<u>Manin-Mumford</u> A semi-abelian variety, $\mathbf{Char}(K) = 0, X \subseteq A$ subvariety $\implies \overline{X \cap \mathbf{Tor}(A)}$ is a finite union of translates of semi-abelian varities.

- May assume $0 \in X, X \cap \mathbf{Tor}(A)$ is Zariski dense in X
- Want that X is an algebraic subgroup
- **Proposition (4.4)** A semi-abelian, $\phi : A \longrightarrow A$ seperable isogeny, $X \subseteq A, \phi(X) \subseteq X, 0 \in X, X$ generates $A, \operatorname{Stab}(X) = 0 \implies \phi^n = \operatorname{id}$ for some n

- All over k = # field
- Lemma (4.1) $\exists \sigma \in \text{Gal}(\overline{K}/K), P(T) \in \mathbb{Z}[T]$ with no roots of unity among its roots such that $\text{Tor}(A) \subseteq \text{Ker}(P(\sigma))$ where $P(\sigma) : A(\overline{K}) \longrightarrow A(\overline{K})$
- (\overline{K}, σ) is a difference field
- $H := \operatorname{Ker}(P(\sigma))$ is a definable subgroup

Reduction

- H < A is a difference definable subgroup of A
- $P(T) = T^n + a_{n-1}T^{n-1} + \dots + a_0$
- Let $A^n = A \times \cdots \times A$
- Let $\pi: A^n \longrightarrow A$ be the projection to the 1st coordinate.
- Let ϕ be the algebraic endomorphism of A^n

$$\phi(x_0, \dots, x_{n-1}) = (x_0, x_1, \dots, x_{n-2}, -a_1 x_1 - \dots - a_{n-1} x_{n-1})$$

• (4.2)
$$P(\phi) = 0$$
 and so $\forall r \ \phi^r - \mathbf{id}$ is an isogeny of A^n

(4.3a) \exists semi-abelian subvariety $B \subseteq A^n$ defined over k and irreducible subvariety $X' \subseteq B$ (over a finite extension of k) such that:

- 1. $\pi|_B : B \longrightarrow A$
- 2. $\phi|_B : B \longrightarrow B$ is an isogeny
- 3. $\phi^m(X') \subseteq X'$ for some m
- 4. $\pi(X') \subseteq X'$ is Zariski dense.

Proof

- Let $H_1 = \{ \vec{x} \in A^n \mid \phi(\vec{x}) = \sigma(\vec{x}) \}$
- $H_1 = \left\{ \left(x, \sigma(x), \dots, \sigma^{n-1}(x) \right) \mid x \in H \right\}$
- B=connected component of Zariski closure of H_1 in A^n (Assume $H_1 \subseteq B$)
- $\pi(H) \cap X$ is Zariski dense in X
- Let $Y = \overline{\pi^{-1}(X) \cap H_1}$ so $\phi(Y) \subseteq Y$
- Let X' = irreducible component of Y such that $\pi(X') \subseteq X$ is Zariski dense
- $\phi^m(X') \subseteq X'$ for some m

$\underline{\text{Case 1}}$

X' is an algebraic subgroup of $B \implies X$ is an algebraic subgroup of A

Case 2

- Otherwise let $S := \mathbf{Stab}_B(X')$
- Then S is ϕ^m -invariant

- By (4.2) for every $r, \phi^{mr} 1$ is an isogeny of B/S
- Contradiction to (4.4)