H10 Continued

Proposition

If $\mathbb Z$ is diophantine over $\mathbb Q$ then H10/ $\mathbb Q$ has a negative answer.

<u>Proof</u> $\exists g$, say for $a \in \mathbb{Q}$, such that $a \in \mathbb{Z} \iff \exists \vec{x} \in \mathbb{Q}^n g(a, \vec{x}) = 0$. Then H10/ \mathbb{Z} can be encoded as a subproblem of H10/ \mathbb{Q} . Namely: $\exists \vec{x} \in \mathbb{Z}^n f(\vec{x}) = 0 \iff$ $\exists \vec{x}, \vec{y_1}, \dots, \vec{y_n} \in \mathbb{Q}$ such that:

$$\begin{cases} f(\vec{x}) = 0\\ g(x_1, \vec{y_1}) = 0\\ \vdots\\ g(x_n, \vec{y_n}) = 0 \end{cases}$$

Definition A diophantine model of the ring \mathbb{Z} over \mathbb{Q} is a diophantine set $S \subseteq X(\mathbb{Q})$ for some algebraic set X equipped with a bijection

$$\mathbb{Z} \xrightarrow{\phi} S$$

such that the graphs of addition and multiplication on \mathbb{Z} (subsets of \mathbb{Z}^3) correspond to diophantine sets in S^3

<u>Remark</u> ϕ is automatically recursive

- Search for the unique element of G_+ (the subset of S^3 corresponding to the graph of addition) of the form (a_0, a_0, a_0)
- Then $\phi(0) = a_0$

$\frac{\textbf{Proposition}}{\text{negative answer.}} \ \text{If } \exists \ a \ \text{diophantine model of } \mathbb{Z} \ \text{over } \mathbb{Q}, \ \text{then } H10/\mathbb{Q} \ \text{has a}$

Example

- $\exists E/\mathbb{Q}$ an elliptic curve with $E(\mathbb{Q}) \stackrel{\phi}{\longleftarrow} \mathbb{Z}$
- Is $(E(\mathbb{Q}), \phi)$ a diophantine model of \mathbb{Z}/\mathbb{Q} ?

Mazur's Conjecture(MC)

If X is a variety over $\mathbb{Q} \implies$ the topological closure of $X(\mathbb{Q})$ in $X(\mathbb{R})$ has at most finitely many connected components.

<u>Theorem</u> MC is true for curves/ \mathbb{Q} .

Proof

- WLOG X is non-singular and projective
- WLOG $X(\mathbb{Q}) \neq \emptyset$
- <u>Genus 0</u>: Riemann-Roch $\implies X \cong \mathbb{P}^1$ and $\overline{\mathbb{P}^1(\mathbb{Q})} = \mathbb{P}^1(\mathbb{R})$

• <u>Genus 1:</u>

- X is an elliptic curve
- $X(\mathbb{Q})$ is a subgroup of $X(\mathbb{R})$

- $\overline{X(\mathbb{Q})}$ is a closed subgroup
- closed subgroups are either finite or \mathbb{R}/\mathbb{Z} or $\mathbb{R}/\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$

• Genus ≥ 2 :

- $X(\mathbb{Q})$ is finite (Faltings)
- $\overline{X(\mathbb{Q})} = X(\mathbb{Q})$

Proposition

- Assume MC
- X is a an algebraic set.
- $S \subseteq X(\mathbb{Q})$ is diophantine
- Then $\overline{S} \subseteq X(\mathbb{R})$ has finitely many connected components

$\underline{\mathbf{Proof}}$

- MC \implies MC for algebraic sets
- Suppose $S \subseteq X(\mathbb{Q})$ is diophantine
- $\exists Y$ such that

$$\begin{array}{cccc} Y(\mathbb{Q}) & \subseteq & Y(\mathbb{R}) \\ \\ & & & & & \\ \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$$

- MC $\implies \overline{Y(\mathbb{Q})}$ has finitely many components, say *n* of them
- $f\left(\overline{Y(\mathbb{Q})}\right)$ has $\leq n$ components
- $\overline{f\left(\overline{Y(\mathbb{Q})}\right)}$ has $\leq n$ components
- $\overline{f\left(\overline{Y(\mathbb{Q})}\right)} = \overline{S}$

Proof of

• Suppose \exists diophantine model of \mathbb{Z}/\mathbb{Q}

 \Leftarrow

• Then \exists model of \mathbb{N} over \mathbb{Q} , say $S \subseteq \mathbb{A}^n(\mathbb{Q}) = \mathbb{Q}^n$ with $\phi : \mathbb{N} \longrightarrow S$

- <u>**Case 1**</u> S is discrete in \mathbb{R}^n
 - $\bullet\,$ each point of S is a connected component of \overline{S}
 - MC is false for S
 - MC is false

- <u>Case 2</u> S is non-discrete
 - \exists non-isolated point $s \in S$
 - let | | be the Euclidean distance on \mathbb{R}^n
 - We'll construct a sequence $m_0, m_1, \dots \in \mathbb{N}$ such that $\phi(m_0), \phi(m_1), \dots$ converges to s.
 - Let $m_0 = 0$
 - For i > 1, define $m_i :=$ smallest integer $> m_{i-1}$ such that $|\phi(m_i) s| < \frac{1}{i}$
 - (s non-isolated $\implies m_i \text{ exists}$)

- Let $M = \{m_0, m_1, \dots\} \subseteq \mathbb{N}$
- Then M is listable hence diophantine!
- Therefore $\phi(M)$ is diophantine
- $\phi(M)$ is a convergent sequence in \mathbb{R}^n
- $\overline{\phi(M)}$ has infinitely many connected components
- Contradicts MC

Question

- Suppose there is a diophantine interpretation of Z over Q (i.e. a diophantine set modulo a diophantine equivalence relation) that looks like Z
- Would this contradict MC?