
- Consider $(\underline{t}_{\underline{i}})_{\underline{i}}$ where $\underline{t}_{\underline{i}} = t_1^{i_1} \cdots t_r^{i_r} \ \forall 0 \le i_1 \dots i_r < p$
- Set $q_{(t_1,...,t_d)}^{(p)} = \sum_{\underline{i}} \underline{t}_{\underline{i}} x_{\underline{i}}^p$
- Coefficients depend only on (t_1, \ldots, t_r)
- p^r variables

- Consequence $q_{(t_1,...,t_d)}^{(p)}$
 - is universal over $K' = K[\alpha]$
 - does not represent 0 over $K' = K[\alpha]$
- Application $\exists (t_1, \ldots, t_d)$ such that

$$q_{(t_1,\ldots,t_d)}^{(p)} \begin{cases} \text{ is universal } \ldots \exists \forall \text{ sentence} \\ \text{ does not represent } 0 \ldots \exists \forall \text{ sentence} \end{cases}$$

<u>Case 1</u> Char k = p > 0

- Recall *p*-Bases of $K/_k$
- Let k be perfect, $K/_k$ function field
- Then for a system (t_1, \ldots, t_d) of elements in K^{\times} the following are equivalent:
 - 1. (t_1, \ldots, t_d) is a *p*-Basis for K
 - 2. $q_{(t_1,...,t_d)}^{(p)}$ is universal but does not represent 0
 - 3. dt_1, \ldots, dt_d is a K-basis of $\Omega_{K/k}$

Fact (Char k = p > 0) $K/_k$ arithmetic/geometric function field 1. $td(K/_k) = d \iff \exists \forall \exists$ sentence:

$$\exists (t_1, \dots, t_d) \text{ such that } q_{(t_1, \dots, t_d)}^{(p)}$$

is universal but does not represent 0

2. (t_1, \ldots, t_d) is a separable transcendence basis \iff 1) holds for (t_1, \ldots, t_d)

- Preparation for geometric + Char $k \neq 2$ and arithmetic case
- Context as above p = 2 then $q_{(t_1,...,t_r)} := q_{(t_1,...,t_r)}^{(2)}$ is the *r*-fold Pfister form defined by $(t_1,...,t_r)$

<u>Lemma</u>

- Let R be a discrete valued ring (DVR)
- π uniformizing parameter
- $k = R/(\pi)$
- Let $\overline{q}_o = \overline{q}_o(x_1, \dots, x_n)$ be a diagonal quadratic form over k
- \overline{q} a lifting of \overline{q}_o over R

•
$$q := q_o???(\underbrace{x_o^2 + \pi x_1^2}_{q(\pi)}) = q(x_1, \dots, x_n) + \pi q(y_1, \dots, y_n)$$

• If \overline{q}_o does not represent 0 over k then q does not represent 0 over $K = \mathbf{Qout}(R)$

Proof Exercise

Fact (k algebraically closed, **Char** $\neq 2$)

 $K/_k$ a function field then

- 1. $\mathbf{td}(K/_k) = d \iff \forall t_1, \dots, t_d \in K^{\times}, q_{(t_1,\dots,t_d)}$ is universal and $\exists t_1, \dots, t_d \in K^{\times}$ such that $q_{(t_1,\dots,t_d)}$ does not represent 0 (Thus $\mathbf{td}(K/_k)$ is a $\forall \exists \land \exists \forall \exists$ sentence)
- 2. Moreover, if (t_1, \ldots, t_d) is a separable transcendence base and $\mathbf{td}(K/k) = d$ then $\exists a_1, \ldots, a_d \in k$ such that $q_{(t_1-a_1,\ldots,t_d-a_d)}$ does not represent 0

Proof

- Use the C_r -property of fields
- \mathcal{K} is a C_r -field if all homogeneous forms $q(x_1, \ldots, x_n)$ of degree d represent 0 provided $n > d^r$
- **Example** (Chevellay-Waring) Finite fields are C_1
- **Example** if K is complete, discrete valued, with algebraically closed residue field, it is C_1
- **Big Conjecture** (Artin Conjecture) \mathbb{Q}^{ab} is C_1

3. $K \quad C_r, K'/_K$ algebraic $\implies K'$ is C_r

4.
$$k \quad C_r, \operatorname{td}(K/_k) = d \implies K \text{ is } C_{r+d}$$

In particular, k algebraically closed, $K/_k$ function field with $\mathbf{td}(K/_k) = d$ $\implies K \text{ is } C_r ???$

Proof of Fact

- (t_1, \ldots, t_d) in K^{\times} $a \in K^{\times}$
- $q = q_{(t_1,...,t_d)} ax_{2^d+1}^2$ represents 0 where $\mathbf{td}(K/_k) = d$

•
$$\implies q_{(t_1,\ldots,t_d)}$$
 represents 0 (Why?)

For the rest

- Let $\mathfrak{T} = (t_1, \ldots, t_d)$ be a separable transcendence base
- Let $R = k[t_1, \dots, t_d]$ Spec $R \cong \mathbb{A}_k^d$
- S =integral closure of R in K
- Spec $S = X \xrightarrow{\phi} \mathbb{A}_k^d$
- ϕ is étale on an open subset $U \subseteq X$
- Choose $x \in U$ closed point

$$X \longrightarrow \mathbb{A}_k^d \qquad \mathbb{O}_{\mathbb{A}_k^d, x_o} \subseteq \mathbb{O}_{X, x}$$
$$x \longmapsto x_o$$

- $(t_1 a_1, \ldots, t_d a_d)$ local parameters of x_o with $(a_1, \ldots, a_d) \in k$
- If follows $(t_1 a_1, \ldots, t_d a_d)$ local parameters at x

• Using the Lemma before: $q_{(t_1-a_1,...,t_d-a_d)}$ does not represent 0 over Λ (Induction on d)