Hilbert's 10^{th} Problem (H10):

Is there an algorithm with:

input: $f \in \mathbb{Z}[x_1,\ldots,x_n]$

output:

YES if $\exists \vec{a} \in \mathbb{Z}^n$ such that $f(\vec{a}) = 0$.

NO otherwise

$\operatorname{\bf Answer:NO}$

(Davis-Putnam-Robinson 1961, Matijasevič 1970)

(An algorithm is a) Turing Machine $\stackrel{\bullet}{=}$ a finite length computer program which accepts a non-negative integer input^{*} and possibly prints characters to some output tape

∗ or other kinds of inputs provided that an encoding is fixed.

Definition: $S \subseteq \mathbb{Z}$ is <u>recursive</u> $\iff \exists$ algorithm with:

input: $n \in \mathbb{Z}$

output:

YES if $n \in S$ NO if $n \notin S$ **Example:** $\{2, 3, 5, 7, \ldots\}$ is recursive. **Definition:** $S \subseteq \mathbb{Z}$ is <u>listable</u> (recursively definable) $\iff \exists$ Turing machine such that S is the set of integers it prints out when left running forever.

Proposition: Every recursive set $S \subseteq \mathbb{Z}$ is listable.

Proof: We're given an algorithm T to decide membership in S . Construct a Turing machine T' that applies T to

$$
0,1,-1,2,-2,\ldots
$$

in order, printing those that are in S.

Example: $S = \{a \in \mathbb{Z} : \exists x, y, z \text{ s.t. } x^3 + y^3 + z^3 = a\}$

Then *S* is listable:

for
$$
B = 1, 2, ...
$$

\nfor $x = -B$ to B
\nfor $y = -B$ to B
\nfor $z = -B$ to B
\nprint $x^3 + y^3 + z^3$

Is S recursive? Nobody knows.

Maybe

$$
S = \{a \in \mathbb{Z} : a \not\equiv \pm 4 \pmod{9}\}
$$
?

If so, then S is recursive.

Halting Problem: Is there an algorithm with:

input: a computer program P and an integer x

output:

YES if program P when run on x eventually halts

NO otherwise

Answer: NO

Proof: Suppose there were an algorithm.

We could then write a new program H where H halts in input $x \iff$ program x does not halt on input x .

Taking $x = H$ gives a contradiction.

Corollary: [∃] listable set that is not recursive. **Proof:** $S = \{x : program x \text{ halts on input } x\}.$ S is listable:

for $x = 1$ to N

simulate program x on input x for N steps and print x if it halts (in N steps)

Is S recursive? NO.

If it were, we could repeat the construction of H in the proof of the Halting problem.

Diophantine Sets: $\textbf{Definition}\ S \subseteq \mathbb{Z}^n \text{ is diophantine} \Longleftrightarrow$ $\exists p(\vec{t}, \vec{x}) \in \mathbb{Z}[t_1, \ldots, t_n, x_1, \ldots, x_m]$ such that $S = \{\vec{a} \in \mathbb{Z}^n : \exists \vec{x} \in \mathbb{Z}^m \mid p(\vec{a}, \vec{x}) = 0\}$

Examples:

- 1. $\mathbb{N} = \{0, 1, 2, ...\}$ is diophantine $\mathbb{N} = \{a \in \mathbb{Z} \; : \; \exists x_1, \ldots, x_4 \in \mathbb{Z} \; | \; a = x_1^2 \}$ $x_1^2 + \cdots + x_4^2$ $_4^2\}$
- 2. $\mathbb{Z} \setminus \{0\}$ is diophantine $a \neq 0 \iff \exists b, c \in \mathbb{Z}$ such that: $a = bc$ $(b, 2) = 1$ $(c, 3) = 1$

$$
\mathbb{Z} \setminus \{0\} = \left\{ \begin{array}{rcl} a \in \mathbb{Z} & : & \exists b, c, p, q, r, s \text{ s.t.} \\ & (a - bc)^2 + (bp + 2q - 1)^2 \\ & & + (cr + 3s - 1)^2 = 0 \end{array} \right\}
$$

Arizona Winter School 2003 **Poonen** $3/15$ 13 37:44

Proposition: Diophantine \implies listable.

 $Theorem (DPRM):$ Diophantine \Longleftrightarrow listable.

Corollary: H10 has a negative answer.

Proof: Let $S \subseteq \mathbb{Z}$ be listable but not recursive.

DPRM \implies S is diophantine. \implies $S = \{a \in \mathbb{Z} : \exists \vec{x} \ p(a, \vec{x}) = 0\}$

If H10 had a positive answer, then we could decide membership in S. But S is not recursive.

Corollary: \exists $F \in \mathbb{Z}[x_1, \ldots, x_n]$ such that

$$
\{F(\vec{a}) \ : \ \vec{a} \in \mathbb{Z}^n\} \bigcap \mathbb{Z}_{\geq 0} = \underbrace{\{2,3,5,7,\dots\}}_{\mathcal{P}}
$$

Proof:
$$
\mathcal{P}
$$
 is listable \implies (DPRM) \mathcal{P} is diophantine.
\n $\mathcal{P} = \{a \in \mathbb{Z} : \exists \vec{x} \in \mathbb{Z}^n \ p(a, \vec{x}) = 0\}$
\nThen $F(y_1, \ldots, y_4, x) := (1 - p(y_1^2 + \cdots + y_4^2, \vec{x})^2)(\underbrace{y_1^2 + \cdots + y_4^2}_{\geq 0})$

Outline of Proof of DPRM:

1. Prove that the 3-term relation

$$
a = b^x \quad \text{on } \mathbb{Z}_{>0}
$$

is diophantine. (Uses Pell equation $x^2 - dy^2 = 1$)

2.
$$
c = \binom{a}{b}
$$

\n $\binom{a}{b} = \lfloor \frac{(x+1)^2}{x^b} \rfloor \pmod{x} \quad \text{if } x > 2^a$
\n{ bits of $a \} \subseteq \{ \text{ bits of } b \} \Longleftrightarrow \binom{b}{a} \text{ is odd}$