Denef gave a proof of Macintyre's theorem using a cell decomposition for which he gave a direct geometric proof

Using cell decomposition we have:

Theorem(Denef)

- \bullet $(A_{\lambda,l})_{\lambda\in\mathbb{Q}_p^m}$ $l \in \mathbb{Z}^{\bm{\dot{r}}}$ definable family of bounded subsets of \mathbb{Q}_p^N
- $\mu_n(A_{\lambda,l})$ is a finite Q-linear combination of functions:

$$
\begin{cases}\np^{-\alpha(\lambda, l)} \\
\beta(\lambda, l)\n\end{cases}
$$

where α , β are definable $\mathbb Z$ valued functions

- Assume no λ i.e. $m = 0$
- Then α , β are Presburger functions
- Deduce

Corollary

 $\sum_{l\in \mathbb{N}^r} I_lT_1^{l_1}$ $\frac{1}{1}^{l_1}\cdots T_r^{l_r}$ r^{l_r} is rational where $I_l = \mu_n(A_l)$

• Corollary

Q and P are rational

Using p-adic Integration to Prove Results over C

- Ax used counting over \mathbb{F}_q to prove results over $\mathbb C$
- For \mathbb{Q}_p integration replaces counting
- Take $f \in \mathbb{C}[x_1, \ldots, x_n]$
- Consider $h: Y \longrightarrow X = \mathbb{A}_{\mathbb{C}}^n$ $\tilde{\mathbb{C}}$
- Assume Y is smooth, h is proper and a birational isomorphism outside of $h^{-1}(0)$
- Assume $h^{-1}(f=0)$ is a divisor with normal crossings $h^{-1}(f=0) = \sum_{i \in J} N_i E_i$ where $N_i \in \mathbb{N}$ the E_i are smooth divisors, and E_i 's intersect transversally
- \bullet *h* exists by Hironaka
- $I \subseteq J$ $E_I := \bigcap_{i \in I} E_i$ $E_I^\circ := E_I \setminus \bigcup_{j \notin I} E_j$
- Then $Y = \coprod_{I \subset J} E_i^o$ $E_{\emptyset}^o = Y \setminus h^{-1}(f = 0)$
- We write $h^*\Omega_X^n$ $S_X^n = \Omega_Y^n - \sum_{i \in J} (v_i - 1) E_i$ with $v_i = m_i + 1$
- In terms of local coordinates:

$$
h^* dx_1 \wedge \cdots \wedge dx_n = u \prod y_i^{v_i - 1} dy_1 \wedge \cdots \wedge dy_n
$$

Theorem(Duenef-Loeser, '92)

$$
Z_{\text{top},t}(s) = \sum_{I \subseteq J} \frac{\mathbf{E} \mathbf{u}(E_I^o)}{\prod_{i \in I} (N_i s + v_i)}
$$

is independent of $h: Y \longrightarrow X$.

• $\mathbf{Eu}(W)$ for a complex algebraic variety is given by:

$$
\mathbf{Eu}(W) := \sum_{i \ge 0} (-1)^i \mathbf{Rk} \big(\mathbf{H}_c^i \left(W(\mathbb{C}), \mathbb{C} \right) \big)
$$

• $Eu(W) = Eu(W') + Eu(W \setminus W')$ for W' closed in W

Sketch of Proof:

- Assume $f \in K[x_1, \ldots, x_n]$ for K a number field
- Consider $\mathfrak p$ a prime ideal, $K_{\mathfrak p}$ the completion
- $Z_{\mathfrak{p}}(s) = \int_{R^m \mathfrak{p}} |f|^s$
- Take $h: Y \longrightarrow X$ defined over K, E_i 's also
- Theorem (Denef)

For all most all p

$$
Z_{\mathfrak{p}}(s) = q^{-n} \sum_{I \subseteq J} \# \left(E_I^o(k_{\mathfrak{p}}) \right) \prod_{i \in I} \frac{(q-1)q^{-(N_i s + v_i)}}{1 - q^{-(N_i s + v_i)}}
$$

where $k_{\mathfrak{p}}$ is the residue field of $K_{\mathfrak{p}}, q = |k_{\mathfrak{p}}|$, and $E_I^o(k_{\mathfrak{p}})$ makes sense for almost all p

• Idea $q \mapsto 1$

- Take W a variety over K
- For almost all p:

$$
#(W(k_{\mathfrak{p}})) = \sum_{i \geq 0} (-1)^{i} \text{Tr}(\text{Frob}, \mathbf{H}_{c}^{i} (W, \overline{\mathbb{Q}}_{l}))
$$

$$
= \sum_{i \geq 0} (-1)^{i} \left(\sum_{j=1}^{n} \alpha_{i,j} \right)
$$

$$
\alpha_{i,j} = \text{eigenevalues of \text{Frob on } H_{c}^{i} (W, \overline{\mathbb{Q}}_{l})
$$

- \bullet $k_{\mathfrak{p}}^{(e)}$ $\mathfrak{p}^{(e)}$ finite degree e extension of $k_{\mathfrak{p}}$
- \bullet $K_{\mathfrak{p}}^{(e)}$ $\mathfrak{p}^{(e)}$ unramified extenstion of degree e of $K_{\mathfrak{p}}$

• $\forall e \geq 1$

$$
Z_{\mathfrak{p}}^{(e)}(s) = q^{-ne} \sum_{I \subseteq J} \# \left(E_I^o(k_{\mathfrak{p}}^{(e)}) \right) \prod_{i \in I} \frac{(q^e - 1)q^{-e(N_i s + v_i)}}{1 - q^{-e(N_i s + v_i)}}
$$

- For all most all \mathfrak{p} , $\lim_{e\to 0} \#$ ($W({k}_{\mathfrak{p}}^{(e)})$ \setminus $={\bf Eu}(W)$
- Taking the limit as $e \rightarrow 0$ one gets the theorem
- Remark: Morally we did integration on $W(\mathbb{F}_q)$ $q \rightarrow 1$

Monodromy Conjecture (Igusa)

If s_o is a pole of $\int_{\mathbb{Z}^m}$ \overline{p} $|f|^s$ then $exp(2\pi i s_o)$ is an eigenvalue of the monodromy

- X over C a Calabi-Yau variety
- X smooth proper of dimension n and $\exists \omega \in \Omega_X^n(X)$ nowhere vanishing
- Mirror symmetry \implies two birationally equivalent C-Y varieties have the same Hodge numbers

Theorem (Batyrev, '95)

If X and X' are C-Y and birationally equivalent, then

$$
b_i(X) = b_i(X') \ \forall i \quad \left(b_i = \mathbf{Rk}(\mathbf{H}^i)\right)
$$

Idea

- Given $(X, \omega), (X', \omega')$
- Assume X, X' defined over a number field K
- For almost all \mathfrak{p} , and all $e \geq 1$

$$
\int_{X(K_{\mathfrak{p}}^{(e)})} |w| = \int_{X'(K_{\mathfrak{p}}^{(e)})} |w'|
$$

- \implies for almost all \mathfrak{p} and for all $e \geq 1$ that $X(k_{\mathfrak{p}}^{(e)}) = X'(k_{\mathfrak{p}}^{(e)})$
- $\implies b_i(X) = b_i(X')$ $\forall i$ by Weil conjectures

Remark Kontsevich introduced motivic integration and applied it to show that birational C-Y varieties have the same Hodge numbers