Motivic and p-adic Integraion

- Andre Weil (1950's)
- Siegel-Weil Formulas
- Tamagawa Numbers

p-adic Integration

- $K = \mathbb{Q}_p$ $R = \mathbb{Z}_p$ $\mathfrak{p} = p\mathbb{Z}_p$
- K finite extension of \mathbb{Q}_p
- val: $K \longrightarrow \mathbb{Z} \cup \{\infty\}$
- $|x| = q^{-\mathbf{val}(x)}$ where $q = |R/\mathfrak{p}|$
- K is \mathbb{Z} -values complete with finite residue field and is totally disconnected

- $(K^n, +)$ is a locally compact (abelian) group
- μ_n Haar measure on K^n , translation invariant and unique if you ask $\mu_n(R^n) = 1$
- ϖ a uniformizing parameter, $\mathbf{val}(\varpi) = 1$
- $\mu_n (a + \varpi^m R^n) = q^{-mn}$ Ball of radius q^{-m}

 $f: K^n \longrightarrow K^n$ K-analytic function

$$\int_{A} |f|^{s} d\mu_{n} = \sum_{i \in \mathbb{Z}} \mu_{n} \left(\mathbf{val}(f) = i \right) q^{-is}$$

If the sum converges in \mathbb{R}

Integration on open $U \subseteq K^n$

If $\phi: U \xrightarrow{\sim} V$ is an analytic isomorphism between two open sets, we have the change of variable formula (CVF):

$$\mu_n|_U = \left| \det \left(\frac{\partial \phi_i}{\partial x_j} \right) \right|^{-1} \phi^* \left(\mu_n|_V \right)$$

- Can use the CVF to integrate smooth analytic varities
- X smooth n-dimensional analytic variety/K
- ω a gauge form on X a top degree nowhere vanishing differential form
- $\int_X |\omega|$ Use local charts $X \supseteq U V \subseteq K^n$
- $\bullet \ \phi^*\omega|_U = f \ dx_1 \wedge \dots \wedge dx_n$

Take $f \in R[x_1, \dots, x_m]$

$$N_n = \left| (x_1, \dots, x_m) \in R/\mathfrak{p}^{n+1}R \mid f(x_1, \dots, x_m) \equiv 0 \pmod{\mathfrak{p}^{n+1}} \right|$$

<u>Problem</u>(Borevich-Shaferevich)

Is the series $Q(T) = \sum_{n>0} N_n T^n \in \mathbb{Z}[T]$ rational?

Theorem (Igusa '76-'78)

Assume Char K = 0 then Q(T) is rational.

Sketch of Proof

- Compare Q(T) with $I(s) = \int_{\mathbb{R}^m} |f|^s d\mu_n$.
- Since

$$N_n = q^{(n+1)m} \mu_n (\{x \in \mathbb{R}^m \mid \mathbf{val}(f(x)) \ge n+1\})$$

And

$$Q(q^{-m-s}) = \frac{q^m}{q - q^{-s}} (1 - I(s))$$

Enough to prove I(s) is rational function of q^{-s}

• Use Hironaka's resolution to get $h: X \longrightarrow R^m$ where X is smooth, h is birational, proper and a isomorphism outside of $h^{-1}(f^{-1}(0))$

- $h^{-1}(f^{-1}(0))$ is a divisor with normal crossings
- In particular, locally on X, $f \circ h = u \cdot y_1^{N_1} \cdots y_m^{N_m}$ with u a unit and y_1, \ldots, y_m local coordinates.
- By CVF I(s) may be expressed as a sum of integrals of the form:

$$\int_{\mathbf{val}(y_i)>s} \prod |y_i|^{N_i s + m_i} |dy_1 \dots dy_m|$$

• Here the m_i 's are defined by:

$$h^* dx_1 \wedge \cdots \wedge dx_n = v \prod y_i^{m_i} dy_1 \wedge \cdots \wedge dy_m$$

where v is a unit

Question(Serre) Take $f \in R[x_1, \dots, x_m]$,

$$\tilde{N}_{n} = \left| \begin{cases} (x_{1}, \dots, x_{m}) \in (R/\mathfrak{p}^{n+1}R) & \exists (y_{1}, \dots, y_{m}) \in R^{m} \\ \text{such that } f(y_{1}, \dots, y_{m}) = 0 \\ \text{and } x \equiv y \pmod{\mathfrak{p}^{n+1}} \end{cases} \right|$$

Is $P(T) = \sum_{n>0} \tilde{N}_n T^n$ rational?

Theorem (Denef, '82)

If Char K = 0, then P(T) is rational

Proof

- Express P(T) as an integral
- $X := \{f = 0\} \text{ in } R^m$

$$J(s) = \int_{R^m} \mathbf{d}(x, X)^s d\mu_m$$

where \mathbf{d} is the distance function.

• Enough to prove J(s) is a rational function of q^{-s}

- Denef uses the fact that the distance function is semi-algebraic.
- Definable function $\mathbb{Q}_p^m \longrightarrow \mathbb{Z}$ means that the graph is definable
- Macintyre's Quantifier Elimination
 - Assume $K = \mathbb{Q}_p$
 - $\mathcal{L}_{\text{Mac}} = 1^{\text{St}}$ -order language $+, -, \times, 0, 1$
 - For $d \geq 2$, P_d is the predicate: x is a d^{th} power of an element in \mathbb{Q}_p
 - Macintyre's Elimination: \mathbb{Q}_p has quantifier elimination in $\mathcal{L}_{\mathbf{Mac}}$

- Uses \mathcal{L}_{Pres} Presburger language $+, \leq, 0, 1, (\equiv \pmod{d})$
- Consider the language \mathcal{L} :
 - 1. With two sorts of variables:
 - Variables running over \mathbb{Q}_p $\mathcal{L}_{\mathbf{Mac}}$
 - Variables running over \mathbb{Z} $\mathcal{L}_{\mathbf{Pres}}$
 - 2. $\operatorname{val}: K \setminus \{0\} \longrightarrow \mathbb{Z}$

- Can consider definable subsets of $\mathbb{Q}_p^m \times \mathbb{Z}^n$ in \mathcal{L}
- Remark: \mathcal{L} -definable sets of \mathbb{Q}_p^m are exactly the semi-algebraic subsets of \mathbb{Q}_p^m
- Remark: If Hironaka's Theorem (in its strong form) is known in Char p then Q is rational in Char p by Igusa's proof
- **Remark:** The rationality of *P* is a much more open problem no known conjectures imply it