H10/ subrings of ${\mathbb Q}$

• $\mathcal{P} = \{2, 3, 5, \dots\}$

{subsets of \mathcal{P} } \longleftrightarrow {subrings of \mathbb{Q} }

Arizona Winter School 2003

Definition

If $T \subseteq \mathcal{P}$, the

$$\underline{\text{natural density of } T} := \lim_{x \to \infty} \frac{\#\{p \in T : p \le x\}}{\#\{p \in \mathcal{P} : p \le x\}}$$

Subring	S	H10	
\mathbb{Q}	P	?	same answer
$\mathbb{Z}_{(p)}$	$\mathfrak{P}\setminus\{p\}$?	same answer
	co-finite	?	same answer
	density 1	<u>Theorem</u> NO sometimes	
$\mathbb{Z}[rac{1}{p_1},\ldotsrac{1}{p_n}]$	finite	NO	
\mathbb{Z}	Ø	NO	

Theorem (Poonen, 2002)

 \exists disjoint recursive subsets $T_1, T_2 \subseteq \mathcal{P}$ of natural density 0 such that if $T_1 \subseteq S \subseteq \mathcal{P} \setminus T_2$ and $R = \mathbb{Z}[S^{-1}]$ then

- a) \exists affine curve E'/R such that $\overline{E'(R)} \subseteq E'(\mathbb{R})$ has infinitely many connected components.
- **b**) \exists diophantine model of \mathbb{Z} over R
- c) H10/R has a negative answer
- c.f. Schlapentokh [MRN, 2003]

Sketch of Proof

- Let E be the elliptic curve $y^2 = x^3 + x + 1/\mathbb{Q}$
- Key property: $E(\mathbb{Q})$ is of rank 1

- In fact, $E(\mathbb{Q}) \cong \mathbb{Z}$
- Let P be a generator of $E(\mathbb{Q})$
- Also $E(\mathbb{R}) \cong \mathbb{R}/\mathbb{Z}$
- $E' = E \setminus \{ \text{point at } \infty \}$

 $\frac{\text{Step 1}}{\text{Proof:}} \{lP : l \text{ is prime }\} \text{ is dense in } E(\mathbb{R})$

- $E(\mathbb{R}) \longrightarrow \mathbb{R}/\mathbb{Z}$
- P infinite order $\longleftrightarrow \alpha$ irrational
- Use **Theorem(Vinogradov)** if $\alpha \in \mathbb{R}$ is irrational, then $\{l\alpha : l \text{ is prime }\}$ is dense in \mathbb{R}/\mathbb{Z}

Step 3

- Choose T_1 so that $\pm l_j P \in E'(R)$
- Choose T_2 so that almost no other (finitely many) multiples of P are in E'(R)
- $T_1 T_2$ disjoint recursive and natural density 0

Step 4 Show that $A = \{y_1, y_2, ...\}$ is a diophantine model of $\mathbb{Z}_{>0}$ over R with:

$$\phi:\mathbb{Z}_{>0}\longrightarrow A$$

$$j \longmapsto y_j$$

Proof

 $A \stackrel{\bullet}{=} \underbrace{y(E'(R))}_{\text{diophantine}/R} \cap \mathbb{Q}_{>0}$

• Therefore A is diophantine over R

• <u>Claim</u>

The graph of + on \mathbb{Z} corresponds to a diophantine/R subset of A^3

• \underline{Proof}

 $m+n = q \iff |y_m + y_n - y_q| \le \frac{3}{10}$

- <u>Claim</u> The graph of $m \mapsto m^2$ corresponds to a diophantine subset of A^2
- <u>Proof</u>

$$m^{2} = q \iff |y_{m}^{2} - y_{q}| \leq \frac{4}{10}$$

$$(m \pm \frac{1}{10m})^{2}$$

•
$$mn = q \iff (m+n)^2 = m^2 + n^2 + q + q$$

- Diophantine model of $\mathbb{Z}_{>0}/R$
- $H10/\mathbb{Z}$ has a negative answer
- \implies H10/R has a negative answer

- K/\mathbb{Q}
- density(S) = $1 \frac{1}{[K:\mathbb{Q}]}$
- $\mathcal{O}_K[S^{-1}] \cap \mathbb{Q} = \mathbb{Z}$