Outline of lectures on Model Theory and
Diophantine Geometry, by Anand Pillay and
Thomas Scanlon

1 Course description.

The general theme will be the use of model-theoretic methods in proofs of
the Manin-Mumford conjecture and variants.

If K is an algebraically closed field, G a commutative algebraic group over
K and T" an abstract subgroup of G(K), we will say that I" is of Lang type,
if for any n and subvariety X of G, X(K) NI™ is a finite union of cosets
of subgroups of I'". The Manin-Mumford conjecture says that if the charac-
teristic is 0 and G is a semiabelian variety, then the group Tor(G) of torsion
points of G(K) is of Lang type.

Hrushovski [7] gave a proof of the Manin-Mumford conjecture, using the
model theory of difference fields [3]. Scanlon [13] proved “Manin-Mumford
for Drinfeld modules” in positive characteristic (see below), also using the
model theory of difference fields [4].

Pillay’s lectures will contain a simplified and self-contained account of Hrushovski’s
proof of Manin-Mumford in the spirit of [9]. A key step will be an elementary
proof of the following algebraic result, valid in all characteristics:

Proposition 1.1 Let A be a semiabelian variety and X be an irreducible
subvariety of A containing 0 which generates A. Assume Staba(X) is trivial.
Let ¢ be a separable isogeny of A such that ¢(X) = X. Then for some n, ¢™
18 the identity.

The methods, coming from [10], are closely related to those in recent preprints
of Pink and Roessler ([11], [12]), but definability in difference fields plays a
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simplifying role.

Pillay will also discuss how and why the statements of Manin-Mumford and
Mordell-Lang, together with uniform definability of types in algebraically
closed fields, automatically yield uniformities as the subvariety X of A varies
in an algebraic family.

Scanlon’s talks will be around the Drinfeld modules version of Manin-Mumford.
Let K be a field of characteristic p > 0. The ring of endomorphism of the
additive group G, defined over K can be identified with the “twisted” poly-
nomial ring K{7} = {ap+ a7+ .. + a,7" : n € N,a; € K}, where 7 acts as
x — 2P, m: K{r} — K takes a polynomial f as above to its constant term
ap. By a Drinfeld module we will mean a homomorphism ¢ : F,[t] — K{7}
such that ¢(t) ¢ K. The Drinfeld module ¢ equips the additive group of any
K-algebra with an F,[t]-module structure. The Drinfeld module ¢ is said to
have generic characteristic if the kernel of 7o ¢ is (0).

Denis [5] raised a series of conjectures for Drinfeld modules, analogous to the
Manin-Mumford, Mordell-Lang conjectures. Scanlon will explain the proof
of the Drinfeld module version of Manin-Mumford:

Proposition 1.2 Let K be an algebraically closed field of characteristic p >
0, and ¢ : F,[t] - K{7} a Drinfeld module of generic characteristic. Then
The F,[t]-torsion submodule of (K,+) is of Lang type.

Scanlon will also explain how the Drinfeld module version of Mordell-Lang
with division points follows from the Drinfeld module version of Mordell-Lang
without division points.

PREREQUISITES. Familiarity with the language of algebraic geometry,
as in say Shafarevich [14], as well as with first order model theory. An ac-
quaintance with the first five chapters of [1], by Bouscaren, Ziegler, Lascar,
Pillay, and Hindry, respectively, would be helpful. A good reference on Drin-
feld modules is Goss’ book [6], specifically pages 63-92 in Chapter 4.

2 Project

Theorem 3.1 of [12] gives a generalization of Proposition 1.1 above to the
case where ¢ is not necessarily separable. One case of this generalization is:
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Proposition 2.1 (char = p > 0.) Let A be a semiabelian variety, ¢ an
isogeny of A, and X a ¢-invariant subvariety of A containing 0. Assume
that X generates A. Let Frob the the Frobenius map, and suppose that for
positive integers r, s, ¢° is the composition of Frob” with a separable isogeny
from Frob"(A) to A. Then A can be defined over F,r and ¢* = Frob” on A.

Project 1 will to be generalize the proof of Proposition 1.1 in the lectures to
a proof of Proposition 2.1

Project 2 will be to prove a “function field” version of Denis’ Mordell-Lang
conjecture. We call Drinfeld modules ¢ and ¢ equivalent if there is a scalar A
such that ¥(t) = A'¢(t)\. We define the modular transcendence degree of
¢ to be the least transcendence degree of a field L such that ¢ is equivalent
to a Drinfeld module v defined over L. The project is to prove the following
conjecture.

Conjecture 2.2 Let K be an algebraically closed field of characteristic p >
0, ¢ a Drinfeld module over K of positive modular transcendence degree with
mop(t) =0, andI' < (K, +) a finitely generated F,[t]-module. Then I is of
Lang type.

It should be possible to prove Conjecture 2.2 along the lines of Hrushovski’s
proof [8] of the function field Mordell-Lang. That is, working in a suitable
separably closed field L of finite Ersov invariant over which the data are
defined, let ¢*(L) the type-definable group N,¢(¢)"(L) and one has to prove
the modularity of ¢*(L). By [2], this is equivalent to the nonexistence of a
definable isogeny between ¢*(L) and LP™,
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