Model Theory and Diophantine Geometry Around Manin-Mumford

II "New" proof of M-M

III-V Drinfeld Modules version of M-M

I ACFA

- First Order Language L
- First Order Theory T in L
- M L-structure M model of T
- L =Language of Rings +, -, ·, 0, 1
- **ACF** = Theory of Algebraically closed fields
- $K \models \mathbf{ACF}$ K is a model of \mathbf{ACF}

- K algebraically closed field
- V an irreducible variety defined over k < K
- V = V(K)
- A generic point of V over k is some a ∈ V(K) such that
 tr.degk(a)/k = dimV

- Fix L, T an $\forall \exists$ theory in L
- (F = Theory of fields)
- M is an existentially closed model of T, if $M \models T$ and whenever $M \subseteq N \models T$ then any quantifier formula $\Theta(x_1, \ldots, x_n)$ with parameters from M which is satisfied by some $(b_1, \ldots, b_n) \subseteq N$ is satisfied by some (b'_1, \ldots, b'_n) from M

•
$$(N \models \exists x_1, \dots, x_n \Theta \implies M \models \exists x_1, \dots, x_n \Theta)$$

• The extensionally closed (ec) models of F are the algebraically closed fields.

- L_{σ} language of +, -, ·, 0, 1, σ
- F_{σ} =Theory of algebraically closed fields with an automorphism in L_{σ}
- Example
 - K(t) $\sigma(t) = t + 1$
 - $(\overline{\mathbb{Q}}, \sigma)$ σ is a Galois automorphism

- We say T has a model companion if the class of **ec** models of T is an elementary class, i.e. the class of models of a theory, say T'
- We say T' is the model companion of T

- Often T' has QE(quantifier elimination)
- For every *L*-formula $\Phi(x_1, \ldots, x_n)$ there is a **qf** (quantifier free) $\Phi'(x_1, \ldots, x_n)$ such that in any model of *T*

 $(\forall \vec{x}) (\Phi(\vec{x}) \longleftrightarrow \Phi'(\vec{x}))$

- (K, σ) $P(\vec{x}, \sigma(\vec{x}), \dots, \sigma^n(\vec{x})) = 0$
- Solutions $\vec{x} \in K^m$ is a difference variety
- Fact: F_{σ} has a model companion which we call ACFA (algebraically closed field with an automorphism)
- Axioms:
 - 1. difference field
 - 2. algebraically closed
 - 3. Let V be irreducible variety over K. Let $W \subseteq V \times \sigma(V)$ be an irreducible sub-variety projecting dominantly on V and $\sigma(V)$, then $\exists (a, \sigma(a)) \in W(K)$

Special Case

 $\phi: V \longrightarrow \sigma(V)$ is a dominant morphism. The Axioms imply that $(V, \phi)^{\# = \atop def} \{a \in V(K) : \phi(a) = \sigma(a)\}$ is Zariski dense in V, when B is a finite dimensional difference algebraic variety. $(V, \phi) \longrightarrow (W, \psi) \qquad (K, \sigma) \text{ or } (\mathbb{C}, 1)$

Properties

- ACFA is not a complete theory
- $\mathbf{Th}(K, \sigma)$ determined by isomorphism type of $(\overline{K_o}, \sigma|_{\overline{K_o}})$ where K_o is the prime field
- ACFA does not have QE

If (K, σ) is a model, then $F(\sigma)$ is a psuedo-finite field.

- $\bullet\,$ But \mathbf{ACFA} has near \mathbf{QE}
- Let $\psi(x_1, \ldots, x_n)$ be a L_{σ} -formula. Then it is equivalent in models of **ACFA** to

$$\exists y \left(\Theta\left(\vec{x}, \sigma(\vec{x}), \ldots, \sigma^{m}(\vec{x}), y, \sigma(y), \ldots, \sigma^{m}(y)\right)\right)$$

where $\Theta(\vec{z}, \vec{w})$ is a finite conjunction of polynomial equations over \mathbb{Z} and

 $\Theta\left(\vec{z}, \vec{w}\right) \implies \vec{w} \in \operatorname{acl}(\vec{z})$

Crucial Objects are finite-dimensional definable set in $(K, \sigma) \models \mathbf{ACFA}$ Let $Z \subseteq K^n$ be definable over k < K a difference subfield. Z is finite dimension if \exists finite bound on

 $\mathbf{tr.deg}(k(a,\sigma(a),\sigma^2(a),\dots)/k)$

for $a \in Z$ as a varies in Z