Pink-Roessler

- (K, σ) existentially closed difference field (saturated)
- Category of algebraic σ -varieties:
- Objects (V, ϕ)

V irreducible variety/K

 $\phi: V \longrightarrow \sigma(V)$ dominant, defined over K

• $(\sigma-)$ Morphisms $(V,\phi) \longrightarrow (W,\psi)$

$$\begin{array}{c|c}
V & \longrightarrow W \\
\phi & \downarrow \psi \\
\sigma(V) & \xrightarrow{\sigma(f)} \sigma(W)
\end{array}$$

- σ -rational map
- algebraic σ -group: $\phi: G \longrightarrow \sigma(G)$ is an isogeny
- algebraic σ -subvariety

 $(V,\phi)^{\#}=\{a\in V(K)\mid \phi(a)=\sigma(a)\} \subseteq^{\text{Zariski Dense}}V(K)$ = "finite dimensional" quantifier free definable set in (K,σ)

- Given (V, ϕ) , (W, ψ) σ -varieties and $f: V \longrightarrow W$ a morphism of algebraic varieties.
 - Then f is a σ -morphism $\iff f(V,\phi)^{\#} \subseteq (W,\psi)^{\#}$
- (V, ϕ) is trivial if V is defined over $k = \mathbf{Fix}(\sigma)$ and $\phi = \mathbf{id}$

Lemma Let (G, ϕ) be an algebraic σ -group with ϕ separable.

Let $X \subseteq G$ be a σ -subvariety $(\phi|_X : X \longrightarrow \sigma(X))$ such that

$$\mathbf{Stab}_{G}(X) = \{1\}$$

$$= \{g \in G \mid gX = X\}$$

Then $(X, \phi|_X)$ is σ -birational to a trivial algebraic σ -variety (Y, \mathbf{id})

$$\underline{\mathbf{Remark}} \ (Y, \mathbf{id})^{\#} = Y(k)$$

Comment This is closely related to a result of Ueno.

A complex torus.

 $X \subseteq A$ analytic subvariety.

 $\mathbf{Stab}(X) = \{1\} \implies X \text{ is algebraic.}$

Proof Writing G commutatively, WLOG assume $0 \in X$ by translation.

We have a version of a Gauss map $f: X \longrightarrow \mathbf{Gr}(V)$

- $\mathbf{j}_p(-)_a = (m_a/m_a^{p+1})^*$
- For p large enough $\mathbf{j}_p(X-x)_o \subseteq V = \mathbf{j}_p(G)_o$ defines X
- $V = \mathbf{j}_p(G)_o$ is a K vector space
- $f(x) = \mathbf{j}_p(X x)_o \subseteq V$

for large
$$p$$
 $f: X \xrightarrow{\text{birational}} Y \subseteq \mathbf{Gr}(V)$

• ϕ seperable, $0 \in (G, \phi)^{\#} \implies$ we get an induced linear isomorphism:

$$\phi': V \longrightarrow \sigma(V) = \mathbf{j}_p(\sigma(G))_o$$

• (V, ϕ') is a linear σ -variety

$$(V, \phi')^{\#} = \{v \in V \mid \phi'(v) = \sigma(v)\}$$

= finite dimensional vector space over $k = \mathbf{Fix}(\sigma)$

- Can choose a basis for V over K which is simultaneously a basis for $(V, \phi')^{\#}$ over k
- Thus assume $V = K^n$ and $(V, \phi')^{\#} = k^n$
- For $x \in (X, \phi)^{\#}$ then $(f(x), \phi')^{\#} \subseteq k^n$
- $\implies f(x)$ is defined over k (i.e. $f(x) \in \mathbf{Gr}(V)(k)$) and Y is defined over k

- So $f(X, \phi)^{\#} \subseteq Y(k)$ when Y is defined over k
- So f is a σ -birational isomorphism of (X, ϕ) and (Y, 1)

Corollary (4.4) Let A be a semi-abelian variety, i.e. a commutative algebraic group which given by:

Let $\phi: A \longrightarrow A$ be a seperable isogeny. Let $X \subseteq A$ be a subvariety with $0 \in X$, $\mathbf{Stab}(X)$ is trival, suppose that X generates A and X is ϕ -invariant. Then $\phi^n = \mathbf{id}$ for some n.

Proof

- Assume everything is defined over $\mathbf{Fix}(\sigma) = k$ where (K, σ) is an existentially closed difference field
- $A = \sigma(A)$ so (A, ϕ) is an algebraic σ -group, X is a σ -variety
- $(X, \phi) \xrightarrow{\text{birational}} (Y, id)$
- Fact (2.1) \Longrightarrow $(A, \phi) \xrightarrow{\sigma \text{birational}} (B, \text{id})$ where B is a semi-algebraic group over k
- Uses

$$X^d \longrightarrow A$$

$$Y^d$$

to define an equivalence relation

- $h: A/k \longrightarrow B/k$ a σ -isomorphism
- So h is defined over $k_1 > k$, a finite extension
- $h(A,\phi)^{\#} \cong B(k)$
- $h^{-1}: B(k) \longrightarrow (A, \phi)^{\#} \subseteq A(k_1)$

- So for some m, $\sigma^m = \mathbf{1}$ on $(A, \phi)^\#$
- So $\phi^n = \mathbf{1}$ on $(A, \phi)^\# \implies \phi^n = \mathbf{1}_A$ because it is Zariski dense

variety, $X \subseteq A$. Then the Zariski closure $X \cap \mathbf{Tor}(A)$ is a finite union of translates of semi-abelian subvarities of A

Step 1(Hiroshowski)

- Assume $0 \in X$, $X \cap \mathbf{Tor}(A)$ is Zariski dense in X.
- Assume everything is defined over a #-field.
- $\exists \sigma \in \mathbf{Gal}(\overline{\mathbb{Q}}/K)$ and monic polynomial $P(T) \in \mathbb{Z}[T]$ with no roots of unity among its roots and such that $\mathbf{Tor}(A) \subseteq \mathbf{Ker}(P(\sigma))$
- If $P(T) = T^n + a_{n-1}T^{n-1} + \dots + a_0$

$$P(\sigma): A\left(\overline{\mathbb{Q}}\right) \xrightarrow{} A\left(\overline{\mathbb{Q}}\right)$$
$$x \longmapsto \sigma^{n}(x) + a_{n-1}\sigma^{n-1}(x) + \dots + a_{0}$$