- \bullet k a field
- Var_k =varieties/k =schemes of finite type/k separated and reduced
- $\mathbf{K}_o(\mathbf{Var}_k)$ quotient of the free abelian group on isomorphism classes of \mathbf{Var}_k by the relation $[S] = [S'] + [S \setminus S']$ for S' closed in S
- Ring structure on $\mathbf{K}_o(\mathbf{Var}_k)$ $[S][S'] = [S \times S']$

- $\mathbf{K}_o(\mathbf{Var}_k)$ is universal additive (and multiplicative) invariant
- Example: $k = \mathbb{C}$ Eu : $\mathbf{K}_o(\mathbf{Var}_k) \longrightarrow \mathbb{Z}$

Example: Hodge polynomial for **Char** k=0

- X is smooth and projective
- $h^{p,q} := \dim_k \mathbf{H}^q (X, \Omega^p)$
- $H(X) := \sum (-1)^{p+q} h^{p,q}(X) u^p v^q \in \mathbb{Z}[u,v]$
- Deligne \Longrightarrow H has unique extension to a ring morphism $H: \mathbf{K}_o(\mathbf{Var}_k) \longrightarrow \mathbb{Z}[u,v]$
- $k = \mathbb{C}$ $\mathbf{Eu}(X) = H(X)(1,1)$
- Bittner (using weak factorization) gives very efficient criteria to extend an invariant from smooth projective schemes to $\mathbf{K}_o(\mathbf{Var}_k)$ (Char k=0)
- $E \subseteq X$, $\tilde{E} \subseteq \mathbf{Bl}_E X = Y$ $\chi(X) \chi(E) = \chi(Y) \chi(\tilde{E})$

• Example: Invariant for Char k=0

$$\mathfrak{X}_C: \mathbf{K}_o(\mathbf{Var}_k) \longrightarrow \mathbf{K}_o(\mathbf{ChMot}_k)$$

(Gillet/Soulé, Guillen/Navaro-Aznev)

• Example: $k = \mathbb{F}_q$

$$\mathbf{N}: \mathbf{K}_o(\mathbf{Var}_k) \longrightarrow \mathbb{Z}$$

$$[S] \longmapsto |S(\mathbb{F}_q)|$$

• Example: k = #-field, S variety/k

$$\mathbf{N}_{\mathfrak{p}}(S) := |S(k_{\mathfrak{p}})|$$
 defined for almost all \mathfrak{p}

$$\mathbf{N}: \mathbf{K}_o(\mathbf{Var}_k) \longrightarrow rac{\prod_{\mathfrak{p}} \mathbb{Z}}{\oplus \mathfrak{p} \mathbb{Z}}$$

Theorem (Poonen):

If Char k = 0 then $\mathbf{K}_o(\mathbf{Var}_k)$ is not a domain

Uses factorization by
$$\mathbb{L}$$
 $\mathbf{K}_o(\mathbf{Var}_k) \longrightarrow \mathbf{K}_o(\mathbf{Var}_k)/\mathbb{L}$

$$\mathbf{K}_o(\mathbf{Var}_k) \longleftarrow \mathbb{Z}$$

$$\mathcal{M}_k \longleftarrow \mathbb{Z}[\frac{1}{p}]$$

$$\mathcal{M}_k = \mathbf{K}_o(\mathbf{Var}_k)[\mathbb{L}^{-1}] \qquad \mathbb{L} := [\mathbb{A}_k^1]$$

- $\Theta : \mathbf{K}_o(\mathbf{Var}_k) \longrightarrow \mathfrak{M}_k$
- Don't know whether Θ is injective or not

 \bullet take X to be a variety over k

•
$$X^{(n)} = \underbrace{X \times \cdots \times X}_{n-\text{times}} / \sigma_n$$

- Kapranov: Is $Z(T) := \sum_{n>0} [X^{(n)}]T^n$ a rational series?
- Larsen-Lunts: For most surfaces (Char k = 0) Z(T) is rational in $\mathbf{K}_o(\mathbf{Var}_k)[\![T]\!]$
- Uses $\mathbf{K}_o(\mathbf{Var}_k)/\mathbb{L}$
- Question: Is Z(T) rational in $\mathcal{M}_k[\![T]\!]$

Lemma

If $k = \mathbb{F}_q$, then $\mathcal{N}(Z(X)(T)) = Z_{HW}(X)(T) \in \mathbb{Z}[T]$ where:

$$Z_{HW}(X)(T) = \exp\left(\sum_{n\geq 1} \frac{N_n(X)}{n}T^n\right)$$

with $N_n = |X(\mathbb{F}_{q^n})|$

(Dwork) Z_{HW} is rational

$$\mathbb{Q}_p \longleftrightarrow k((t)) \qquad \mathbb{C}((t))$$

$$\mathbb{Z}_p \longleftrightarrow k[\![t]\!]$$

Integration on $\mathbb{C}((t))^m$ with values in \mathcal{M}_k or $\hat{\mathcal{M}}_k$ (Kontsevich)

$$\mathbf{K}_{o}(\mathbf{Var}_{k}) \longleftarrow \mathbb{Z}$$

$$\hat{\mathcal{M}}_{k} \longleftarrow \mathbb{Z}[\frac{1}{p}]$$

$$\hat{\hat{\mathcal{M}}}_{k} \longleftarrow \mathbb{R}$$

- In \mathbb{R} $p^{-i} \longrightarrow 0$ as $i \longrightarrow \infty$
- In $\hat{\mathcal{M}}_k$ $\mathbb{L}^{-i} \longrightarrow 0$ as $i \longrightarrow \infty$

- $F^m \mathcal{M}_k$ subgroup generated by $\frac{[S]}{\mathbb{L}^i}$ with $i \dim S \leq -m$
- $\frac{1}{\mathbb{L}^m} \in F^{-m} \mathfrak{M}_k$ and $F^{m+1} \subseteq F^m$
- $\bullet \ F^mF^{m'} \subset F^{m+m'}$
- $\hat{\mathcal{M}}_k$ is the completed ring with respect to the filtration F
- Not known whether $\Theta: \mathcal{M}_k \longrightarrow \hat{\mathcal{M}}_k$ is injective or not
- $\overline{\mathfrak{M}}_k := \Theta\left(\mathfrak{M}_k\right)$
- H (so **Eu**) factors through $\overline{\mathcal{M}}_k$

- X variety over k
- X(k[t])
- $\mathcal{L}(X)$ k-scheme such that for every field $K \supseteq k$ $\mathcal{L}(X)(K) = X(K[t])$
- If $X = \mathbb{A}_k^m = \mathbf{Spec}(k[x_1, \dots, x_m])$ $x_i = \sum_{j=0}^{\infty} a_{ij} t^j$
- $\mathcal{L}(X) = \mathbf{Spec}(k[a_{ij}])$
- If $X \subseteq \mathbb{A}_k^m$ is defined by $f_{\alpha} = 0$ then $\mathcal{L}(X)$ is defined by $f_{\alpha}(x_1(t), \dots, x_m(t)) = 0$
- \Longrightarrow equations in terms of the a_{ij} 's

•
$$\pi_n : \mathcal{L}(X) \longrightarrow \mathcal{L}_n(X)$$

- \bullet Assume X is smooth
- Take $A \subseteq \mathcal{L}_n(X)$ a constructible set
- Remark: $[A] \in \mathbf{K}_o(\mathbf{Var}_k)$
- $C := \pi_n^{-1}(A)$ cylinder
- $\mu(C) := \frac{[A]}{\mathbb{L}^{(n+1)d}}$ where $d = \dim X$

- If A' = pre-image of A in $\mathcal{L}_{n+1}(X)$ $C = \pi_{n+1}^{-1}(A')$
- Should check: $\frac{[A']}{\mathbb{L}^{(n+1)d}} = \frac{[A]}{\mathbb{L}^{(n+1)d}}$
- This is OK because X being smooth, $\mathcal{L}_{n+1}(X) \longrightarrow \mathcal{L}_n(X)$ is a Zariski function with fibre \mathbb{A}^d_k

- We can arrange a measure for semi-algebraic subsets of $\mathcal{L}(X)$
- Assume $X = \mathbb{A}_k^m$
- Consider Pas language:

Sorts
$$\longrightarrow$$
 K value field ring language
 \longrightarrow k residue field ring language
 \longrightarrow Γ value group Presburger language

$$\bullet$$
 + · val : $k \setminus 0 \longrightarrow \Gamma$

•

$$\cdot$$
ac: K — k

$$x \longmapsto \text{residue class of } t^{-\text{val}(x)}x \text{ in } k$$

0 if
$$x = 0$$

- If Char k = 0 K = k(t) satisfies QE in Pas language
- Semi-algebraic subsets of X are the definable subsets in Pas language
- Semi-algebraic subsets have a measure in $\hat{\mathcal{M}}_k$

Theorem (Denef-Loeser)

Consider $h: Y \longrightarrow X$ a birational proper morphism of varieties with Y smooth. Take $A \subseteq \mathcal{L}(X)$ measurable, $\alpha: A \longrightarrow \mathbb{N}$ a function then

$$\int_{A} \mathbb{L}^{-\alpha} d\mu = \int_{h^{-1}(A)} \mathbb{L}^{-\alpha \circ h - \operatorname{ord}(\operatorname{jac}(h))} d\mu$$

where

$$\int_{A} \mathbb{L}^{-\alpha} d\mu := \sum_{i>0} \mathbb{L}^{--i} \mathbf{vol} \left(\alpha^{-1}(i)\right) \in \hat{\mathcal{M}}_{k}$$

and $\operatorname{ord}(\operatorname{\mathbf{jac}}(h))$ at an arc $\phi \in \mathcal{L}(Y)$ is the order of the jacobian of h at ϕ .

$$h: \mathcal{L}_n(Y) \longrightarrow \mathcal{L}_n(X)$$