Axioms for $\mathbb{R} (= K)$

- (1st Set) Gal(K) = $\mathbb{Z}/_{2\mathbb{Z}}$ 1st order axiom!
- (2nd Set) In language of ordered fields
 SIGN change scheme:
 If f ∈ K[x] changes sign on [a, b] it has a root on [a, b]
- Topology definable: $x > 0 \iff x \neq 0 \land P_2(x)$

p-adic Fields (Ax-Kochen, Erson)

- Analogue (2nd Set): Hensel's Lemma 1st-order consequence of completions
- Analogies between \mathbb{R} and \mathbb{Q}_p In \mathbb{Q}_p topology is algebraically definable

$$\mathbb{Q}_{p} \qquad \mathbf{v} : \mathbb{Q}_{p} \longrightarrow \mathbb{Z} \cap \{\infty\}$$

$$\uparrow$$
Presburger

$$\mathbb{Z}_p := \{ x : \mathbf{v}(x) \ge 0 \}$$

- $(p \neq 2) \ x \in \mathbb{Z}_p : (\exists y) (y^2 = 1 + px^2) \quad ||x||_p \le 1$
- $(p=2) \ x \in \mathbb{Z}_p : (\exists y) (y^2 = 1 + 4px^2) \quad ||x||_2 \le 1$
- $(p = -1) x \in \mathbb{Z}_p : (\exists y) (y^2 = 1 x^2) \quad ||x|| \le 1 \in \mathbb{R}$

AKE

- Complete set of axioms for $\underline{certain}$ Henselian fields
- (Generally with 3 sorts)
- Henselian
- Value group a Presburger group
- Complete set of axioms for residue field

 $\begin{cases} \text{residue field of Char 0} \\ \text{residue field of Char } p, \text{ and } \mathbf{v}(p) = 1 \text{ (unramified)} \end{cases}$

• Example $\mathbb{C}((t))$ $\mathbb{R}((t))$

- What about Galois theoretic axioms for \mathbb{Q}_p ?
- Gal(\mathbb{Q}_p) Generated topologically by 4 elements $\sigma^{-1}\tau\sigma = \tau^p$
- Conditions on K such that $\operatorname{Gal}(K) \cong \operatorname{Gal}(\mathbb{Q}_p)$ is 1st-order

 $\implies K \equiv \mathbb{Q}_p$

- Elimination in \mathbb{Q}_p using the P_n
- $\mathbb{Q}_p^{\times}/_{\mathbb{Q}_p^{\times n}}$ is finite

- Sides in \mathbb{Q}_p^n
 - $f(\overline{x}) \neq 0 \& P_2(\cdot f(x))$
 - $f(\overline{x}) \neq 0 \& P_2(-f(x))$

Uniformity in p?

- Limits as $p \to \infty$
- Henselian valued fields
- Value group $\equiv \mathbb{Z}$
- Infinite finite field is residue field =

$$\prod \mathbb{F}_p/_{ ext{non-principal max ideals}}$$

Arizona Winter School 2003