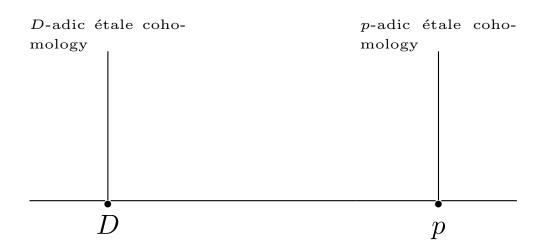
Further Uniformities

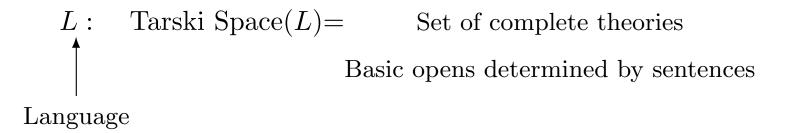
1.



I = primes

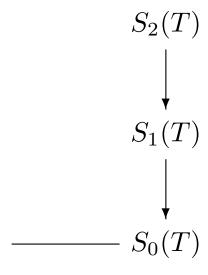
- 2. Can analyze maximal unramified extension of \mathbb{Q}_p
- 3. Witt vectors $\mathbf{Witt}(\mathbb{F}_p^{alg})$ with Witt Frobenius
- 4. Analytic situations over \mathbb{Q}_p

Michael Morley(1965)



• $S_0(T)$: Closed subset of spaces containing T

$$S_1(T) = \begin{cases} \text{extend by a constant v} \\ S_0(T) \text{ in a new language} \end{cases}$$



Tarski

- What happens if we add exp as a primitive to \mathbb{R} ?
- C:
 - Gödelian
 - Periods of $\exp 2\pi i$

- G.H. Hardy (1911): Orders of infinity
- If f(x) is an exponential polynomial over $\mathbb R$ then f has only finitely many zeros in $\mathbb R$

Schaunel Conjecture

- $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ linearly independent over \mathbb{Q}
- Then **t.d.** $\mathbb{Q}(\lambda_1, \dots, \lambda_n, e^{\lambda_1}, \dots, e^{\lambda_n}) \ge n$
- $F(e, e^e, e^{e^e}) = 0$?

Hovanskii

•

$$\begin{cases} f_1(x_1, \dots, x_n, e^{x_1}, \dots, e^{x_n}) = 0 \\ \vdots \\ f_n(x_1, \dots, x_n, e^{x_1}, \dots, e^{x_n}) = 0 \end{cases}$$

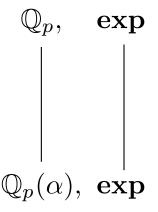
- Jacobian non-zero
- This has only finitely many solutions in \mathbb{R}^n
- Uniformly in parameters

- Elimination Theory (Wilkie 1991)
- Every formula $\phi(\overline{y})$ is equivalent to an existential formula:

$$\exists x_1, \ldots, x_n [H(\overline{x}, \overline{y}) \text{ has a solution }]$$

Where H is the Houvanskii system

•
$$(1+p)^*: \mathbb{Z}_p \longrightarrow \mathbb{Z}_p$$



- \mathbb{Q}_p , trigonometric has existential elimination
- This is non-Gödelian