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by Florian Pop at Bonn

Lecture 1: Introduction and motivation / The Question

It is one of the basic questions of Algebra to “classify” algebraic objects, like for

instance fields, up to isomorphism. There are several aspects of this question, the

main one being a formalized definition of “classifying”. Rather than riding on

such themes, we will start by giving two typical examples:

1) The isomorphy type of a finite field K is given by its cardinality |K|, i.e.,

if K and L are such fields, then K ∼= L iff |K| = |L|.
1) The isomorphy type of an algebraically closed field K is determined by

two invariants: (i) Absolute transcendence degree td(K), (ii) The characteristic

p = char(K) ≥ 0. In other words, if K and L are algebraically closed fields, then

K ∼= L iff td(K) = td(L) and char(K) = char(L).

Nevertheless, if we want to classify fields K up to isomorphism even in an

“only a little bit” more general context, then we run into very serious difficulties...

A typical example here is the attempt to give the isomorphy types of real closed

fields (it seems first tried by Artin and Schreier). A real closed field K is “as close

as possible” to its algebraic closure K, as [K : K] = 2, and K = K[
√
−1]. These

fields were introduced by Artin in his famous proof of Hilbert’s 17th Problem.

Roughly speaking, the real closed fields are the fields having exactly the same

algebraic properties as the reals ' . One knows quite a lot about real closed fields,

see e.g. Prestel–Roquette [P–R], but for specialists it is clear that the problem

of describing the isomorphism types of all such fields is hopeless... And to move

into more modern times, the same is true for the p-adically closed fields (which

roughly speaking, are the fields having exactly the same algebraic properties as

the p-adics ( p , see loc.cit. above).

This is the place where the model theory enters the scene. The idea is that

one should introduce a classification criterion of algebraic objects —in our case

the fields— which is not as fine as the isomorphism, thus coarser than isomor-

phism, but which is still powerful enough to distinguish between “distinct field

structures”. This new criterion asks for classifying fields up to elementary equiv-

alence, a term which we explain below.

First, let Lfields be the language of fields. Thus this is the language in which

we express the axioms the composition laws Addition + and Multiplication · have

to satisfy in order to have a “field structure”. Let further Afields be the set of all
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the sentences, i.e., parameter free formulas, in the language of fields. Finally, for

every field K, we denote by Th(K) the set of all sentences ϕ ∈ Afields which are

true in K; symbolically written:

Th(K) = { ϕ ∈ Afields | K |=ϕ }

We call Th(K) the elementary theory of K. Further, we say that two fields K

and L are elementarily equivalent, if Th(K) = Th(L), i.e., if they have the same

elementary theory; or in other words, if exactly the same parameter free formulas

(in the language of fields) are true in both K and L.

Remarks:

Suppose that K and L are isomorphic fields. Then Th(K) = Th(L), i.e., iso-

morphic fields have the same elementary theory and are elementarily equivalent.

In particular, classifying fields up elementary equivalence is coarser, (thus easier)

than classifying fields up to isomorphism. Here is a short list of what can “see”

the elementary theory of a field:

1) The characteristic of a field K is obviously encoded in Th(K), i.e., if

Th(K) = Th(L), then char(K) = char(L) (WHY?).

2) Being algebraically closed is obviously encoded in Th(K), i.e., if K is

algebraically closed, and Th(K) = Th(L), then L is algebraically closed (WHY?).

3) Being real closed is encoded in Th(K), i.e., if Th(K) = Th(L), and if K is

real closed, then L is real closed (WHY?). [Hint: Recall the “characterization”

of the real closed fields: K is real closed iff (i) Every sum of squares is again a

square, (ii) Every polynomial of odd degree has a root in K, (iii) −1 is not a

square in K. Clearly, the fact that the “axioms” (i), (ii), (iii), are true or not is

encoded in Th(K).]

4) Being p-adically closed is encoded in Th(K), i.e., if K is p-adically closed,

and Th(K) = Th(L), then L is p-adically closed (WHY?). [Hint: This follows

from the characterization of p-adically closed fields, see for instance [P–R]. We

should remark that the characterization of p-adically closed fields is similar but

though a little bit more complicated than the one of the real closed fields. It uses

the so called MacIntyre’s predicates Pn (n ≥ 1), etc..]

5) A geometric interpretation of the elementary equivalence is the follow-

ing: Let ϕ ∈ Afields be a given sentence, say with variables X1, . . . , Xn. Then ϕ

describes a “constructible subset” Sϕ ⊂ � n defined over � . Now one has:

Theorem. Two fields K and L are elementarily equivalent if and only if

for all ϕ ∈ A it holds: Sϕ(K) 6= /O ⇔ Sϕ(L) 6= /O.

6) Finally, the precise relation between elementary equivalence and isomor-

phism is given via ultra-powers as follows. First, we recall the notion of an ultra-

power of a field: Let K be a given field, I an index set, and D an ultrafilter on I.
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We define the ultra-power K∗ = KI/D of K with respect to D to be KI/∼, where

∼ is the equivalence relation on K I defined by: (xi)i ∼ (yi)i ⇔ { i |xi = yi } ∈ D.

It turns out that K∗ carries in a canonical way a field structure; and the canoni-

cal projection KI → K∗ is a morphism of K-algebras, if we endow K I with the

diagonal embedding K ↪→ KI . We will call the resulting embedding K ↪→ K∗ the

canonical diagonal embedding. In algebraic terms, one can describe the projec-

tion KI → K∗ as follows: Its kernel mD is the set of all the elements (xi)i whose

support does not lie in D. And conversely, any prime ideal n of RI is a maximal

ideal, and the supports of all the elements (xi)i which do not belong to n build

an ultrafilter Dn on I, such that mDn
= n. We will say that the ultra-power K∗

is trivial, if the ultra-filter D is trivial, i.e., ∃ i ∈ I such that D consists of all the

subsets I ′ ⊂ I with i ∈ I ′. Equivalently, D is trivial as above if and only if mD is

the kernel of the ith structural projection KI → K for some i ∈ I. Thus if this is

the case, then K∗ ∼= K as a K-algebra, thus canonically.

We remark that directly by the definition of Th(K) and of the ultra-power

K∗ one has: Th(K) = Th(K∗), thus K and K∗ are elementarily equivalent. Fur-

ther, the precise relation between elementary equivalence and isomorphism is the

following:

Theorem. Two fields K and L are elementarily equivalent iff there exist

ultra-powers K∗ = KI/D and L∗ = LJ/E which are isomorphic.

In particular, by the above Theorem, two elementarily equivalent fields K

and L have isomorphic absolute subfields Kabs ∼= Labs. Here, the absolute field

Kabs of a field K is by definition the relative algebraic closure of the prime field

in K. For instance, ' abs consists of all the algebraic real numbers in ' , whereas

( abs
p consists of all the algebraic p-adic numbers in ( p , and finally, � abs is an

algebraic closure of ( .

I think it is interesting to remark that using ultra-powers of fields, some

famous conjectures/results have a “nice” interpretation as follows: Recall the

Mordell Conjecture (now a Theorem of Faltings), which asserts that every ir-

reducible curve X → K of genus g > 1 over a number field K has only finitely

many K-rational points. This is equivalent to the following fact: The function

field κ(X) of X cannot be embedded in any ultra-power K ∗.1

7) It is one of the basic facts of the model theoretic algebra to show the

following:

1 The so called “non-standard method” developed by Robinson, Robinson–Roquette, Kani, etc.,

—which would provide a different approach to prove the Mordell Conjecture— aims actually to showing

that this last assertion is true...
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Theorem.

(1) Two algebraically closed fields K and L are elementarily equivalent iff

they have the same characteristic. Thus ( and � p (all primes p) are representa-

tives for the elementary equivalence classes of all algebraically closed fields.

(2) All real closed fields are elementarily equivalent. The field ' abs of all real

algebraic numbers is real closed and contained in all real closed fields. Finally ' abs

is a representative for the elementary equivalence class of all real closed fields.

(3) All p-adically closed fields are elementarily equivalent. The field ( abs
p

of all real p-adic numbers is p-adically closed and contained in all p-adic closed

fields. Finally ( abs
p is a representative for the elementary equivalence class of all

p-adically closed fields (each p).

A way to view the Theorem above is that —in contrast to the classification

up the isomorphism—, the “sufficiently localized” fields,2 e.g. the algebraically

closed, and/or the real and/or p-adically closed ones have a very easy classification

up the elementary equivalence: The elementary equivalence classes are exactly the

elementary equivalence classes of the absolute parts of these fields: The algebraic

closures ( , respectively � p (all p), and respectively ' abs and ( abs
p .

Therefore, the natural question arises about the nature of the elementary

equivalence classes of the “most global” fields, which are the arithmetic function

fields, and in a precise sense also the geometric function fields.

First let us recall the following general facts about function fields:

Let k be a given base field. A function field K|k is a field extension with K

a finitely generated field over k. A model of K|k is any irreducible variety X → k

such that k(X) = K. We denote by d = td(K|k) = dim(X) the transcendence

degree of K|k. Any two models X → k and Y → k of K|k are birationally equiva-

lent over k, i.e., there exist dominant rational maps f : X ---> Y and g : Y ---> X

such that f ◦ g and g ◦ f are equivalent as rational maps to idY , respectively

idX . Finally, the category of all function fields over k and k-embeddings of fields

is equivalent to the category of irreducible k-varieties and dominant rational k-

maps.

Finally, given two function fields K|k and L|l, an embedding of function

fields ı : K|k ↪→ L|l is a field embedding mapping k into l such that the composi-

tum Kı = ı(K) · l is a function field over l with td(Kı|l) = td(K|k). Equivalently,

if (t1, . . . , td) is a transcendence basis of K|k, then its image ı(t1, . . . , tr) is con-

tained in a transcendence basis of L|l. In geometric terms, giving an embedding

of function fields ı : K|k ↪→ L|l is equivalent to giving the following: First, mod-

els X → k and Y → l for K|k respectively L|l; second, an embedding of fields

2 The precise sense of “localizing” here comes from the étale topology —at least in the characteristic

zero case—...
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ı0 : k → l; and third, a dominant rational map Y ---> Xı, where Xı is one of the

irreducible components of the base change Xl := X ×ı0 l of X to l via ı0.

Definition.

1) An arithmetic function field over a prime field k is a finitely generated

field extension K|k. Equivalently, K is the function field of an irreducible k-variety

X → k.

2) A geometric function field over an algebraically closed field k is a finitely

generated field extension K|k. Equivalently, K is the function field of an irre-

ducible k-variety X → k.

We denote by F the class of all function fields, and by Farith and Fgeom the

sub-classes of all arithmetic, respectively geometric, function fields.

Problem: Elementary equivalence versus Isomorphisms (EeVIP)

Let K be a given arithmetic or geometric function field. Describe the ele-

mentary equivalence class of K inside F .

Conjecturally, this class consists of K itself. In other words, if L is another

such field, then Th(K) = Th(L) if and only if K ∼= L as fields.

I learned the above question in the arithmetic case from Sabbagh in the

Eighties. And it seems that the first who tried to tackle this Problem in the geo-

metric case was Duret [D1], [D2], who worked under the hypothesis td(K|k) = 1.

Thus K|k is the function field of a projective smooth curve X → k, say of genus

g. Duret showed that the EeVIP has a positive answer in the case g 6= 1, and

further, in the case char(k) = 0, if X is an elliptic curve without complex multi-

plication. This was extended by Pierce [Pi] to all characteristics.

To start with, let us mention the first major difficulty one has to overcome

when trying to tackle the above problem in general: It is to show that the tran-

scendence degree d = td(K|k) of the function field in discussion is encoded in the

elementary theory Th(K) of K, and more precisely, to saying that a given system

of elements (t1, . . . , td) is a separable transcendence basis of the function field in

discussion.3

Now the main results we want to explain in these lectures are roughly speak-

ing the following:

Theorem A (Arithmetic variant). Let K and L be arithmetic function fields

which are elementarily equivalent. Let k and l be their absolute subfields. Then

one has:

3 There is a fine difference between the two questions: The fact that the transcendence degree is

d might be expressible by an infinite “scheme of axioms ”, like for instance, the fact that a field has

characteristic zero. In contrast to this, to say that (t1 , . . . , td) is a transcendence basis of K|k must be

expressed by a single formula in which t1, . . . , td are the only parameters...
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(1) k and l are isomorphic, and td(K|k) equals td(L|l).
(2) Moreover, there exists a field embedding ı : K → L such that L is finite

separable over ı(K).

In particular, if K is of general type, then K ∼= L as fields.

Theorem B (Geometric variant). Let K|k and L|l be function fields over

algebraically closed fields k, respectively l. Suppose that K and L are elementarily

equivalent as fields. Then one has:

(1) k and l are elementarily equivalent, and td(K|k) equals td(L|l).
(2) Suppose that K|k is of general type. Then there exist function subfields

K0|k0 ↪→ K|k and L0|l0 ↪→ L|l such that K = K0 k and L = L0 l, and further

K0|k0
∼= L0|l0 as function fields.

In particular, if k ∼= l are isomorphic, then K|k ∼= L|l are isomorphic as

function fields.

In the above Theorems, we call a function field K|k of general type, if it

has projective smooth models X → k, which are varieties of general type. For

instance, a projective smooth curve X → k is of general type if and only if its

genus satisfies g > 1. Thus the results of Duret and Pierce mentioned above

go beyond Theorem B above in the case of td(K|k) = 1.

Nevertheless, it remains an open question to give the precise relation

between elementary equivalence and isomorphism in the “non-general” case.

We would also like to mention that a preliminary form of the above results,

more precisely, Theorem A in the case td(K|k) ≤ 1, were known to the author

already in the Nineties, but the approach was different, see [P2]. The main tool

was the Mordell Conjecture (as proved by Faltings). In particular, we exploited

the relation between rational points on general curves and the elementary theory

of function fields of curves over number fields. It remains a serious open ques-

tion to understand in general the relation between these two apparently different

questions. Finally, B. Poonen communicated to me (private, Sept. 2001) that

he also has a proof of the Theorem A above (relaying on arguments from [P2]).

Lecture 2: Detecting td( ) and transcendence bases

In this Section we explain how one can describe by a relatively simple assertion

in the language of fields the fact that an arithmetic/geometric function field K|k
has a transcendence basis B = (t1, . . . , td). In particular, from this it follows that

the fact td(K|k) = d is expressible by a relatively simple sentence in the language

of fields.

We should remark that in the positive characteristic case, both for arith-

metic and geometric function fields, as well as for geometric function fields, the

6



answer to this question about detecting transcendence bases is “easy”. Neverthe-

less, for function fields over ( , the only way we can do this is by using the Milnor

Conjecture (as proved by Voevodsky, Rost, Voevodsky–Orlov–Vishik, et

al, see Kahn’s [Kh] talk in the Séminaire Bourbaki, and Pfister [Pf2]).

The idea is to use quadratic Pfister forms in characteristic zero, and a

straightforward generalization of these in characteristic p > 0. And to ask that

such forms have properties like being universal, and do/do not represent 0. But

let first recall the definitions.

Definition. Let q = q(X1, . . . , Xn) be a homogeneous form over some base

field K. Let K ′|K be a field extension. We will say that:

1) q is universal over K ′, if the following ∀∃ -formula over K ′ is true in K ′:

∀ a ∈ K ′× ∃ a1, . . . , an ∈ K ′ such that q(a1, . . . , an) = a.

2) q represents 0 over K ′, if the following ∃ -formula over K ′ is true in K ′:

∃ a1, . . . , an ∈ K ′, not all equal to 0, such that q(a1, . . . , an) = 0.

Fact 1. In particular, in the above context, let K ′ = K[α], with α some

fixed absolute algebraic integer, e.g., α2 = 1. Then the following holds:

1) “q is universal over K ′ ” is a ∀∃-formula in the language of fields having

the coefficients of q as the only parameters.

2) “ q does not represent 0 over K ′ ” is a ∀ -formula in the language of

fields having the coefficients of q as the only parameters.

We will use this observation in the following context: Let K|k be a function

field with td(K|k) = d. For a given system (t1, . . . , tr) = t of elements of K×,

and a natural number p, we consider the following form of degree p in n = pr

variables Xi over K:

q
(p)
(t1,...,tr)

=
∑

i

tiXp
i

where i = (i1, . . . , ir) (0 ≤ i1, . . . , ir < p) and ti = ti11 . . . tird . We remark that in

the case p = 2, the resulting quadratic form q(t1,...,tr) := q
(2)
(t1,...,tr) defined above

is the r-fold Pfister form << t1, . . . , tr >> attached to the system of elements

(t1, . . . , tr) of K×.

Taking into account that the forms q
(p)
(t1,...,tr) have only the monomials ti as

coefficients, by the Fact above we have the following:

Fact 2. In the above context, let p be a fixed prime number, and r a fixed

natural number. Let K ′ = K[α], with α some fixed absolute algebraic integer, e.g.,

α2 = 1.Then the following holds:

1) “∀ t1, . . . , td, the resulting q
(p)
(t1,...,tr) is universal over K ′” is a ∀∃-sentence

in the language of fields.
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2) “ ∃ t1, . . . , td, such that the resulting q
(p)
(t1,...,tr) is universal over K ′ ” is an

∃ ∀ ∃ -sentence in the language of fields.

3) “ ∃ t1, . . . , td such that q
(p)
(t1,...,tr) does not represent 0 over K ′ ” is an

∃ ∀ -sentence in the language of fields.

Case 1) k has positive characteristic

In the above context, suppose k is a perfect field of characteristic p > 0 (in

particular, k might be finite or algebraically closed). We recall the following two

definitions:

1) A system of elements (t1, . . . , tr) of K× is called p-independent, if the sys-

tem of all the monomials ti = ti11 . . . tird (0 ≤ i1, . . . , ir < p) is linearly independent

over Kp.

2) A system of elements (t1, . . . , td) of K× is said to be a p-basis of K|k, if

the system of all the monomials ti is a vector space basis of K over Kp.

Both assertion 1) and assertion 2) can be interpreted as formulas in the lan-

guage of fields with no parameters excepting t1, . . . , tr by using the form q
(p)
(t1,...,tr)

introduced above. Namely for a given system (t1, . . . , tr) of elements of K× as

above, one has: The form q
(p)
(t1,...,tr) does not represent 0 over K if and only if

(t1, . . . , tr) is p-independent; and the form q
(p)
(t1,...,td) is universal over K, but does

not represent 0 over K if and only if (t1, . . . , td) is a p-basis of K|k.

Finally, recall the relation of p-independence with the transcendence bases

of a function field K|k, where k is a perfect field, like for instance a finite or

an algebraically closed field, see e.g. [Ei], Appendix 1. For a system of elements

(t1, . . . , tr) of K× the following hold:

1)′ (t1, . . . , tr) is p-independent if and only if (t1, . . . , tr) can be completed to

a separable transcendence basis of K|k if and only if q
(p)
(t1,...,tr) does not represent

0 over K.

2)′ (t1, . . . , td) is a p-basis if and only if (t1, . . . , td) is a separable tran-

scendence basis of K|k iff the form q
(p)
(t1,...,td) is universal over K, but does not

represent 0 over K.

Thus combining the facts above we get the following description of the

separable transcendence bases of K|k:

Fact 3. Let K|k be a function field with k a perfect field of characteristic

p > 0. The following hold:

(1) K|k has transcendence degree d if and only if the following ∃∀∃-sentence

is true in K:

“ ∃ t1, . . . , td such that q
(p)
(t1,...,td) is universal over K, but does not represent

0 over K ”.
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(2) A system (t1, . . . , td) of elements of K× is a separable transcendence

basis of K|k if and only if the sentence from (1) is true for (t1, . . . , td).

Before analyzing the arithmetic case over ( , respectively the geometric case

for char 6= 2, let us mention the Lemma below for later use. First, we remark

that the forms q
(p)
(t1,...,tr) above are special cases of the so called “pure forms”.

The pure forms over an arbitrary field K are homogeneous forms of the shape

q = q(X1, . . . , Xn) = a1X
p
1 + . . . + anXp

n. Thus q is defined by its coefficients

(a1, . . . , an). The pure forms can be “added” and “multiplied” in an obvious way:

Let namely q′ be another such form of degree p, say with coefficients (a′
1, . . . , a

′
n′).

Then define q⊕q′ to be the pure form of degree p in (n+n′) variables with coeffi-

cients (a1, . . . , an, a′1, . . . , a
′
n′); and define q⊗q′ to be the pure form of degree p in

nn′ variables with coefficients (a1a
′
1, . . . , ana′n′). Clearly, ⊕ and ⊗ are associative

and commutative, and ⊗ is distributive with respect to ⊕.

Notation/Remark: Let q be a given pure form of degree p with coefficients

(a1, . . . , an), and a ∈ K× given. Define: <<a>>(p):= q
(p)
( a ) to be the pure form of

degree p with coefficients (1, a, . . . , ap−1).

In particular, for m = 2, the resulting <<a>>:=<<a>>(2)= X2
1 + aX2

2 is

the usual 1-fold Pfister form attached to (a).

And in general, q
(p)
(t1,...,tr) =<<t1>>(p) ⊗ . . .⊗ <<tr >>(p).

Lemma 4. Let K be a discrete valued field with residue field K0 and

uniformizing parameter π. Let q0 be a pure form of degree p over K0 which

does not represent 0 over K0. For some lifting q̃0 of q0 to K, let us denote

q =<<π>>(p) ⊗ q̃0. Then if q does not represent 0 over K.

Proof. Exercise.

Case 2) k is algebraically closed, char(k) 6= 2

Suppose that K|k is a function field with k an algebraically closed field of char-

acteristic 6= 2. Using the Pfister forms q(t1,...,tr) := q
(2)
(t1,...,tr) defined above, we can

characterize the transcendence degree of K|k, and even more, determine whether

a system of elements (t1, . . . , td) of K× is a transcendence basis of K|k as follows.

The role of the theory of p-bases from the characteristic p > 0 case above is

played now by another elementary property of fields as follows. Let us first recall

that a field K is called a Cr-field, the following holds: Every form q(X1, . . . , Xn)

of degree p represents 0, provided n > pr. The following facts are well known, see

e.g. Lang [L1], or [S1], II, § 3–4:

1) Some prominent examples:

- The finite fields are C1-fields (Chevalley–Warning); see e.g. [S3].
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- The complete discrete valued fields with algebraically closed residue field

are C1-fields (Lang’s Thesis).

• It is a famous open question, the Artin’s Conjecture, whether ( ab is a

C1-field.

2) Let K be a Cr-field. Then every algebraic extension K ′|K of K is a

Cr-field too (Lang’s Thesis).

3) Let k be a Cr-field, and let K|k be a field extension with td(K|k) = d.

Then K is a Cr+d field (Lang’s Thesis, + Nagata).

In particular, let k be an algebraically closed field, and K|k be an arbitrary

field extension with td(K|k) = d. Then K is a Cd-field

Fact 5. Let K|k be a function field with k an algebraically closed field with

char(k) 6= 2. In notations as above the following hold:

(1) K|k has transcendence degree d and only if the following conjunction of

a ∀ ∃ -sentence and an ∃ ∀ -sentences in the language of fields is true in K:

“ ∀ t1, . . . , td the Pfister from q(t1,...,td) is universal over K and ∃ t1, . . . , td
such that q(t1,...,td) does not represent 0 over K ”.

(2) Suppose that td(K|k) = d. Let (t1, . . . , td) be a system of elements of

K× as above such that q(t1,...,td) does not represent 0 over K . Then (t1, . . . , td) is

a transcendence basis of K|k.

Zusatz: Let (t1, . . . , td) be a separable transcendence basis of K|k. Then

“for almost all” tuples (a1, . . . , ad) with ai ∈ k, the resulting d-fold Pfister form

q(t1−a1,...,td−ad) does not represent 0 over K.

Proof. (See [P1], Section 1, Fact 1.2.) Let d = td(K|k). We first show that

q(t1,...,td) is universal over K for every (t1, . . . , td). Namely, for every a ∈ K×,

consider the following quadratic form q = aX2
0 − q(t1,...,td). Then q has 2d + 1

variables, hence it represents 0 over K. Since char(k) 6= 2, from this it follows

that q(t1,...,td) represents a over K (WHY?).

We next show that for a properly chosen (t1, . . . , td), the resulting Pfister

form q(t1,...,td) does not represent 0 over K. In order to do this, let (t1, . . . , td)

be an arbitrary separable transcendence basis for K|k. Set R = k[t1, . . . , td], and

denote by S the integral closure of R in K. Then the resulting homomorphism

of k-algebras R ↪→ S is étale on a Zariski open subset of SpecR ∼= � d
k . Thus for

“almost all” a ∈ � d
k (k), the resulting system of elements (t1 −a1, . . . , td −ad) is a

system of parameters at every point of SpecS which lies over a. Let x ∈ SpecS

be such a closed point, and (Ox, mx) its local ring. Then the mx-adic completion

of (Ox, mx) is k-isomorphic to k[[t1−a1, . . . , td−ad]]. From this we deduce that K

is k-embeddable into Λ := k((t1 −a1)) . . . ((td −ad)), the field of iterated Laurent

power series in (t1 −a1, . . . , td −ad). Now in order to conclude that q(t1 ,...,td) does

10



not represent 0 over K, it is sufficient to show that q(t1,...,td) does not represent 0

over Λ. This last assertion follows by induction from the Lemma 4 above.

In order to finish the proof of Fact 5, we have to show that no natural number

r < td(K|k) has the property that for every system (t1, . . . , tr) of elements of

K×, the resulting q(t1,...,tr) is universal. This is an immediate consequence of the

discussion above: Let (t1, . . . , td) be a transcendence basis such that q(t1,...,tr) does

not represent 0 over K. Let (t1, . . . , tr) be its sub-system with r < d. Then by

the general theory of Pfister forms we have: Since q(t1,...,td) does not represent 0

over K, the sub-form q(t1,...,tr) does not represent td over K.

Lecture 3: Continuation... / Proof of Thm A

Case 3) k is a number field

We now come to discussing the arithmetic case, which is the most interesting

(but most difficult) one. Thus here K|k is a function field over a number field k.

The proof is quite technical, and relies on deep results relating the transcendence

degree to properties of Pfister forms via a cohomological characterization of td( )

and the Milnor Conjecture... Therefore we will only sketch the proof here, see

[P1] for details.

a) Cohomological characterization of td(K|k)

For a function field K|k as above, and a prime number `, we denote by vcd`(K)

the virtual `-cohomological dimension of K. It actually equals cd`(E) for any

non-real finite extension E|K. In particular, if
√
−1 lies in the field in discussion,

then vcd` = cd` for every ` 6= char. By classical results in Galois cohomology, see

e.g. Serre [S1], Ch.II, one has:

- If ` = char(K), then cd`(K) = 1 (this is a theorem of Shafarevich).

- If K is finite, then vcd`(K) = 1 for all `. And if K is a number field, then

vcd`(K) = 2 for all ` (this is a theorem of Tate).

Combined with the fact that vcd`(K) = vcd`(k) + td(K|k) for all function

fields K|k, and all ` 6= char(k), we finally get:

Fact 6. Let K|k be a function field over a number field k. Then one has:

td(K|k) = d = cd`(E)−2 for every finite field extension E|K such that
√
−1 ∈ E.

We next want to give a criterion to detect the transcendence degree d above

in pure cohomological terms. In order to do this, let µ` be the group of `th roots

of unity. Via the canonical Kummer theory isomorphism δ : E×/` → H1(GE , µ`),

we get canonical homomorphisms

(E×)n → (E×/ ` )n → H1(GE , µ`)
n ∪−→Hn(GE , µ⊗n

` ),

defined/denoted by (a1, . . . , an) 7→ a1∪. . .∪an. We further remark, that if µ` ⊂ E,

then H1(GE , µ`) = Hom(GE , � /`) is the character group of GE with values in

11



� /`, and second, Hn(GE , µ⊗n
` ) can be identified with Hn(GE , � /`). The main

observation is now the following

Lemma 7. In the context of Fact above, let ` be a prime number. Let E be

a finite extension of K containing µ2`. Then m = vcd`(K) is the unique natural

number m with the following properties:

(i) There exist a1, . . . , am in K× such that a1 ∪ . . . ∪ am 6= 0 as an element

of Hm(GE , � /`).

(ii) For arbitrary elements a1 . . . , am+1 ∈ K×, one has: The cup product

a1 ∪ . . . ∪ am+1 = 0 in Hm+1(GE , � /`).

Proof. See [P1], Section 1, C), Proof of Fact 1.3.

b) The Milnor Conjecture and td(K|k)

Let KM
n (E) denote the ntn Milnor K-group of a field E. Recall that the canonical

isomorphism KM
1 (E)/` ∼= E×/` ∼= H1(GE , µ`) gives rise to the tame symbol from

the Milnor K-theory, which is a canonical homomorphisms

KM
n (E)/` h−→Hn(GE , µ⊗n

` ),

defined by {a1, . . . , an} 7→ a1 ∪ . . . ∪ an, see e.g. Milnor [M1]. It is conjectured

that h is an isomorphism for all ` prime to char(E). This is a generalization of

the so called Milnor Conjecture, which is the above assertion for ` = 2. The

point is that the Milnor Conjecture has a deep arithmetic significance related

to the arithmetic of the quadratic forms (for general ` we do not have yet an

interpretation of the “generalized Milnor Conjecture”). The Milnor conjecture

is now proved by contributions of several people, with the last major steps by

Voevodsky [V1], Rost [R1], [R2], Voevodsky–Orlov–Vishik [OVV], et

al, see Kahn [Kh]. We describe below the facts which are significant for us.

With E as above, let W (E) be the Witt ring of E, i.e., the set of the

isomorphy classes of anisotropic quadratic forms over E with the usual addition

and multiplication. Let I(E) be the ideal of even dimensional quadratic forms,

and In(E) its powers. The set of alln-fold Pfister forms generates In(E)/In+1(E).

Milnor defined for every n a homomorphism dn : KM
n (E)/2 → In(E)/In+1(E) and

conjectured that both homomorphisms hn : KM
n (E)/2 → Hn(GE , � /2), and dn are

in fact isomorphisms. In particular, this would give rise to higher cohomological

invariants for quadratic forms en : In(E)/In+1(E) → Hn(GE , � /2) for every n,

thus generalizing the dim(mod 2), the discriminant, and the Clifford (Hasse-Witt)

invariant. The above isomorphism would work at the level of the Pfister forms as

follows, see Elman–Lam [E–L], Jacobs–Rost, [J–R], etc. for more details and

literature:

en : <<a1, . . . , an >> 7→ (−a1) ∪ . . . ∪ (−an).

(Note that the minus-sign comes from a convention which is not necessarily the

same in all sources. It depends on the definition of << a >> which is either
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<< a >> = X2
0 + aX2

1 or << a >> = X2
0 + aX2

1 . We work with the “+”

convention.) We recall the following fact: Let q = << a1, . . . , an >> be a given

Pfister form, and a ∈ E×. Then q represents −a if and only if q ⊗ <<a>> is

hyperbolic. Thus passing to Galois cohomology and using the Milnor Conjecture,

we get the following:

Lemma 8. (Relying on the Milnor Conjectures). For an n-fold Pfister

form q = <<a1, . . . , an >> and a ∈ E× the following are equivalent:

(1) q represents −a.

(2) (−a1) ∪ . . . ∪ (−an) ∪ (−a) = 0 in Hn+1(GE , � /2).

After these introductory remarks we now can announce the characterization

of td(K|k) and of transcendence bases in the case k is a number field as follows.

As above, for systems (t1, . . . , tr) of elements of K×, we denote by q(t1,...,tr) the

corresponding Pfister form. Further, for elements ai, a, b ∈ k× (i = 1, . . . , r) and

(t1, . . . , tr) given, we also consider the “extended system” (t1−a1, . . . , td−ad, a, b).

Fact 9. Let K|k be a function field with k a number field. In notations as

above the following hold:

(1) K|k has transcendence degree d and only if the following conjunction of

a ∀ ∃ -sentence and an ∃ ∀ -sentences in the language of fields is true in K:

“ ∀ t1, . . . , td+2, the Pfister form q(t1,...,td+2) is universal over K[
√
−1], and

∃ t1, . . . , td+2 such that q(t1,...,td+2) does not represent 0 over K[
√
−1] ”.

(2) Suppose that td(K|k) = d. For a system (t1, . . . , td) of elements of K×

as above suppose that there exist a, b ∈ k× such that q(t1,...,td+2) does not represent

0 over K[
√
−1] . Then (t1, . . . , td) is a transcendence basis of K|k.

Zusatz: Let (t1, . . . , td) be a transcendence basis of K|k. Then there ex-

ist “many” systems of natural numbers (a1, . . . , ad, a, b) such that the result-

ing quadratic form q(t1−a1,...,td−ad,a,b) is universal, but does not represent 0 over

K[
√
−1].

Proof. (See [P1], Section 1, Fact 1.3 for details.) The idea of the proof

is the following: First, by the two Lemmas above it follows that q(t1,...,td+2) is

universal over K[
√
−1]. Now let us show that there exist transcendence bases

(t1, . . . , td) and natural numbers (a1, . . . , ad, a, b) such that the assertion of the

Zusatz is true. The proof follows the same pattern as the proof of Fact 5: We

set R = � [t1, . . . , td], and let S denote the integral closure of R in K[
√
−1].

Then R ↪→ S is a finite ring extension, which is étale on a Zariski open subset

of SpecR ∼= � d . In particular, all sufficiently large prime numbers p are not

ramified in S. Then using the Generalized Chebotarev Density Theorem, see e.g.,

Serre [S2], there exist “many” closed points x ∈ SpecR such that, denoting by
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p = px the prime number over which x lies, and choosing some natural number b

such that
√

b is not in K[
√
−1] we have:

i) b is not a square in the residue field κ(x).

ii) R ↪→ S is totally split over x.

Now let m be the maximal ideal of R defining x, and n ⊂ S a maximal

ideal defining a point y of SpecS over x. Then by the choice of x, it follows

that m = (t1 − a1, . . . , td − ad, a) for some natural numbers ai (i = 1, . . . , d), and

a := p the given prime number; and further, n = (t1 − a1, . . . , td − ad, a) too; and

(t1−a1, . . . , td−ad, a) is a system of regular parameters of the regular ring Sn. In

particular, K[
√
−1] is k-embeddable into Λ = kp((t1 −a1)) . . . ((td −ad)) (WHY?

Hint: Use Hensel’s Lemma...), and second, b is not a square in Λ.

Thus making induction on d ≥ 0, by Lemma 4 we have: q(t1−a1,...,td−ad,a,b)
does not represent 0 over Λ, thus over K.

Finally, one concludes the proof of Fact 9 in the same way as that of Fact 5.

Summarizing, we have the following way to describe the transcendence de-

gree and even more, transcendence bases of a function field.

Theorem 10. Let K|k an arithmetic / geometric function field. To systems

(t1, . . . , tr) of elements of K×, and rational prime numbers p, let

q
(p)
(t1,...,tr) =

∑
i ti Xp

i

be the homogeneous form over K whose coefficients are all the monomials of the

form ti = ti11 . . . tirr with 0 ≤ i1, . . . , ir < p. Thus q(t1,...,tr) := q
(2)
(t1,...,tr)

is the r-fold

Pfister form defined by (t1, . . . , tr). Then one has:

(1) Suppose k has characteristic char(k) = p. Then (t1, . . . , td) is a separa-

ble transcendence basis of K|k if and only if q
(p)
(t1,...,td) is universal, but does not

represent 0 over K.

(2) Let k be algebraically closed with char(k) 6= 2. Then td(K|k) = d if

and only if q(t1,...,td) is universal over K for every (t1, . . . , td), and there exist

(t1, . . . , td) such that q(t1 ,...,td) does not represent 0 over K.

If (t1, . . . , td) is a separable transcendence basis of K|k, then “for almost

all” (a1, . . . , ad) with ai ∈ k one has: q(t1−a1,...,td−ad) is universal over K, but

does not represent 0 over K.

(3) Suppose k is a number field. Then td(K|k) = d iff q(t1,...,td+2) is univer-

sal over K[
√
−1] for every (t1, . . . , td+2), but there exist (t1, . . . , td+2) such that

q(t1,...,td+2) does not represent 0 over K[
√
−1].

If (t1, . . . , td) is a transcendence basis of K|k, then there exist “many” tuples

(a1, . . . , ad, a, b) of rational numbers such that q(t1−a1,...,td−ad,a,b) does not repre-

sent 0 over K[
√
−1].
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Generalities about function fields of general type

Let K|k be a function field. We will say that K|k is a function field of general

type, if K|k has a model X → k which is a projective smooth k-variety of general

type. This means the following: Let Ω1
X be the sheaf of Kähler k-differentials of

X → k. Since X → k is smooth, it follows that Ω1
X is a locally free OX -sheaf of

rank equal to dim(X) = td(K|k). Thus the dth exterior power ωX = ∧d Ω1
X is a

locally free OX -sheaf of rank 1; thus ωX is a line bundle on X, whose isomorphism

class is called the canonical class of X.

For every power ωn
X let n : X ---> � N

k be the canonical k-rational map

defined by the global sections of the line bundle ωn
X , see e.g. [I], Ch. 5. The

dimension of the image of n as well as the isomorphy type of the (closure of the)

image of jn stabilizes for n >> 0, see e.g., loc.cit., Ch. 10. The variety X → k is

said to be of general type, if n is birational onto its image for n >> 0. One has

the following:

1) Being a k-variety of general type is a birational notion. In particular, if a

function field K|k is of general type, then all its projective smooth models X → k

are k-varieties of general type.

2) Examples:

a) A connected projective smooth curve X → k is a k-variety of general type

if and only if its genus g satisfies g > 1.

b) As in the case of curves, there is a finite list of surfaces which are not of

general type, see e.g. [Ha], Ch 5, § 6.

One of the significant property of the k-varieties of general type is the fol-

lowing generalization of a well known fact for curves of general type (following

from the Hurwitz genus formula):

Theorem 11. Let X → k be a k-variety of general type, and suppose that

f : X ---> X is a dominant rational map. Then f is an isomorphism.

In particular, if K|k is a function field of general type, then every field

k-embedding K ↪→ K is actually an isomorphism of fields.

For a proof see Iitaka [I], Ch.5, § 5.4.

Proof of Theorem A (Lecture 1); see [P1], Section 2.

In the context of Theorem A, we first remark that the fact that K and L are

elementarily equivalent implies that k and l are isomorphic finite extensions of

their common prime field, which we denote by k. Next, by Theorem 10, the

assertion td(K|k) = d is equivalent to a sentence in the language of fields. Since

K and L are elementarily equivalent, it follows that td(L|l) = d.
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Let (t1, . . . , td) be a separable transcendence basis of K|k, and x ∈ K

a generating element of K over k(t1, . . . , td). Setting X = (X1, . . . , Xd+1), let

P (X) ∈ k[X ] be an irreducible polynomial with P (t1, . . . , td, x) = 0 in K. In

particular, K is then canonically isomorphic to the function field of the affine,

irreducible k-variety X = Speck[X ]/(P ). Finally, if k is a number field, then we

choose (t1, . . . , td) in such a way that for some natural numbers a, b, the resulting

q(t1,...,td,a,b) does not represent 0 over K[
√
−1]. This is possible by Fact 9.

Viewing x = (x1, . . . , xd+1) as parameters over every field extension Λ|k of

k, we consider the following sentence in the language of fields:

Ψ(x) : ∃ x such that P ( x ) = 0, and such that:

- If k = � p , then q
(p)
(x1,...,xd) is universal but does not represent 0 over Λ.

- If k = ( , then q(x1,...,xd,a,b) is universal but does not represent 0 over

Λ[
√
−1].

By the choice of (t1, . . . , td) and x, it follows that Ψ(t1, . . . , td, x) is true in

K. Since K and L are elementarily equivalent, it follows that Ψ(x) is true in L.

In other words, ∃u1, . . . , ud, y ∈ L such that Ψ(u1, . . . , ud, y) is true in L. Thus

P (u1, . . . , ud, y) = 0 in L, and C = (u1, . . . , ud) is a separable transcendence basis

of L|l. Thus the mapping

x 7→ y, ti 7→ ui (1 ≤ i ≤ d)

defines a field embedding ı : K ↪→ L. By symmetry, it follows that one also has

field embeddings ı′ : L ↪→ K.

Now suppose that K is of general type. In the notations from above, consider

the composition  = ı′ ◦ ı : K → K, which is a field embedding of K into itself.

Clearly,  maps k isomorphically onto itself. Since k is either finite or a number

field, k has only finitely many automorphisms. Therefore, there exists some n > 0

such that the nth iterate n :=  ◦ . . . ◦  of  is the identity on k. In other words,

n : K ↪→ K is a k-embedding. Since K|k is a function field of general type, it

follows that n is an isomorphism, see Theorem 11 above, i.e., Iitaka [I], Ch.5,

§ 5.4. From this it follows that  is a field isomorphism, and finally ı is a field

isomorphism too.

Theorem A is proved.

Lecture 4: On the geometric case and beyond

In this lecture we will sketch the proof of Theorem B (Lecture 1). The details can

be found in [P1], Section 3. We will manly stress on the model theoretic aspects

of the problem.
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First approximation

To begin with, we remark that since K and L are elementarily equivalent, they

have isomorphic absolute subfields. In particular, both k and l are algebraically

closed fields having the same prime field, which we again denote by k. Moreover,

by Theorem 10 above, td(K|k) = d = td(L|l).
Next, let us try to do the same as in the arithmetic case, and then explain

the new difficulties which arise.

Thus let (t1, . . . , td) be a separable transcendence basis of K|k. Now the

first observation is that the function field K|k cannot be defined in an “absolute

way”, i.e., K is in general not algebraic over k(t1, . . . , td). Let us choose x ∈ K a

generating element of K over k(t1, . . . , td), and let P (X) ∈ k[X ] be an irreducible

polynomial in the variables X = (X1, . . . , Xd+1) such that P (t1, . . . , td, x) = 0 in

K. In particular, K is the function field of the affine absolutely irreducible variety

X = Speck[X ]/(P ).

The polynomial P (X) itself is defined over a finitely generated k-subalgebra

R = k[α] ⊂ k of k, where α = (α1, . . . , αν) is a system of elements of k. Set

R = k[Z]/(f ) with f = (f1, . . . , fµ) a system of polynomials in the variables

Z = (Z1, . . . , Zν) generating the relation ideal of α over k. (Hence the ideal

p = (f) ⊂ k[Z] is a prime ideal.) In particular, we have P (X) = P(Z,X) mod p

for some irreducible representative P ∈ k[Z,X ] of P . Denoting by k0 = Quot(R)

the fraction field of R, and setting K0 = k0(u1, . . . , ud, x), we have K = K0 k. In

other words, K|k is obtained from K0|k0 by “extending the constants” from k0

to k.

Finally, viewing ξ = (ξ1, . . . , ξν) and x = (x1, . . . , xd+1) as parameters over

k, we have the following sentence in the language of fields which is true in K and

comes close to describing at least K0|k0, if not the function field K|k itself.

Ψ0( ξ, x ) : ∃ ξ ∃ x such that f( ξ ) = 0, and P( ξ, x ) = 0, and such that:

- If k = � p , then q
(p)
(x1,...,xd) is universal but does not represent 0 over K.

- If k = ( , then q(x1,...,xd) is universal but does not represent 0 over K.

Clearly, setting ξ = α and x = (t1, . . . , td, x), we see that Ψ0(ξ, x) is true in

K. Since K and L are elementarily equivalent, Ψ(ξ, x) is true in L. Hence there

exist systems of elements β = (β1, . . . , βµ) and (u1, . . . , ud, y) of L such that

Ψ0(β, u1, . . . , ud, y) is true in L. The interpretation of this fact is then as follows:

There is a ring homomorphism

(∗) φβ,u1,...,ud,y : k[α, t1, . . . , td, x] → k[β, u1, . . . , ud, y] ⊂ L

which is defined by α 7→ β, (t1, . . . , td, x) 7→ (u1, . . . , ud, y), such that the resulting

C = (u1, . . . , ud) is a separable transcendence basis of L|l.
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Nevertheless, if we now want to use the homomorphism φβ,u1,...,ud,y in order

to compare K|k and L|l, more precisely, to define a function field embedding

(∗∗) K0|k0 ↪→ L | l ,

then we run into difficulties. Indeed, φβ,u1,...,ud,y defines an embedding of function

fields (∗∗) if an only if the following conditions are satisfied:

I) φβ,u1,...,ud,y(R) ⊂ l.

II) φβ,u1,...,ud,y is injective.

Now the point is that condition I) can be satisfied, the reason for this being

the fact that the constant fields k and l are definable by a predicate inside K,

respectively L. Thus by replacing Ψ0(ξ, x) by a more complicated sentence (which

is nevertheless very explicit and has a geometrical interpretation), the resulting

ring homomorphism φβ,u1,...,ud,y satisfies condition I). Nevertheless, the situation

with satisfying condition II) is much worse. It is easy to reduce the infectivity

of φβ,u1,...,ud,y to the one of its restriction to R. But I ∗ ∗ ∗ do not know ∗ ∗ ∗
at the moment whether in the general case (i.e., without further hypotheses on

K|k, e.g., K|k is of general type) there do indeed exist β, u1, . . . , ud, y such that

φβ,u1,...,ud,y is injective.

As explained in [P1], Section 3, B), a substitute for this is the existence of

enough approximations of K|k with values in L|l, see Theorem 3.3, loc.cit.. In

particular, in the case K|k is of general type, the existence of enough approxima-

tions a posteriori implies the existence of β, u1, . . . , ud, y as above such that the

resulting φβ,u1,...,ud,y is injective.

Tackling I): The constants are definable

The aim of this subsection is to show that given a function field K|k with k an

algebraically closed field, the constant subfield k of K is definable inside K by a

formula Ξ(z) with one parameter z, i.e.,

k = { a ∈ K | Ξ(a) is true in K }

To begin with, for arbitrary finite subsets S ⊂ k having odd cardinality

|S| = 2n+1, we consider the polynomial PS(t) =
∏

a∈S(t− a) ∈ k[t], and further

pS,t(T ) ∈ k[t, T ] defined by:

a) pS,t(T ) = T 2 − PS(t), if char(k) 6= 2.

b) pS,t(T ) = T 2 − T − PS(t), if char(k) = 2.

The main technical point (which, on the other hand, might be well known

to specialists, but we cannot give a reference) is the following:

Lemma 12. Let K|k be a function field with k algebraically closed. Then

there exists a bound cK|k with the property: If for some x ∈ K there exists a
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subset S = Sx ⊂ k of odd cardinality |S| > cK|k such that pS,x(T ) has a root in

K, then x ∈ k.

Proof of Lemma 12. We begin with the following observation: Let � 1
t be the

t-projective line over k, and K0 = k(t) its function field. For a finite subset S ⊂ k

of odd cardinality |S| = 2n+1 as above, let KS |K0 be the function field extension

generated by a root of pS,t(T ). Let CS → � 1
t be the normalization of � 1

t in the

Galois field extension KS | K0. It is clear that CS → � 1
t is ramified exactly over

S ∪ {∞} in case a), respectively in t = ∞ in case b). Using the Hurwitz genus

formula, we see that the genus gS of CS is given by gS = n, thus it depends only

on n = 1
2(|S| − 1) and not the finite set S itself.

Next let X → k be a projective normal model of K|k, and ı : X ↪→ � N
k

be a projective embedding of X. For every (d − 1) hyper-planes Hi in “general

position” in � N
k , let C = X ∩i Hi be the resulting “generic” curve in X. It is well

known that the following hold:

- C → k is a projective normal curve.

- The set of generic points ηC of all the generic curves C is dense in X.

- The genus g of C is independent of the concrete choice of the hyper-planes,

it being an invariant of the projective embedding ı.

We will show that we can take cK|k = 2g + 1.

Indeed, let x ∈ K be a non-constant function, and let S ⊂ k be a finite

subset such that pS,x(T ) has a root in K. Equivalently, KS has a k(x)-embedding

in K. On the other hand, every such embedding is defined by a dominant rational

k-map f : X ---> CS .

First suppose td(K|k) = 1. Then X is a projective normal curve, and g

is the genus of X. The existence of dominant rational k-maps f : X ---> CS as

above implies (by the Hurwitz genus formula) that g ≥ gS . Thus finally we have

g ≥ gS = 1
2(|S| − 1), as claimed.

Coming to the general case, since the set of the generic points ηC is dense

in X, it follows that there exist points ηC at which f : X ---> CS is defined. Now

if f is defined at ηC , then f defines a dominant rational k-map f : C ---> CS of

projective normal curves. One concludes as above.

The proof of the Lemma 12 is finished.

Corollary 13. Let K|k be a function field with k algebraically closed, and cK|k

the constant introduced in Lemma 11. Let S ⊂ k be a fixed finite set of absolute

algebraic elements of cardinality |S| = 2n + 1 > cK|k. For instance, one could

take for S the set of all m th roots of unity for some sufficiently large odd number

m. Consider the following formula in one parameter z in the language of fields:

ΞS(z) : ∃ z such that pS,z(z) = 0.
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Then ΞS(z) defines k inside K, i.e., k = {α ∈ K | ΞS(α) is true in K }.
Proof. Clear.

Remark 14. Using Corollary 13, we can tackle the condition I) from the

previous subsection as follows: For the given elementarily equivalent function

fields K|k and L|l having k as prime field, choose first S ⊂ kalg finite and of

odd cardinality such that |S| > cK|k, cL|l. Next replace (the beginning of) the

assertion Ψ0 from the previous subsection as follows:

Ψ1(ξ, x) : ∃ ξ ∃ x such that f(ξ) = 0, and ΞS(ξj) (all j ≤ ν), and P(ξ, x) = 0,

and we have:

- If k = � p , then q
(p)
(x1,...,xd) is universal but does not represent 0 over K.

- If k = ( , then q(x1,...,xd) is universal but does not represent 0 over K.

Clearly, Ψ1 is true in K|k, thus it is true in L. Hence in the notations from

subsection G), the resulting system b of elements of L consists actually of elements

of l. Thus the resulting ring homomorphism φb,u1,...,ud,y, as constructed at the end

of subsection G) above, maps R into l.

Tackling II): Approximations of function fields...

Actually I am not going to explain the notions here, see loc.cit. for the quite

technical stuff... But in order to simplify it a little bit one might try the following

Problem:

Let R be an algebra of finite type over some prime field, k the algebraic closure

of Quot(R). Let further X → R and Y → R be (projective, smooth) R-varieties.

We denote by X → k and Y → k the geometric generic fibers of X → R,

respectively Y → R. And for any point s ∈ SpecR, let Xs → κs and Ys → κs

the corresponding fibers. Next let ΣX ⊂ S to be the set of all points of SpecR

having the property: There exists an embedding ıs : κs ↪→ k which “prolongs”

to a dominant separable rational map Y → Xs. This means that denoting by

Xıs = Xs ×ı k the base change of Xs to k via ı, one further has a dominant k-

rational map s : Y → Xıs whose generic fiber is a separable field homomorphism.

Suppose that both ΣX and ΣY are dense in SpecR.

Prove/Disprove: There exists an isomorphism k ↪→ k which “prolongs” to a

dominant separable morphism of schemes Y → X, and conversely.

We remark that from the hypothesis above, one gets dimk(X) = dimk(Y ).

Also, in the case X → k is a variety of general type, the Problem above has a

positive answer (well, this follows from the “approximations of function fields”

of loc.cit.)... Finally, a positive answer to the Problem would make the assertion

of Theorem B much stronger, in the sense that the first part of point(2) would

hold in the same form as in Theorem A, thus without the hypothesis “ K|k is a

function field of general type”.
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Questions:

The main question/problem here is to either prove or disprove the EeVIP in the

case K|k is an arithmetic and/or geometric function field of non-general type. As

a first approximation to the general question, the following problems could give

more evidence in the favor of the EeVIP.

Q1: Is the hypothesis “without CM” in Duret’s [D2], and Pierce’s [Pi]

result, in the case K|k is the function field of an elliptic curve, necessary?

More generally, let K|k be the function field of a projective smooth curve

X. Suppose that the genus g of X satisfies g = 1 or g = 0. In the first case X is a

homogeneous space (form short, a form) of an elliptic curve over k, see e.g., [Sl],

especially Ch X, §2–3; and in the second case, X is a form of the projective line

over k, i.e., a one dimensional Brauer–Severi variety over k, see [S4]; especially

Ch X, §6.
Q2: Prove or disprove EeVIP in the arithmetic case if g = 0.

Q3: Prove or disprove EeVIP in the arithmetic case if g = 1.

Naturally, one can ask the same question in the case td(K|k) = 2, but the

situation seems to be much more complicated.

Q4: Extend the method from Tackling I) to “non-mordellic” base fields, like:

real / p-adically closed, or a PAC field, or even a “large field” (see e.g., [P3] for

definitions).

Consequence: In Theorem B we could replace the algebraically closed base

field k by any field k from above.

Q5: Consider the questions Q2, Q3 as above, if k one of the following types:

real or p-adically closed, or PAC, or even a “large field”.

Q6: Find an “axiomatization” of the isomorphism type of function fields of

general type.

Q∞) Prove or disprove the EeVIP in general!...
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