Uniform Elimination for \mathbb{Q}_p Uniform Elimination for \mathbb{F}_p

Relations to decision problem for finite (or prime) fields

- Topologize $\beta I =$ **Spec**(Boolean Ring)
- Basic open sets of form

$$\{D: X \not\in D\} = \{D: I \setminus X \in D\}$$

Where D is an ultrafilter, $X \subseteq I, X \in \mathbb{B}$

- Compact totally disconnected
- *D* has dually a max ideal in ring

- Elements of \mathcal{M}_D
 - germs living on some $\prod_{i \in X} \mathfrak{M}_i$ where $X \in D$
 - Write as functions f
- Have "continuity" of satisfaction
- Suppose have elements i_α ∈ I converging to D
 i.e. if X ∈ D eventually all i_α ∈ X

- Meaning of $\mathcal{M}_{i_{\alpha}} \rightsquigarrow \mathcal{M}_{D}$
- Fix a function $\phi(v_1, \ldots, v_n)$
- Fix $f_1, \ldots, f_n \in \mathcal{M}_D$
- **Theorem**(tos) $\mathcal{M}_D \models \phi(f_1, \ldots, f_n) \iff$

$$\{i \in I : \mathcal{M}_i \models \phi(f_1(i), \dots, f_n(i))\} \in D$$

• Meaning Truth value of $\phi(f_1(i_\alpha), \dots, f_n(i_\alpha)) \xrightarrow[(converges)]{}$ truth value of $\phi(f_1(D), \dots, f_n(D))$

• If \mathcal{M}_i are valued fields with residue fields K_i , then \mathcal{M}_D is a valued field with residue field K_D

- I = set of primes
 - 1) $\mathcal{M}_{\mathfrak{p}} = \mathbb{F}_{p}$ 2) $\mathcal{M}_{\mathfrak{p}} = \mathbb{Q}_{p}$ 3) $\mathcal{M}_{\mathfrak{p}} = \mathbb{F}_{p}^{\mathtt{alg}}$
- What about \mathcal{M}_D in those cases?
- 1) $K = \mathcal{M}_D$ has Char 0

Properties

- $\operatorname{Gal}(K) = \hat{\mathbb{Z}}$
- K is PAC (pseudo-algebraically closed/regularly closed)

- Regularly closed: if V is absolutely irreducible variety over K, V has a point in K
- K =totally real algebraic numbers K[i] is PAC

- **2)** $\mathbb{Q}_p \rightarrow K_D$ Henselian
 - Residue field is pseudo-finite = $(\mathbb{F}_p)_D$
 - Residue field is **Char** 0
 - Value groups is Presburger group

$$\mathbb{F}_{p}((t)) \longrightarrow L_{D}$$

$$\mathbb{Q}_{p}$$

$$\mathbb{Q}_{p$$

 $K_D \equiv L_D$ $\mathbb{F}_p((t))$ is C_2 thus K_D is C_2 \implies for any instance of C_2 , \mathbb{Q}_p satisfies it for $p \ge p_o$

Uniformity

- **Type 1** Within definable sets
- Type 2 Across p

Basic version of Type 2 Lefschetz principle for algebraically closed fields

Basic Version of Type 1

- \mathbb{R}
- $X_{\overline{\lambda}}$ semi-algebraic family of semi-algebraic sets