Further Uniformities

D-adic étale coho- p-adic étale coho-
mology mology
® ®

I =primes
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2. Can analyze maximal unramified extension of Q,
3. Witt vectors Witt(F;lg) with Witt Frobenius

4. Analytic situations over Q,
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Michael Morley(1965)

°
L : Tarski Space(L)= Set of complete theories
T Basic opens determined by sentences

Language

e So(T): Closed subset of spaces containing T’

extend by a constant v
51(T) =
So(T") in a new language g

52
N e /N —
=
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Tarski
e What happens if we add exp as a primitive to R?
o C:

e (Godelian

e Periods of exp  2m:
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e G.H. Hardy (1911): Orders of infinity

e If f(x) is an exponential polynomial over R then f has only finitely many

zeros in R
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Schaunel Conjecture
e \i,...,\, € C linearly independent over QQ
e Then t.d. Q(\1,..., \p,eM,...,eM) >n
o Fle,ef,e®) =07
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Hovanskii

L
p

fl(xl,...,xn,exl,...,exn) =0

\ fn(xla---,wn,exl,...,e”"n) :O

e Jacobian non-zero

e This has only finitely many solutions in R"

e Uniformly in parameters
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¢ Elimination Theory (Wilkie 1991)

e Every formula ¢(7) is equivalent to an existential formula:
dx1,...,2, [H(Z,7) has a solution |

Where H is the Houvanskii system
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o (1+p):%2, — Z,

Qp, exp

@p(a)a exp
o (Q,, trigonometric has existential elimination

e This is non-Godelian
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