

Detecting $\operatorname{td}(K/k)$

- Idea Use homogeneous forms
- $q(x_1, \ldots, x_n)$ homogeneous form over some field K
- K'/K field extension
- Definition
	- q is <u>universal over K'</u> if the following $\forall \exists$ formula is true in K' :

$$
\forall a \in K'^{\times} \exists a_1, \dots, a_n \in K' \text{ such that } q(a_1, \dots, a_n) = a
$$

• q represents zero over K' if the following ∃ formula is true in K': $\exists a_1, \ldots, a_n \in K'$ not all zero, such that $q(a_1, \ldots, a_n) = 0$

Special Case Suppose that $K' = K[\alpha]$ for α an algebraic integer over K.

Theorem

- q is universal over K' is a $\forall \exists$ formula with only parameters the coefficients q over K
- q does not represent zero over K' is a \forall formula with only parameter the coefficients of q over K

How To Use It

- (t_1, \ldots, t_r) a system of elements in K^{\times}
- p a natural number
- Consider $(\underline{t_i})_{\underline{i}}$ where $\underline{t_i} = t_1^{i_1}$ $\frac{i_1}{1} \cdots t_r^{i_r}$ $\frac{i_r}{r}$ $\forall 0 \leq i_1 \dots i_r < p$
- Set $q_{(t_1)}^{(p)}$ $\frac{\Gamma(p)}{\Gamma(t_1,...,t_d)} = \sum_{\underline{i}} \underline{t}_{\underline{i}} x_{\underline{i}}^p$ i
- Coefficients depend only on (t_1, \ldots, t_r)
- p^r variables
- Consequence $q_{(t)}^{(p)}$ $(t_1,...,t_d)$
	- is universal over $K' = K[\alpha]$
	- does not represent 0 over $K' = K[\alpha]$
- Application $\exists (t_1, \ldots, t_d)$ such that

$$
q_{(t_1,...,t_d)}^{(p)} \left\{ \begin{array}{l} \text{is universal } ... \exists \forall \text{ sentence} \\ \text{does not represent } 0 ... \exists \forall \text{ sentence} \end{array} \right.
$$

Case 1 Char $k = p > 0$

- Recall *p*-Bases of K/k
- Let k be perfect, K/k function field
- Then for a system (t_1, \ldots, t_d) of elements in K^{\times} the following are equivalent:
	- 1. (t_1, \ldots, t_d) is a p-Basis for K
	- 2. $q_{t_1}^{(p)}$ $\binom{(p)}{(t_1,...,t_d)}$ is universal but does not represent 0
	- 3. dt_1, \ldots, dt_d is a K-basis of $\Omega_{K/k}$

Fact (Char $k = p > 0$) K/k arithmetic/geometric function field 1. $\text{td}(K/k) = d \iff \exists \forall \exists \text{ sentence:}$

> $\exists (t_1,\ldots,t_d)$ such that $q_{(t_1)}^{(p)}$ $(t_1,...,t_d)$ is universal but does not represent 0

2. (t_1, \ldots, t_d) is a separable transcendence basis \Longleftrightarrow 1) holds for (t_1, \ldots, t_d)

- Preparation for geometric + Char $k \neq 2$ and arithmetic case
- Context as above $p = 2$ then $q_{(t_1,...,t_r)} := q_{(t_1)}^{(2)}$ $\binom{(2)}{(t_1,...,t_r)}$ is the r-fold Pfister form defined by (t_1, \ldots, t_r)

Lemma

- Let R be a discrete valued ring (DVR)
- π uniformizing parameter
- $k = R/_{(\pi)}$
- Let $\overline{q}_o = \overline{q}_o(x_1, \ldots x_n)$ be a diagonal quadratic form over k
- \overline{q} a lifting of \overline{q}_o over R

•
$$
q := q_o
$$
??($x_o^2 + \pi x_1^2$) = $q(x_1, ..., x_n) + \pi q(y_1, ..., y_n)$
 $q(\pi)$

 $\bullet \hspace{0.1cm}$ If \overline{q}_{o} does not represent 0 over k then q does not represent 0 over $K = \text{Qout}(R)$

Proof Exercise

Fact (k algebraically closed, **Char** $\neq 2$)

 K/k a function field then

- 1. $\mathbf{td}(K/k) = d \Longleftrightarrow \forall t_1, \ldots, t_d \in K^{\times}, q_{(t_1, \ldots, t_d)}$ is universal and $\exists t_1, \ldots, t_d \in K^{\times}$ such that $q_{(t_1, \ldots, t_d)}$ does not represent 0 (Thus $\text{td}(K/k)$ is a $\forall \exists \land \exists \forall \exists$ sentence)
- 2. Moreover, if (t_1, \ldots, t_d) is a separable transcendence base and $\mathbf{td}(K/k) = d$ then $\exists a_1, \ldots, a_d \in k$ such that $q_{(t_1-a_1,\ldots,t_d-a_d)}$ does not represent 0

Proof

- Use the C_r -property of fields
- K is a C_r -field if all homogeneous forms $q(x_1, \ldots, x_n)$ of degree d represent 0 provided $n > d^r$
- Example (Chevellay-Waring) Finite fields are C_1
- **Example** if K is complete, discrete valued, with algebraically closed residue field, it is C_1
- Big Conjecture (Artin Conjecture) \mathbb{Q}^{ab} is C_1

3. K C_r , K'/K algebraic $\implies K'$ is C_r

4.
$$
k
$$
 C_r , $\mathbf{td}(K/k) = d \implies K$ is C_{r+d}

In particular, k algebraically closed, K/k function field with $\mathbf{td}(K/k) = d$ \implies K is C_r ???

Proof of Fact

- (t_1, \ldots, t_d) in K^\times $a \in K^\times$
- $q = q_{(t_1,...,t_d)} ax_{2^d+1}^2$ represents 0 where $\mathbf{td}(K|_k) = d$
- $\implies q_{(t_1,...,t_d)}$ represents 0 (Why?)

For the rest

- Let $\mathfrak{T} = (t_1, \ldots, t_d)$ be a separable transcendence base
- Let $R = k[t_1, \ldots, t_d]$ Spec $R \cong \mathbb{A}_k^d$ \boldsymbol{k}
- $S =$ integral closure of R in K
- Spec $S = X$ $\overset{\phi}{\longrightarrow} \mathbb{A}^d$ k
- ϕ is étale on an open subset $U \subseteq X$
- Choose $x \in U$ closed point

$$
X \longrightarrow \mathbb{A}_{k}^{d} \qquad \mathbb{O}_{\mathbb{A}_{k}^{d}, x_{o}} \subseteq \mathbb{O}_{X, x}
$$

$$
x \longmapsto x_{o}
$$

- $(t_1 a_1, \ldots, t_d a_d)$ local parameters of x_o with $(a_1, \ldots, a_d) \in k$
- If follows $(t_1 a_1, \ldots, t_d a_d)$ local parameters at x

• Using the Lemma before: $q_{(t_1-a_1,...,t_d-a_d)}$ does not represent 0 over Λ (Induction on d)