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1 Introduction

These notes are for the first two lectures of the lecture series ”Model Theory
and Diophantine Geometry” by Thomas Scanlon and myself. The full series
of lectures will be on the Manin-Mumford conjecture and variants. As is
well-known, model-theoretic ideas, specifically definability theory in differ-
ence fields of characteristic zero, were used by Hrushovski [2] to give another
proof of the Manin-Mumford conjecture concerning the intersection of sub-
varieties of a (semi)-abelian variety A with the group of torsion points of
A. Subsequently Scanlon [7] used the positive characteristic difference field
theory to prove Denis’ conjecture, a version of Manin-Mumford for Drinfeld
modules (and this is the only known proof). Scanlon will present his proof
(in lectures 3-5), which will use the whole model-theoretic machinery. I will
give a self-contained “new” proof (in lecture 2) of Manin-Mumford, avoiding
model theory other than some elementary properties of existentially closed
difference fields.

I would like to thank Piotr Kowalski for many comments and suggestions
which helped me considerably in preparing these notes.
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2 Difference fields and differential fields

The main purpose of this section is to introduce existentially closed difference
fields which will play a central role in most of the lectures in our series.

I will use freely basic notions of first order logic: theories, complete the-
ories, formulas, definable sets, the notion of being definable over a given set
of parameters, quantifier-elimination, and sometimes saturated models.

The main first order theories which we shall consider here are ACFA,
the theory of existentially closed fields with an automorphism, and its com-
pletions.

As a motivating and somewhat “easier” example, we will also discuss
DCF0, the theory of differentially closed fields of characteristic zero.

In the background is the theory ACF of algebraically closed fields. The
language of ACF is that of rings (+,−, ·, 0, 1), and ACF has quantifier elim-
ination in this language. The completions are obtained by fixing the char-
acteristic. It is often convenient to regard the objects of algebraic geometry
(varieties, morphisms,..) as definable sets and functions in an algebraically
closed field. This is not so much due to ignorance of the scheme-theoretic
point of view, but is rather because this presentation is directly amenable
to current model-theoretic methods. The point of view essentially coincides
with that of Weil’s Foundations. That is, we work in an algebraically closed
field K of uncountable transcendence degree. An affine variety V is a sub-
set of Kn defined by finitely many polyomial equations. If k is a countable
subfield over which V is defined, then a generic point of V over k is a point
a ∈ V such that tr.deg(k(a)/k) = dim(V ). The assumptions on K ensure
that such generic points exist. For irreducible V defined over k, any given
k-constructible property will hold on a Zariski open subset of V if and only if
it holds at a generic point of V over k. This formalism passes over to abstract
varieties in the sense of Weil.

The notion of an existentially closed structure in a given class of structures
is rather central: Let T be a ∀∃ theory in a language L. An ec structure
for T is an L-structure M which is a substructure of a model of T and such
that whenever M ⊆ N |= T , and φ(x1, .., xn) is a quantifier-free firmula
with parameters from M which has a solution in N , then φ(x1, .., xn) has a
solution in M . An ec structure for T will actually be itself a model of T .
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In many cases, the class of ec structures for T is axiomatizable, namely is
the class of models of a first order L-theory T ′ containing T . In that case
we say that T ′ is the model companion of T . T ′ has the feature of being
model-complete (any L-formula is equivalent mod T to both an existential
and universal formula). Again in many situations T ′ has outright quantifier-
elimination. In any case, saturated models of T ′ will be “universal domains”
for studying models of the original theory T .

Let us start by briefly describing DCF0, as here the relationship between
definability and geometry is clearest. A derivation ∂ on a field K is an ad-
ditive homomorphism such that ∂(x · y) = ∂(x) · y + x · ∂(y). A differential
field is a field equipped with a derivation. If (K, ∂) is such, then a differ-
ential polynomial over K in indeterminates x1, .., xn is a polynomial over K
in indeterminates x1, .., xn, ∂(x1), .., ∂(xn), ∂2(x1), .., ∂

2(xn), .... If P (x) is a
differential polynomial over K in the single indeterminate x then the order
of P is the greatest n such that ∂n(x) appears nontrivially in P . An (affine)
differential algebraic variety is the zero set of a finite number of differential
polynomials. There are associated notions of differential polynomial map
and differential rational map.

DF0 denotes the theory of differential fields (fields equipped with a deriva-
tion) of characteristic 0 in the language of rings together with a symbol ∂
for the derivation. DF0 does have a model companion, and this is the (com-
plete) theory DCF0, the theory of differentially closed fields of characteristic
zero. The easiest to state axioms for DCF0 are those found by L. Blum,
and concern differential polynomial equations in a single differential indeter-
minate x: if f, g are differential polynomials over K and the order of f is
strictly greater than the order of g then the system f(x) = 0, g(x) 6= 0 has a
solution in K. An important fact is that DCF0 has quantifier-elimination in
the given language. So definable subsets of Kn are Boolean combinations of
“differential algebraic varieties”, and definable maps are piecewise differential
rational functions. Although this will not play a role in these first lectures, it
is worth mentioning another important model-theoretic property of DCF0:
it is ω-stable. This means that if K is a countable differentially closed field,
then the number of complete n-types over K is countable. The ω-stability
of a theory gives rise to an intrinsic ordinal valued dimension, called Morley
rank, which can be assigned to formulas or definable sets in models of the
theory. Roughly speaking, a definable set X has Morley rank 0 if it is finite,
and Morley rank ≥ α + 1 if there are pairwise disjoint definable subsets Xi
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of X for i = 1, 2, ... such that each Xi has Morley rank ≥ α.
Let us fix K = (K,+, ·, ∂) a saturated differentially closed field, which

note is also an algebraically closed field. Let X ⊂ Kn be definable over
a differential subfield k. We call X finite-dimensional if there is a finite
bound on tr.deg.(k(a, ∂(a), ∂2(a)...)/k). for a ∈ X. The “category” of finite-
dimensional definable sets in K and definable maps between them, is what
was relevant and useful for issues such as the geometric version of Mordell-
Lang. X is finite-dimensional if and only if the Morley rank of X, RM(X) is
finite. Among such sets is the field C of constants of K, another algebraically
closed field. The structure induced on C from living in (K,+, ·, ∂) is just the
field structure. So our category of finite Morley rank sets includes “algebraic
geometry”, but is much richer.

It is worth mentioning a rather more geometric way of interpreting finite
Morley rank sets in DCF0. Let V ⊆ Kn be an irreducible algebraic variety.
The first prolongation τ(V ) of V will be the subvariety of K2n given by the
defining equations for V (in the first n coordinates), as well as the equations∑

i=1,..,n(∂P/∂xi)(x1, .., xn)vi + P ∂(x1, .., xn).
as P ranges over generators of the ideal of V .
Here P ∂ is the result of hitting the coefficients of P with the derivation ∂.
If V is defined over the constants, then τ(V ) is precisely the tangent bundle
of V . In any case τ(V ) comes with a canonical projection π : τ(V ) → V .
Let s : V → τ(V ) be a map (in the algebraic-geometric sense) which is also a
section of π. Pairs of the form (V, s) are precisely the “algebraic D-varieties”
of Buium, and belong to algebraic geometry.

An important fact about differentially closed fields, is that in the above
situation, (V, s)] =def {a ∈ V (K) : s(a) = (a, ∂(a))} is Zariski-dense in
V . Moreover, up to finite Boolean combination, every definable set of finite
Morley rank in K is of the form (V, s)].

Let us now turn to difference fields. Fix a language Lσ consisting of the
language of rings L = {+, ·,−, 0, 1} together with a unary function symbol
σ. ACFσ is the ∀∃ Lσ-theory expressing thatK is an algebraically closed field
and σ is an automorphism. (K being a ring and σ being an endomorphism
would also be enough.) We call a model (K, σ) of ACFσ a difference field.

It turns out that ACF σ does have a model companion, namely the class
of existentially closed difference fields is axiomatizable. In fact the additional
axioms are precisely:
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(*) for any irreducible variety V over K, and any irreducible variety W ⊂
V × σ(V ) defined over K which projects dominantly onto both V and σ(V ),
there is a ∈ V (K) such that (a, σ(a)) ∈ W .

To actually write down the axioms requires quantifying over the coefficients
in the defining polyomials of V and W as well as knowing that things such
as ”irreducibility” are constructible conditions.

In any case the resulting theory is usually called ACFA. ACFA is not
complete, even after fixing the characteristic. The completions are deter-
mined by the isomorphism type of the algebraic closure of the prime field
considered as a difference field with the retriction of σ.

Again we have the notion of a difference polynomial over a difference field
(K, σ): a polynomial overK in indeterminates x1, .., xn, σ(x1), ..., σ(xn), σ2(x1), ...
A difference-algebraic variety is a subset of Kn defined by finitely many dif-
ference polynomial equations. So the quantifier-free definable sets in differ-
ence fields are Boolean combinations of difference-algebraic varieties. ACFA
does not have quantifier-elimination, but as for pseudofinite fields, it is rather
close. Any Lσ-formula φ(x1, .., xn) is equivalent, modulo ACFA to a formula
of the form ∃y(θ(σ̄(x1.., xn), σ̄(y)) where σ̄(x̄) denotes (x̄, σ(x̄), .., σm(x̄)) for
some m, θ is a quantifier-free L-formula (that is a formula in the language of
rings) and θ(z̄, w̄) implies that w̄ is (field-theoretically) algebraic over z̄.

If (K, σ) is a model of ACFA, the fixed field Fix(σ) of σ in K is a
pseudofinite field (namely an infinite model of the theory of finite fields). In
fact the structure (Fix(σ),+, ·) is strongly stably embedded in the structure
(K,+, ·, σ). Namely, if X ⊂ Fix(σ)n is definable with parameters in the
structure (K,+, ·, σ), then X is definable in the structure (Fix(σ),+, ·) with
parameters.

ACFA (or rather its completions) are not ω-stable. They have a some-
what weaker model-theoretic property, supersimplicity, which will appear in
later lectures. On the other hand ACFA is quantifier-free ω-stable, mean-
ing that over any countable model there are only countably many com-
plete quantifier-free types. This yields an ordinal-valued Morley rank for
quantifier-free formulas, defined as above, but restricted to quantifier-free
formulas.

Let us now fix a (saturated) model (K,+, ·, σ) of ACFA, and definability
will mean definablity in this structure (with parameters). Let X be definable
over a difference subfield k. We say that X is finite-dimensional if there is
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a finite bound on tr.deg(k(a, σ(a), σ2(a), ..)/k) for a ∈ X. If X is quantifier-
free definable (for example a difference-algebraic variety), then X will be
finite-dimensional if and only X has finite quantifier-free Morley rank.

The interesting category for us will be that of finite rank difference-
algebraic varieties. Among the sets here are the fixed fields Fix(σn) in char-
acteristic zero, and more generally Fix(σr ◦ Frm) in positive characteristic
where Fr is the Frobenius automorphism.

As in the DCF0 case, quantifier-free definable sets of finite rank have
canonical representations up to Boolean combination. Let V be an irreducible
variety, and letW be a correspondence between V and the variety σ(V ). This
means that W is an irreducible algebraic subvariety of V × σ(V ) inducing a
generic finite-to-finite correspondence between V and σ(V ). Given such data
V and W , let (V,W )] denote {a ∈ V (K) : (a, σ(a)) ∈ W}. Then the finite
rank difference-algebraic varieties are essentially sets of the form (V,W )].
The axioms for ACFA imply that (V,W )] is Zariski-dense in V . Note the
following special case of (V,W ): V is defined over Fix(σ) (so σ(V ) = V ), and
W is the graph of a dominant morphism φ : V → V . So the classification of
finite rank difference varieties in a sense subsumes the algebraic geometrical
classification of such pairs (V, φ).

Let us elaborate on this latter category somewhat, and state and prove an
easy result which will be used later. (K, σ) is as before a (saturated) model
of ACFA, in particular a universal domain for algebraic geometry. By a
“algebraic σ-variety” we will mean, for now, an irreducible algebraic variety
V equipped with a dominant morphism φ : V → σ(V ). (Note this is an object
of algebraic geometry, and is not the same thing formally as a finite rank
difference-algebraic variety.) By a σ-morphism between (V, φ) and (W,ψ)
we mean a morphism f : V → W (in the sense of algebraic geometry) such
that σ(f) ◦ φ = ψ ◦ f on V . By a σ-rational map between (V, φ) and (W,ψ)
we mean a rational (not everywhere defined) map from V to W such that
for generic a ∈ V , σ(f)(φ(a)) = ψ(f(a)). By an algebraic σ-group we mean
a connected algebraic group G, equipped with an isogeny φ : G → σ(G).
(Note that the group operation will then by a σ-morphism.) Finally we will
call an algebraic σ-variety (V, φ) trivial if V is defined over Fix(σ) and φ is
the identity. So note that our objects are algebraic varieties with additional
structure and the morphisms are just algebraic morphisms respecting this
additional structure. On the other hand, note that if f is a σ-(iso)-morphism
between (V, φ) and (W,ψ), then f induces a map (bijection) between (V, φ)]
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and (W,ψ)]. Moreover, for such f and g, if f |(V, φ)] = g|(V, φ)] then f = g
(by Zariski-denseness).

Fact 2.1 Suppose that (G, φ) is an algebraic σ-group, X is an irreducible
σ-subvariety of G containing the identity, X generates G, and (X,φ|X) is
σ-birationally isomorphic to a trivial σ-variety. Then (G, φ) is σ-isomorphic
(as an algebraic σ-group) to a trivial algebraic σ-group.

Proof. Let f : X → Y be the σ-birational map between (X,φ|X) and
(Y, id) where Y is defined over Fix(σ). As X generates G, multiplication
induces a surjective morphism π : Xd → G (for some d) and this is clearly
a σ-morphism. On the other hand, f−1 induces a σ-birational isomorphism
between Y d and Xd. Composing, we obtain a dominant σ-rational map h
from (Y d, id) to (G, φ). We would like to obtain from this a trivial σ-variety
Z, and a σ-birational isomorphism between (Z, id) and G(φ). Consider the
equivalence relation E on generic points of Y d: E(a, b) iff h(a) = h(b). As
h is a σ-rational map, we see that h(a) = h(b) implies σ(h)(a) = σ(h)(b),
so E is σ-invariant, as is its Zariski-closure, which is therefore defined over
Fix(σ). This yields a rational dominant map h′ defined over Fix(σ) from Y d

to some variety Z defined over Fix(σ) such that for generic points a, b of Y d,
h′(a) = h′(b) iff E(a, b) iff h(a) = h(b). Composing h′−1 with h yields a σ-
birational isomorphism h′′ between (Z, id) and (G, φ). The group operation
on G induces, via h′′−1, a generically associative operation Z × Z → Z,
which is σ-invariant, hence defined over Fix(σ). Weil’s theorem then yields
an algebraic group H defined over k, and h′′ extends to a (σ)-isomorphism
between (H, id) and (G, φ).

3 The Manin-Mumford conjecture: statement

and background

The setting of the theorem will be characteristic zero. We will prove:

Theorem 3.1 Let k be a number field, A a semiabelian variety defined over
k, and X an irreducible subvariety of A also defined over k. Let Tor(A) de-
note the group of torsion elements of A, a subgroup of A(k̄). Then the Zariski
closure of X ∩ Tor(A) is a finite union of translates of abelian subvarieties
of A.
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Some words of explanation: An abelian variety is a connected algebraic
group whose underlying variety is projective (or complete). An algebraic
torus is an algebraic group isomorphic to some finite power of Gm the mul-
tiplicative group. A semiabelian variety is a commutative algebraic group
which, as an algebraic group, is an extension of an abelian variety by an
algebraic torus. A semiabelian variety is divisible. The torsion elements of
a semiabelian variety form a Zariski-dense subgroup. Also there are only
finitely many elements of order r for any given r. In fact if A is an abelian
variety then Tp(A) the group of elements of A with order a power of p is

Z
2dim(A)
p∞ , and if A is an algebraic torus then this is Z

dim(A)
p∞ .

We will refer to the statement of the theorem as the Manin-Mumford
conjecture although this was first stated in the case where X is a curve of
genus ≥ 2 embedded in its Jacobian A. In this case the conclusion can be
restated as X ∩ Tor(A) is finite. (For otherwise some X will already be the
Zariski closure of its intersection with Tor(A) and as X is irreducible, the
conclusion of the theorem forces X to be an abelian subvariety of A, up to
translation, hence an elliptic curve, contradicting genus being ≥ 2.)

Various versions of this conjecture were proved by Raynaud, Hindry,
McQuillan, Bogomolv, Ullmo-Zhang, Buium (some with explicit bounds).
Hrushovski [2] gave a proof of Theorem 3.1, using the model theory of dif-
ference fields of characteristic zero. The first step involved essentially cap-
turing Tor(A) by a finite rank difference equation of a special kind. The
second step involved showing that the resulting finite-dimensional difference-
algebraic group is “modular”. This second step proceeded via an analysis
of orthogonality and definable groups in ACFA0, using results from [1]. In
our proof below, the first step is identical, but we give what amounts to a
different and direct proof of the second step, in the language of algebraic
σ-groups, following ideas in [4]. Closely related things were done in the pa-
pers [5] and [6] of Pink and Roessler. In fact it was after seeing these papers
that I realized that various easy reductions allow a direct application of the
jet-map methods from [4]. Jet maps, following Abramovich, also appear in
Pink-Roessler’s second paper [6], but our formalism, working in existentially
closed difference fields and considering linear difference equations on jets,
seems to have some advantages.
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4 The proof.

Let A,X, k be as in the assumptions of the theorem 3.1. First some notation.
We write the group operation on A as + and so also 0 for the identity. If
K is an extension field of k (such as k̄ for example), σ is an automorphism
of K over k, and P (T ) ∈ Z(T ), say P (T ) = anT

n + ...a1T + a0, then P (σ)
denotes the following (non algebraic) endomorphism of A(K): P (σ)(x) =
anσ

n(x) + ...+ a1σ(x) + a0x.

First note that by replacing X by an irreducible component of the Zariski
closure of X ∩ Tor(A), we may assume that X ∩ Tor(A) is Zariski-dense in
X. (The new X will be defined over a finite extension of k, still a number
field.) Replacing X by a X − a for some a ∈ X ∩ Tor(A), we may assume
in addition that 0 ∈ X. We now have to prove that X is a semiabelian
subvariety (that is, a connected algebraic subgroup) of A.

Lemma 4.1 After possibly replacing k by a finite extension, there is an au-
tomorphism σ of k̄ over k, and a monic polynomial P (T ) ∈ Z(T ) which has
no complex roots of unity among its roots, such that Tor(A) ⊆ Ker(P (σ)).

Proof. The argument, following Hrushovski, is purely algebraic. Pink-
Roessler reproduce the argument too. I have nothing new to say here, but
will give a sketch for the sake of completeness. Let p be a prime of good
reduction for A. This means that p is a prime ideal of the ring of integers
of the number field k, and that after reducing the equations defining A mod
p one obtains a semiabelian variety Ap over Fq (for a suitable prime power
q = pr) whose abelian and linear parts have the same dimensions as those of
A. In particular if L, Ā are the linear, abelian parts of A then Lp, Āp are the
linear and abelian parts of Ap. Let T ′

p(−) denote prime-to-p torsion points.
So we have an exact sequence:
0 → T ′

p(Lp) → T ′
p(Ap) → T ′

p(Āp) → 0. Let σ be the automorphism x → xq

of the algebraic closure of Fq. A result of Weil [8] yields a monic integral
polynomial F1(T ) ∈ Z(T ) without complex roots of unity among its roots
such that F (σ) = 0 on T ′

p(Āp). On the other hand, if Lp is isomorphic to a
power of the multiplicative group over Fql then taking F2(T ) to be T l − ql,
F2(σ) will vanish on T ′

p(Lp). Thus, if F (T ) is the product of F2 and F1 then
F (σ) vanishes on T ′

p(Ap).
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Now, if L is the maximal unramified extension of the completion kp of
k at p, then σ lifts to an automorphism σ′ of L, T ′

p(L) ⊆ A(L), and the
reduction map yields a bijection between T ′

p(A) and T ′
p(Ap), and thus an

abstract isomorphism between (T ′
p(A),+, σ′) and T ′

p(Ap),+, σ). Hence F (σ′)
vanishes on T ′

p(A).
We then easily obtain an automorphism σ′ of k̄ which vanishes on T ′

p(A).
We can do exactly the same thing with any other prime of good reduction
of A. Now a result of Serre implies, that after passing to a finite extension
k1 of k, and if p is a prime of k1 of good reduction for A, then k1(Tp(A))
and k1(T

′
p(A)) are linearly disjoint over k1. We assume that k1 = k, and

pick two primes p, l of good reduction for A. By the previous paragraph, we
find automorphisms σ, τ of k̄ over k and monic integer polynomials Pp(T ),
Pl(T ) without complex roots of unity among their roots such that Pp(σ)
vanishes on T ′

p(A) and Pl(τ) vanishes on T ′
l (A). In particular Fl(τ) vanishes

on Tp(A). By linear disjointness, σ|k(T ′
p(A)) and τ |k(Tp(A)) extend to a

common automorphism σ′ of k̄ over k. As Tor(A) = Tp(A) + T ′
p(A), taking

P = PpPl, P (σ′) vanishes on Tor(A), and the lemma is proved.

We now perform an elementary reduction to get to the context of “algebraic
groups equipped with an isogeny”. Let H = Ker(P (σ)) ⊂ A(k̄). Note
that H is Zariski-dense in A, as Tor(A) is. Assume that P (T ) = T n +
an−1T

n−1 + .. + a1T + a0 (with ai ∈ Z). Let An = A × A × .. × A (n
times), and likewise for Xn. Let H1 = {(x, σ(x), .., σn−1(x)) : x ∈ H}.
Let φ be the (algebraic) endomorphism of An defined by: φ(x0, .., xn−1) =
(x1, x2, .., xn−2,−a0x0 − a1x1 − .. − an−1xn−1). Let π : An → A be the
projection onto the first coordinate.

Remark 4.2 For each r ≥ 1 φr − id is an isogeny of An.

Proof. Note first that P (φ) = 0. We leave it as an exercise to show that for
each r there is an integral polynomial Pr(T ) with no complex roots of unity
amng its roots such that Pr(φ

r) = 0. Now if φr − id is not an isogeny, then
there is a connected positive-dimensional semiabelian subvariety B of An on
which φr acts as the identity. As there are only finitely many elements of B
of any given order it follows that Pr(1) = 0, a contradiction.

Lemma 4.3 There are a semiabelian variety B of An (defined over k) and
an irreducible subvariety X ′ of B (defined over a finite extension of k) such
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that
(i) π|B : B → A is surjective,
(ii) φ|B is an isogeny of B with itself,
(iii) for some m ≥ 1, φm(X ′) ⊆ X ′.
(iv) π(X ′) is a Zariski-dense subset of X.

Proof. Note first that
(*) H1 is precisely {x ∈ An(k̄) : σ(x) = φ(x)}.
Let B1 be the Zariski closure of H1 in An, and B the connected component of
B1. B1 and B are defined over k. Because π(H1) = H and H is Zariski-dense
in A, it follows that π maps B1 onto A and thus π maps B onto A yielding
(i).
As B1 is defined over k, and σ fixes k pointwise, for any b ∈ H1, φ(b) ∈ B1,
hence φ(B1) ⊆ B1. For any Zariski open subset U of B1 defined over k, U
meets H1, hence φ(B1) meets U . So φ(B1) = B1. Hence also φ(B) = B,
giving (ii).
Let us now write π for π|B. Let B] denote B ∩ H1. Then π(B]) has finite
index in H hence, as 0 ∈ X, π(B] ∩X) is Zariski-dense in X. Let Y be the
Zariski closure of π−1(X)∩B] in B. As in the proof of (ii), Y is defined over
k and φ(Y ) ⊆ Y . Also π(Y ) is Zariski-dense in X. So clearly there is an
irreducible component X ′ of Y say, which contains 0 and such that π(X ′) is
Zariski-dense in X. X ′ is defined over some finite extension of k. Moreover,
as φ will permute the irreducible commponents of Y , φm(X ′) ⊆ X ′ for some
m ≥ 1. This proves (iii) and (iv).

With the data given by the lemma, we have two cases.
CASE I. X ′ is a semiabelian subvariety of B.
But then π(X ′) = X will be a semiabelian subvariety of A, and the theorem
is proved.

CASE II. Otherwise.
We seek a contradiction. Let S be the stabilizer of X ′ in B, namely {b ∈
B : b + X = X}. Then S is φm-invariant, and X ′/S ⊆ B/S is positive-
dimensional, with trivial stabilizer. Moreover φm is an isogeny of B/S with
itself, X ′/S is φm-invariant, and, by Remark 4.2, φrm − 1 is an isogeny of
B/S with itself, for all r ≥ 1. So, changing notation, the contradiction will
follow from the next general proposition. This is essentially 7.1 in [6], and
can be considered as as an endomorphism analogue of the result 2.1 in [3] on
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algebraic D-groups. Our proof follows closely the latter.

Proposition 4.4 Let A be a semiabelian variety, φ : A → A a separable
isogeny, and X ⊆ A a subvariety of X containing 0. Suppose that φ(X) ⊆ X
and that StabA(X) = {0}. Then for some r ≥ 1, φr|AX = identity, where
AX is the semiabelian subvariety of A generated by X.

Proof. It is convenient to work in a saturated existentially closed difference
field (K, σ) such that all the data is defined over k = Fix(σ). We will identify
A and X with their sets A(K), X(K) of K-points. Let A] = {a ∈ A : σ(a) =
φ(a)} and likewise for X]. As (K, σ) |= ACFA, A] is Zariski-dense in A and
X] is Zariski-dense in X.

Let M be the maximal ideal of the local ring of A at 0. For p ≥ 1, let
jp(A)0 be the p-jet of A at 0, namely the dual space to M/Mp+1. jp(A)0

is a finite-dimensional K-vector space (defined over k). For any subvariety
Y of A passing through 0 we obtain likewise jp(Y )0 as a subspace of jp(A)0.
If Z varies in an algebraic family of subvarieties of A all passing through 0,
then there is sufficiently large p such that Z is determined within this family
by Jp(Z)0 ⊆ jp(A)0. We will apply this to the family {X − t : t ∈ X} of
translates of X by elements of X. For suitably large p and for some r, we
have a rational map f : X → Grr(L), defined over k, where L = jp(A)0,
Grr(L) is the variety of r-dimensional subspaces of L, and f(t) = jp(X− t)0.
Moreover, as X has trivial stabilizer in A, f is a birational isomorphism of X
with the Zariski closure of its image, Y say. For t ∈ X write f(t) = Lt < L.

By separability, φ induces a linear automorphism φ′ of L, defined over k.
Moreover as L is defined over k, σ(L) = L, hence L] = {v ∈ L(K) : σ(v) =
φ′(v)} is Zariski-dense in L.

Now suppose t ∈ X]. Then σ(X − t) = φ(X − t). Hence σ(Lt) = φ′(Lt),
whereby L]

t = {v ∈ Lt : σ(t) = φ′(t)} is again Zariski-dense in Lt. Note that
L]

t is precisely Lt ∩ L].
L is a K-vector space of dimension m say, and L] is a k-vector subspace of

the same dimension. Moreover a basis b can be found for L] over k which is
simultaneously a basis for L over K. With respect to the basis b, L identifies
with Kn (hence Grr(L) with Grr(K

n)), and L] identifies with kn. For t ∈ X],
L]

t is then a subspace of kn. As this is Zariski-dense in Lt it implies that Lt

is defined over k, namely L(t) ∈ Gr(Kn)(k). As X] is Zariski-dense in X,
it follows that a Zariski-dense set of points of Y = f(X) are defined over k,
hence so is Y .
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So we have so far proved:
Claim 1. There is a birational map f between X and a variety Y , such that
Y is defined over k and for t ∈ X], f(t) ∈ Y (k).

Now we consider the semiabelian subvariety AX of A generated by X. Note
that φ(AX) = AX . So by Fact 2.1, we have:

Claim 2. There is an algebraic group B defined over k and an (algebraic)
isomorphism h between AX and B such that h(A]

X) = B(k).

The graph of f is a semiabelian subvariety of AX ×B. As AX ×B is defined
over k, h (and so also h−1) is defined over a finite extension k1 of k. It follows
that A]

X is contained in AX(k1). For some n, k1 is contained in Fix(σn). So
φn is the identity on A]

X . By Zariski-denseness, φn is the identity on AX . This
completes the proof of Proposition 4.4, and thus also the proof of Theorem
3.1.

Remark 4.5 From the proof above, one can deduce Corollary 4.1.13 of [2],
at least in its quantifier-free version: Work in (K, σ) |= ACFA0 as above. Let
A be a semiabelian variety defined over Fix(σ). Let P (T ) be a a polynomial
over the integers with no complex roots of unity among its roots. Then B =
Ker(P (σ)) < A(K) is ”quantifier-free modular”, namely every quantifier-free
definable subset of Bn is a Boolean combination of translates of quantifier-free
definable subgroups.

5 Project/ Exercise

In Pink and Roessler’s paper [6], the following is proved (Proposition 7.3 in
that paper).

Proposition 5.1 (char. p > 0.) Let A be a semiabelian variety, and φ :
A→ A an isogeny. Assume that r, s are postive integers, and that there is a
separable isogeny λ from Frr(A) to A such that φs = λ ◦ Frr. Let X be an
irreducible subvariety of A containing 0 such that φ(X) ⊆ X, StabA(X) is
trivial, and X generates A. Show that there is an isomorphism f of A with
a semiabelian variety A0 defined over Fpr such that (f(φ))s = Frr on A0.

Some words of explanation. Fr denotes the Frobenius automorphism
x → xp. This, as well as its powers, act on varieties, as well on points of
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varieties. So Frr is a bijective morphism between X and Frr(X). f(φ) in
the last line of the proposition denotes the isogeny f ◦ φ ◦ f−1 of A0. Fpr is
the finite field with pr elements. The proof of the proposition in [6] seems
somewhat involved.

The project is to find a simple proof of Proposition 6.1 along the lines of
our proof of 4.4, and using a suitable modification of Fact 2.1.

Another general question relating these lectures to those of Scanlon, is whether
the methods above apply to the Drinfeld modules version of Manin-Mumford.
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