• $1st$ order formula in language of rings. e.g.:

$$
\underbrace{\forall y \exists z \exists w}_{\text{bound variables}} \left(\left(\underbrace{x}_{\text{free variable}} z + 3 = y^2 \right) \vee \neg (z = x + w) \wedge (x = x + 1) \right)
$$

- $1st$ order sentence = $1st$ order formula with no free variable
- positive existential formula: only \exists , +, 0, 1, =, \wedge , \vee , $($, $)$, variables
- diophantine formula: $\exists x_1 \ldots \exists x_n$ poly=poly

Let R be a ring (commutative with 1)

• 1st order formula
$$
\phi(x_1, ..., x_n) \rightsquigarrow \underbrace{\{\vec{x} \in R^n : \phi(\vec{x}) \text{ is true }\}}_{\text{definable sets}}
$$

- positive existential formulas \sim positive existential sets
- diophantine formulas \sim diophantine sets

Claim For any ring R :

{ positive existential sets } = { diophantine sets } <u>Proof Sketch for $R = \mathbb{Z}$ </u>

- $f = g \rightsquigarrow f g = 0$
- $f = 0 \vee g = 0 \rightsquigarrow fg = 0$

•
$$
f = 0 \land g = 0 \leadsto f^2 + g^2 = 0
$$

Definitions:

• . . .

• 1st order theory of the ring R

 $=$ { 1st order sentences that are true for R }

- $\bullet\,$ positive existential theory of the ring R
	- $= \{$ positive existential sentences that are true for R $\}$

Arizona Winter School 2003 **Poonen** $3/16$ 4 7:53

Definitions(cont.):

 $\bullet\,$ the theory is <u>decidable</u> \Longleftrightarrow \exists an algorithm with: $\bold{Input:} \;\, 1^{\text{st}} \;\, \text{order} \;\, \text{sentence}$ Output:

YES if true

NO otherwise

H10 for Various Rings

Definitions:

• H10/R asks whether \exists algorithm with:

Input: $f \in \mathbb{Z}[x_1, x_n]$

Output:

YES $\exists \vec{a} \in R^n$ such that $f(\vec{a}) = 0$

NO otherwise

• H10/R with coefficients in S where S is encodable is the same except $f \in S[x_1,\ldots,x_n]$

$\mathrm{H}10/\mathbb{Q}$

Variety/ $\mathbb Q$ is assumed to be quasi-projective, $\bar{\mathbb Q}$ -irreducible.

Proposition: H10/Q has a positive answer $\iff \exists$ algorithm to decide whether a given variety/ $\mathbb Q$ has a rational point

 $(\text{most general}) \iff \dots \text{algebraic set}/\mathbb{Q} \dots$

(most special) $\Longleftrightarrow \dots$ non-singular affine variety/ $\mathbb Q \dots$

Proof:

- Suppose we have an algorithm for nonsingular affine varieties.
- We need to build an algorithm for algebraic sets.
- Let X be an algebraic set over $\mathbb Q$.
- The algorithm will be by induction on $\dim X$.

Step 1: WLOG X is irreducible \mathbb{Q} , otherwise decompose X into irreducible components \mathbb{Q} $\textbf{Example: } x^2 - 2y^2 = 0$ \diagup \diagup \diagup \searrow / ╲ ╲ \searrow y = $-$ ♣ $y =$ √ $2x$ √ $2x$

Step 2:

- WLOG X is irreducible over \overline{Q} (X is a variety)
- otherwise \overline{Q} irreducible components Y_1, \ldots, Y_r are permuted transitively by $\mathbf{Gal}\left(\bar{\mathbb{Q}}/\mathbb{Q}\right)$
- If $p \in X(\mathbb{Q})$ is fixed by **Gal** $(\overline{\mathbb{Q}}/\mathbb{Q})$, then so if $p \in \bigcap Y_i$
- \bullet $\bigcap Y_i$ has lower dimension

Step 3:

- WLOG X is non-singular variety, otherwise $X = X^{\text{sing}} \cup X^{\text{non-sing}}$
- X^{sing} has lower dimension

Step 4:

Any non-singular variety is a finite union of affine varieties, which will be non-singular.

Definition:

- *X* algebraic set/ \mathbb{Q}
- $S \subseteq X(\mathbb{Q})$
- Then S is diophantine $\Longleftrightarrow \exists$ morphism of algebraic sets $f: Y \longrightarrow X$ such that $S = f(Y(\mathbb{Q}))$

${\bf Remark:}$ Suppose $X={\mathbb A}^n_{\mathbb Q}$ $_{\mathbb{O}}^{n}$ and $S \subseteq X(\mathbb{Q}) = \mathbb{Q}^{n}$

- 1. S is diophantine/ \mathbb{Q}
- 2. \iff S is diophantine/Q in the old sense
- 3. \iff S is positive existential

$$
2 \implies 1 \ S = \{\vec{a} \in \mathbb{Q}^n : \exists \vec{x} \in \mathbb{Q}^m \ p(\vec{a}, \vec{x}) = 0\}
$$

$$
p(\vec{a}, \vec{x}) \text{ defines an algebraic subset } Y \subseteq \mathbb{A}^{n+m}
$$

$$
f: \mathbb{A}^{n+m} \longrightarrow \mathbb{A}^n
$$

$$
S = f(Y(\mathbb{Q}))
$$

 $1 \implies 3$ OK