Denef gave a proof of Macintyre's theorem using a cell decomposition for which he gave a direct geometric proof

Using cell decomposition we have:

$\underline{\text{Theorem}}(\text{Denef})$

- $(A_{\lambda,l})_{\substack{\lambda \in \mathbb{Q}_p^m \\ l \in \mathbb{Z}^r}}$ definable family of bounded subsets of \mathbb{Q}_p^N
- $\mu_n(A_{\lambda,l})$ is a finite Q-linear combination of functions:

$$\begin{cases} p^{-\alpha(\lambda,l)} \\ \beta(\lambda,l) \end{cases}$$

where α , β are definable \mathbb{Z} valued functions

- Assume no λ i.e. m = 0
- Then α , β are Presburger functions
- Deduce

Corollary

 $\sum_{l \in \mathbb{N}^r} I_l T_1^{l_1} \cdots T_r^{l_r}$ is rational where $I_l = \mu_n (A_l)$

• Corollary

Q and P are rational

Using *p*-adic Integration to Prove Results over $\mathbb C$

- Ax used counting over \mathbb{F}_q to prove results over \mathbb{C}
- For \mathbb{Q}_p integration replaces counting

- Take $f \in \mathbb{C}[x_1, \ldots, x_n]$
- Consider $h: Y \longrightarrow X = \mathbb{A}^n_{\mathbb{C}}$
- Assume Y is smooth, h is proper and a birational isomorphism outside of $h^{-1}(0)$
- Assume $h^{-1}(f=0)$ is a divisor with normal crossings $h^{-1}(f=0) = \sum_{i \in J} N_i E_i$ where $N_i \in \mathbb{N}$ the E_i are smooth divisors, and E_i 's intersect transversally
- $\bullet~h$ exists by Hironaka

- $I \subseteq J$ $E_I := \bigcap_{i \in I} E_i$ $E_I^o := E_I \setminus \bigcup_{j \notin I} E_j$
- Then $Y = \coprod_{I \subset J} E_i^o$ $E_{\emptyset}^o = Y \setminus h^{-1}(f = 0)$
- We write $h^* \Omega_X^n = \Omega_Y^n \sum_{i \in J} (v_i 1) E_i$ with $v_i = m_i + 1$
- In terms of local coordinates:

$$h^* dx_1 \wedge \dots \wedge dx_n = u \prod y_i^{v_i - 1} dy_1 \wedge \dots \wedge dy_n$$

<u>Theorem</u>(Duenef-Loeser, '92)

$$Z_{\text{top},t}(s) = \sum_{I \subseteq J} \frac{\mathbf{Eu}(E_I^o)}{\prod_{i \in I} (N_i s + v_i)}$$

is independent of $h: Y \longrightarrow X$.

• $\mathbf{Eu}(W)$ for a complex algebraic variety is given by:

$$\mathbf{Eu}(W) := \sum_{i \ge 0} (-1)^i \mathbf{Rk} \left(\mathbf{H}_c^i \left(W(\mathbb{C}), \mathbb{C} \right) \right)$$

• $\mathbf{Eu}(W) = \mathbf{Eu}(W') + \mathbf{Eu}(W \setminus W')$ for W' closed in W

Sketch of Proof:

- Assume $f \in K[x_1, \ldots, x_n]$ for K a number field
- Consider \mathfrak{p} a prime ideal, $K_{\mathfrak{p}}$ the completion
- $Z_{\mathfrak{p}}(s) = \int_{R^m \mathfrak{p}} |f|^s$
- Take $h: Y \longrightarrow X$ defined over K, E_i 's also
- Theorem (Denef)

For all most all ${\mathfrak p}$

$$Z_{\mathfrak{p}}(s) = q^{-n} \sum_{I \subseteq J} \# (E_I^o(k_{\mathfrak{p}})) \prod_{i \in I} \frac{(q-1)q^{-(N_i s + v_i)}}{1 - q^{-(N_i s + v_i)}}$$

where $k_{\mathfrak{p}}$ is the residue field of $K_{\mathfrak{p}}$, $q = |k_{\mathfrak{p}}|$, and $E_I^o(k_{\mathfrak{p}})$ makes sense for almost all \mathfrak{p}

• Idea $q \longmapsto 1$

- Take W a variety over K
- For almost all **p**:

$$\#(W(k_{\mathfrak{p}})) = \sum_{i \ge 0} (-1)^{i} \operatorname{Tr} \left(\operatorname{Frob}, \operatorname{H}_{c}^{i} \left(W, \overline{\mathbb{Q}}_{l} \right) \right) \\
= \sum_{i \ge 0} (-1)^{i} \left(\sum_{j=1}^{n} \alpha_{i,j} \right) \\
\alpha_{i,j} = \text{eigenevalues of Frob on } \operatorname{H}_{c}^{i} \left(W, \overline{\mathbb{Q}}_{l} \right)$$

- $k_{\mathfrak{p}}^{(e)}$ finite degree e extension of $k_{\mathfrak{p}}$
- $K_{\mathfrak{p}}^{(e)}$ unramified extensition of degree e of $K_{\mathfrak{p}}$

• $\forall e \geq 1$

$$Z_{\mathfrak{p}}^{(e)}(s) = q^{-ne} \sum_{I \subseteq J} \# \left(E_I^o(k_{\mathfrak{p}}^{(e)}) \right) \prod_{i \in I} \frac{(q^e - 1)q^{-e(N_i s + v_i)}}{1 - q^{-e(N_i s + v_i)}}$$

- For all most all \mathfrak{p} , $\lim_{e\to 0} \# \left(W(k_{\mathfrak{p}}^{(e)}) \right) = \mathbf{Eu}(W)$
- Taking the limit as $e \to 0$ one gets the theorem
- **Remark:** Morally we did integration on $W(\mathbb{F}_q) \quad q \to 1$

Monodromy Conjecture (Igusa)

If s_o is a pole of $\int_{\mathbb{Z}_p^m} |f|^s$ then $\exp(2\pi i s_o)$ is an eigenvalue of the monodromy

- X over $\mathbb C$ a Calabi-Yau variety
- X smooth proper of dimension n and $\exists \omega \in \Omega^n_X(X)$ nowhere vanishing
- Mirror symmetry \implies two birationally equivalaent C-Y varieties have the same Hodge numbers

<u>Theorem</u> (Batyrev, '95)

If X and X' are C-Y and birationally equivalent, then

$$b_i(X) = b_i(X') \quad \forall i \quad \left(b_i = \mathbf{Rk}(\mathbf{H}^i)\right)$$

<u>Idea</u>

- Given $(X, \omega), (X', \omega')$
- Assume X, X' defined over a number field K
- For almost all \mathfrak{p} , and all $e \geq 1$

$$\int_{X(K_{\mathfrak{p}}^{(e)})} |w| = \int_{X'(K_{\mathfrak{p}}^{(e)})} |w'|$$

- \implies for almost all \mathfrak{p} and for all $e \ge 1$ that $X(k_{\mathfrak{p}}^{(e)}) = X'(k_{\mathfrak{p}}^{(e)})$
- $\implies b_i(X) = b_i(X') \ \forall i \text{ by Weil conjectures}$

<u>Remark</u> Kontsevich introduced motivic integration and applied it to show that birational C-Y varieties have the same Hodge numbers