- k a **char** 0 field
- X a smooth variety/ $_k$ of dimension d
- \bullet $f: X \longrightarrow \mathbb{A}^1_k$
- Look at $y_n := \{ y \in \mathcal{L}(X) \mid \mathbf{val}(f(\phi)) = n \}$
- \mathcal{Y}_n depends only on image of ϕ in $\mathcal{L}_n(X)$

$$\bullet \ Y_n := \pi_n^{-1}(\mathfrak{X}_n)$$

•
$$\mathfrak{X}_n := \{ Y \in \mathcal{L}_n(X) \mid \mathbf{val} f(\phi) = n \}$$

•
$$\mu(Y_n) = \frac{[\mathfrak{X}_n]}{\mathbb{L}^{(n+1)d}}$$

•
$$\mathcal{L}(X)(K) = X(K[t])$$

$$\bullet \ \mathcal{L}_n(X) = X \left(K[t]/_{t^{n+1}K[t]} \right)$$

•
$$\mathcal{L}_0(X) = X$$
 $\mathcal{L}_1(X) = \mathbf{T}X$

- Consider $\mathcal{Z}_{mot} = \sum_{n \geq 1} \mathbb{L}^{-nd} T^n$ motivic analog of Igusa's series
- Consider $h: Y \longrightarrow X$ log-resolution of f = 0
- $\bullet |h^{-1}(f^{-1}(0))| = \bigcap_{i \in J} E_i$
- $E_I, E_I^o, I \subseteq J$
- $h^{-1}(f^{-1}(0)) = \sum_{i \in J} N_i E_i$ ν_i

Proposition (Denef-Loeser)

$$\mathcal{Z}_{\mathbf{mot}} = \mathbb{L}^{-d} \sum_{I \subseteq J} [E_I^o] \prod_{i \in I} \frac{(\mathbb{L} - 1) \mathbb{L}^{-\nu_i} T^{N_i}}{1 - \mathbb{L}^{-\nu_i} T^{N_i}}$$

Proof Follows from the change of variables formula

• Setting $T = \mathbb{L}^{-s}$ for $s \in \mathbb{N}$

$$\mathcal{Z}_{\mathbf{mot}}\left(\mathbb{L}^{-s}\right) = \mathbb{L}^{-d} \sum_{I \subseteq J} [E_I^o] \frac{(\mathbb{L} - 1)\mathbb{L}^{-\nu_i - sN_i}}{1 - \mathbb{L}^{-\nu_i - sN_i}}$$

- $\Longrightarrow \mathcal{Z}_{\mathbf{mot}}(\mathbb{L}^{-s}) \in \mathcal{M}_k[\frac{1}{[\mathbb{P}_k^i]}]_{i \geq 1} =: \mathcal{M}_{l,\mathbf{loc}}$ where $[\mathbb{P}_k^i] = 1 + \mathbb{L} + \dots + \mathbb{L}^i$
- Eu may be extended to $\mathcal{M}_{k,loc}$ Eu : $\mathcal{M}_{k,loc} \longrightarrow \mathbb{Q}$
- $\bullet \quad \Longrightarrow \quad \mathbf{Eu}(\mathcal{Z}_{\mathbf{mot}}\left(\mathbb{L}^{-s}\right)) = \mathcal{Z}_{\mathbf{top},f}$

Remark 1

$$\mathbf{Eu}(\mathfrak{X}_n) = \bigwedge (\mathbf{M}^n, \mathbf{H}^{\bullet}(\mathbf{F}, \mathbb{C}))$$

- \mathbf{M}^n is the monodromy operator
- **F** is the Milnor fibre at 0

$$\wedge (\mathbf{M}^n) = \sum (-1)^{-i} \mathbf{Tr} (\mathbf{M}^n, \mathbf{H}^i)$$

Remark 2

$$\mathfrak{X} \xrightarrow{f_n} \mathbb{G}_{m,k} = \mathbb{A}^1_k \setminus 0$$

$$\phi \longmapsto \mathbf{ac}(f(\phi)) = \text{coefficient of } t^n \text{ in } f(\phi)$$

Contains a lot of information

X, X' birational Calabi-Yau

$$X''$$
 $\xrightarrow{h'}$

X'' smooth h, h' birational

$$X \leftarrow \frac{h}{\text{Compute}}$$
 X

$$\bullet \quad \Longrightarrow \quad \mu\left(\mathcal{L}(X)\right) = \mu\left(\mathcal{L}(X')\right)$$

$$\bullet \quad \Longrightarrow \quad \frac{[X]}{\mathbb{L}^d} = \frac{[X']}{\mathbb{L}^d}$$

- X smooth so $\mu(\mathcal{L}(X)) = \frac{[X]}{\mathbb{L}^d}$
- So [X] = [X'] in $\overline{\mathcal{M}}_k$

If X, X' are k-equivalent, meaning that:

$$\exists X'' \longrightarrow h'$$

$$X \longleftarrow h$$
 X'

such that $h^*\Omega_X^d = {h'}^*\Omega_{X'}^d$

Then \Longrightarrow [X] = [X'] in $\overline{\mathfrak{M}}_k$

- Take X smooth, $h: Y \longrightarrow X$ with exceptional locus DNC
- $\mu\left(\mathcal{L}(X)\right) = \mathbb{L}^{-d} \sum_{I \subseteq J} [E_I^o] \prod \frac{\mathbb{L}-1}{\mathbb{L}^{\nu_i} 1} = \frac{[X]}{\mathbb{L}^d}$
- \Longrightarrow $\mathbf{Eu}(X) = \sum_{I \subseteq J} \mathbf{Eu}(E_I^o) \prod_{i \in I} \frac{1}{\nu_i}$
- First proved by *p*-adic integration
- Also follows from weak factorization

If X is singular, similarly

- $\mu\left(\mathcal{L}(X)\right) = \mathbb{L}^{-d} \sum E_I^o \prod \frac{\mathbb{L}-1}{\mathbb{L}^{\nu_i}-1}$
- $\mathbf{Eu}(\mu(\mathcal{L}(X))) \in \mathbb{Q}$

- $h: Y \longrightarrow X$ birational proper
- $Y \setminus E \cong X \setminus F$ E,F codimension 1
- $\mathcal{L}(Y) \setminus \mathcal{L}(E) \cong \mathcal{L}(X) \setminus \mathcal{L}(F)$
- $\mathcal{L}(E)$, $\mathcal{L}(F)$ have infinite co-dimension

In $\mu(\mathcal{L}(X))$ X_{sing} counts:

 $\mathcal{L}(X_{\text{sing}})$ has infinite co-dimension but arcs with origin in our X_{sing} and generic point outside count

For free:

• If
$$X = \mathbb{A}^d_k$$
 and $K = \#$ -field

ullet For all most all ${\mathfrak p}$

$$N_{\mathfrak{p}}(\mathcal{Z}_{\mathbf{mot},f})(T) = \int_{R^d_{\mathfrak{p}}} |f|^s_{\mathfrak{p}} |dx|_{\mathfrak{p}}$$

$$\bullet \ T = q^{-s} \qquad q = |k_{\mathfrak{p}}|$$

Also you have Q_{mot} a rational series in $\mathcal{M}_K[\![T]\!]$ such that

$$N_{\mathfrak{p}}(Q_{ ext{mot}}) = Q_{\mathfrak{p}}$$

for almost all \mathfrak{p} where $Q_{\mathfrak{p}}$ is the corresponding Igusa series on $K_{\mathfrak{p}}$

- Question: Do we have a similar result for Serre's series?
- Take X a variety over \mathbb{Z}_p
- $\mathcal{N}_n := \left| X \left(\mathbb{Z}_p /_{p^{n+1} \mathbb{Z}_p} \right) \right|$
- $\tilde{\mathbb{N}}_n := \left| \mathbf{Im} \left(X(\mathbb{Z}_p) \right) \text{ in } X\left(\mathbb{Z}_p /_{p^{n+1}\mathbb{Z}_p} \right) \right|$
- $Q(T) = \sum_{n \ge 0} \mathcal{N}_n T^n$
- $P(T) = \sum_{n>0} \tilde{\mathcal{N}}_n T^n$

Geometric Analogue of \tilde{N}_n

$$X(\mathbb{Z}_p) \longrightarrow X\left(\mathbb{Z}_p/_{p^{n+1}\mathbb{Z}_p}\right)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathcal{L}(X) \xrightarrow{\pi_n} \mathcal{L}_n(X)$$

Consider $P_{\text{mot}}(T) = \sum_{n \geq 0} [\pi_n (\mathcal{L}(X))] T^n$

Remark: $[\pi_n (\mathcal{L}(X))]$ makes sense since $\pi_n (\mathcal{L}(X))$ is constructible

3 Proofs

- 1. Pas Quanitfier Elimination
- 2. Hironaka
- 3. Greenberg's Theorem

Theorem (Greenberg) $\forall n \geq 0 \ \exists \gamma(n) \geq n \ \text{such that}$

$$\pi_n \left(\mathcal{L}(X) \right) = \mathbf{Im} \left(\pi_{\gamma(n)} \mathcal{L}_{\gamma(n)}(X) \longrightarrow \pi_n \mathcal{L}_n(X) \right)$$

Theorem (Denef-Loeser) The series $P_{\text{mot}}(T)$ is rational in $\mathcal{M}_k[\![T]\!]$

- \bullet Take X defined over K a number field
- In general $N_{\mathfrak{p}}(P_{\mathbf{mot}}) \neq P_{\mathfrak{p}}(T)$
- $\phi \in \mathcal{L}_n(X)$
- $\phi \in \mathcal{L}_n(X)(K)$
- $\phi \in \pi_n (\mathcal{L}(X))$ if $\exists \psi \in \mathcal{L}(X)(K')$ such that $\pi_n(\psi) = \phi$